Neural Network

The module pyro.nn provides implementations of neural network modules that are useful in the context of deep probabilistic programming. None of these modules is really part of the core language.


class AutoRegressiveNN(input_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())[source]

Bases: torch.nn.modules.module.Module

An implementation of a MADE-like auto-regressive neural network.

Example usage: >>> x = torch.randn(100, 10) >>> arn = AutoRegressiveNN(10, [50], param_dims=[1]) >>> p = arn(x) # 1 parameters of size (100, 10) >>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 1]) >>> m, s = arn(x) # 2 parameters of size (100, 10) >>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 5, 3]) >>> a, b, c = arn(x) # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)

  • input_dim (int) – the dimensionality of the input
  • hidden_dims (list[int]) – the dimensionality of the hidden units per layer
  • param_dims (list[int]) – shape the output into parameters of dimension (p_n, input_dim) for p_n in param_dims when p_n > 1 and dimension (input_dim) when p_n == 1. The default is [1, 1], i.e. output two parameters of dimension (input_dim), which is useful for inverse autoregressive flow.
  • permutation (torch.LongTensor) – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. in particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.
  • skip_connections (bool) – Whether to add skip connections from the input to the output.
  • nonlinearity (torch.nn.module) – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.


MADE: Masked Autoencoder for Distribution Estimation [arXiv:1502.03509] Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle


The forward method


Get the permutation applied to the inputs (by default this is chosen at random)

class MaskedLinear(in_features, out_features, mask, bias=True)[source]

Bases: torch.nn.modules.linear.Linear

A linear mapping with a given mask on the weights (arbitrary bias)

  • in_features (int) – the number of input features
  • out_features (int) – the number of output features
  • mask (torch.Tensor) – the mask to apply to the in_features x out_features weight matrix
  • bias (bool) – whether or not MaskedLinear should include a bias term. defaults to True

the forward method that does the masked linear computation and returns the result

create_mask(input_dim, observed_dim, hidden_dims, permutation, output_dim_multiplier)[source]

Creates MADE masks for a conditional distribution

  • input_dim (int) – the dimensionality of the input variable
  • observed_dim (int) – the dimensionality of the variable that is conditioned on (for conditional densities)
  • hidden_dims (list[int]) – the dimensionality of the hidden layers(s)
  • permutation (torch.LongTensor) – the order of the input variables
  • output_dim_multiplier (int) – tiles the output (e.g. for when a separate mean and scale parameter are desired)
sample_mask_indices(input_dim, hidden_dim, simple=True)[source]

Samples the indices assigned to hidden units during the construction of MADE masks

  • input_dim (int) – the dimensionality of the input variable
  • hidden_dim (int) – the dimensionality of the hidden layer
  • simple (bool) – True to space fractional indices by rounding to nearest int, false round randomly