<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Installation</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Install from Source</td>
<td>1</td>
</tr>
<tr>
<td>2 Getting Started</td>
<td>3</td>
</tr>
<tr>
<td>3 Primitives</td>
<td>5</td>
</tr>
<tr>
<td>4 Inference</td>
<td>11</td>
</tr>
<tr>
<td>4.1 SVI</td>
<td>11</td>
</tr>
<tr>
<td>4.2 ELBO</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Importance</td>
<td>19</td>
</tr>
<tr>
<td>4.4 Reweighted Wake-Sleep</td>
<td>20</td>
</tr>
<tr>
<td>4.5 Sequential Monte Carlo</td>
<td>22</td>
</tr>
<tr>
<td>4.6 Stein Methods</td>
<td>22</td>
</tr>
<tr>
<td>4.7 Likelihood free methods</td>
<td>24</td>
</tr>
<tr>
<td>4.8 Discrete Inference</td>
<td>25</td>
</tr>
<tr>
<td>4.9 Inference Utilities</td>
<td>26</td>
</tr>
<tr>
<td>4.10 MCMC</td>
<td>29</td>
</tr>
<tr>
<td>4.11 Automatic Guide Generation</td>
<td>35</td>
</tr>
<tr>
<td>4.12 Reparameterizers</td>
<td>42</td>
</tr>
<tr>
<td>5 Distributions</td>
<td>47</td>
</tr>
<tr>
<td>5.1 PyTorch Distributions</td>
<td>47</td>
</tr>
<tr>
<td>5.2 Pyro Distributions</td>
<td>51</td>
</tr>
<tr>
<td>5.3 Transforms</td>
<td>77</td>
</tr>
<tr>
<td>5.4 TransformModules</td>
<td>80</td>
</tr>
<tr>
<td>5.5 Transform Factories</td>
<td>91</td>
</tr>
<tr>
<td>6 Parameters</td>
<td>95</td>
</tr>
<tr>
<td>6.1 ParamStore</td>
<td>95</td>
</tr>
<tr>
<td>7 Neural Networks</td>
<td>99</td>
</tr>
<tr>
<td>7.1 Pyro Modules</td>
<td>99</td>
</tr>
<tr>
<td>7.2 AutoRegressiveNN</td>
<td>103</td>
</tr>
<tr>
<td>7.3 ConditionalAutoRegressiveNN</td>
<td>103</td>
</tr>
<tr>
<td>8 Optimization</td>
<td>105</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Pyro Optimizers</td>
<td>105</td>
</tr>
<tr>
<td>8.2 PyTorch Optimizers</td>
<td>107</td>
</tr>
<tr>
<td>8.3 Higher-Order Optimizers</td>
<td>108</td>
</tr>
<tr>
<td>9 Poutine (Effect handlers)</td>
<td>111</td>
</tr>
<tr>
<td>9.1 Handlers</td>
<td>111</td>
</tr>
<tr>
<td>9.2 Trace</td>
<td>119</td>
</tr>
<tr>
<td>9.3 Runtime</td>
<td>121</td>
</tr>
<tr>
<td>9.4 Utilities</td>
<td>122</td>
</tr>
<tr>
<td>9.5 Messengers</td>
<td>123</td>
</tr>
<tr>
<td>10 Miscellaneous Ops</td>
<td>133</td>
</tr>
<tr>
<td>10.1 Utilities for HMC</td>
<td>133</td>
</tr>
<tr>
<td>10.2 Newton Optimizers</td>
<td>135</td>
</tr>
<tr>
<td>10.3 Tensor Utilities</td>
<td>137</td>
</tr>
<tr>
<td>10.4 Tensor Indexing</td>
<td>138</td>
</tr>
<tr>
<td>10.5 Tensor Contraction</td>
<td>139</td>
</tr>
<tr>
<td>10.6 Gaussian Contraction</td>
<td>141</td>
</tr>
<tr>
<td>10.7 Statistical Utilities</td>
<td>143</td>
</tr>
<tr>
<td>10.8 State Space Model and GP Utilities</td>
<td>146</td>
</tr>
<tr>
<td>11 Automatic Name Generation</td>
<td>149</td>
</tr>
<tr>
<td>11.1 Named Data Structures</td>
<td>151</td>
</tr>
<tr>
<td>11.2 Scoping</td>
<td>153</td>
</tr>
<tr>
<td>12 Bayesian Neural Networks</td>
<td>157</td>
</tr>
<tr>
<td>12.1 HiddenLayer</td>
<td>157</td>
</tr>
<tr>
<td>13 Causal Effect VAE</td>
<td>159</td>
</tr>
<tr>
<td>13.1 CEVAE Class</td>
<td>159</td>
</tr>
<tr>
<td>13.2 CEVAE Components</td>
<td>161</td>
</tr>
<tr>
<td>13.3 Utilities</td>
<td>162</td>
</tr>
<tr>
<td>14 Easy Custom Guides</td>
<td>165</td>
</tr>
<tr>
<td>14.1 EasyGuide</td>
<td>165</td>
</tr>
<tr>
<td>14.2 easy_guide</td>
<td>166</td>
</tr>
<tr>
<td>14.3 Group</td>
<td>166</td>
</tr>
<tr>
<td>15 Pyro Examples</td>
<td>169</td>
</tr>
<tr>
<td>15.1 Datasets</td>
<td>169</td>
</tr>
<tr>
<td>15.2 Utilities</td>
<td>170</td>
</tr>
<tr>
<td>16 Gaussian Processes</td>
<td>171</td>
</tr>
<tr>
<td>16.1 Models</td>
<td>172</td>
</tr>
<tr>
<td>16.2 Kernels</td>
<td>183</td>
</tr>
<tr>
<td>16.3 Likelihoods</td>
<td>189</td>
</tr>
<tr>
<td>16.4 Parameterized</td>
<td>192</td>
</tr>
<tr>
<td>16.5 Util</td>
<td>193</td>
</tr>
<tr>
<td>17 Mini Pyro</td>
<td>195</td>
</tr>
<tr>
<td>18 Optimal Experiment Design</td>
<td>197</td>
</tr>
<tr>
<td>18.1 Expected Information Gain</td>
<td>198</td>
</tr>
<tr>
<td>18.2 Generalised Linear Mixed Models</td>
<td>204</td>
</tr>
</tbody>
</table>
19 Time Series ... 207
 19.1 Abstract Models .. 207
 19.2 Gaussian Processes .. 208
 19.3 Linear Gaussian State Space Models 210

20 Tracking .. 213
 20.1 Data Association ... 213
 20.2 Distributions .. 216
 20.3 Dynamic Models ... 216
 20.4 Extended Kalman Filter .. 220
 20.5 Hashing ... 222
 20.6 Measurements .. 224

21 Indices and tables ... 227

Python Module Index .. 229

Index .. 231
1.1 Install from Source

Pyro supports 3.4+. To setup, install PyTorch then run:

```
pip install pyro-ppl
```

or install from source:

```
git clone https://github.com/pyro-ppl/pyro.git
cd pyro
python setup.py install
```
• Install Pyro.
• Learn the basic concepts of Pyro: models and inference.
• Dive in to other tutorials and examples.
Primitives

sample (name, fn, *args, **kwargs)

 Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

Parameters

• name – name of sample
• fn – distribution class or function
• obs – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
• infer (dict) – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

param (name, *args, **kwargs)

Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

Parameters

• name (str) – name of parameter
• init_tensor (torch.Tensor or callable) – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
• constraint (torch.distributions.constraints.Constraint) – torch constraint, defaults to constraints.real.
• event_dim (int) – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.
Returns parameter
Return type torch.Tensor

module (name, nn_module, update_module_params=False)
Takes a torch.nn.Module and registers its parameters with the ParamStore. In conjunction with the ParamStore save() and load() functionality, this allows the user to save and load modules.

Parameters
• name (str) – name of module
• nn_module (torch.nn.Module) – the module to be registered with Pyro
• update_module_params – determines whether Parameters in the PyTorch module get overridden with the values found in the ParamStore (if any). Defaults to False

Returns torch.nn.Module

random_module (name, nn_module, prior, *args, **kwargs)

Warning: The random_module primitive is deprecated, and will be removed in a future release. Use PyroModule instead to to create Bayesian modules from torch.nn.Module instances. See the Bayesian Regression tutorial for an example.

Places a prior over the parameters of the module nn_module. Returns a distribution (callable) over nn.Modules, which upon calling returns a sampled nn.Module.

Parameters
• name (str) – name of pyro module
• nn_module (torch.nn.Module) – the module to be registered with pyro
• prior – pyro distribution, stochastic function, or python dict with parameter names as keys and respective distributions/stochastic functions as values.

Returns a callable which returns a sampled module

factor (name, log_factor)
Factor statement to add arbitrary log probability factor to a probabilisitic model.

Parameters
• name (str) – Name of the trivial sample
• log_factor (torch.Tensor) – A possibly batched log probability factor.

deterministic (name, value, event_dim=None)
EXPERIMENTAL Deterministic statement to add a Delta site with name name and value value to the trace. This is useful when we want to record values which are completely determined by their parents. For example:

```python
x = sample("x", dist.Normal(0, 1))
x2 = deterministic("x2", x ** 2)
```

Note: The site does not affect the model density. This currently converts to a sample() statement, but may change in the future.
• **name** (*str*) – Name of the site.

• **value** (*torch.Tensor*) – Value of the site.

• **event_dim** (*int*) – Optional event dimension, defaults to `value.ndim`.

class plate

```
class plate(name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)
```

Construct for conditionally independent sequences of variables.

`plate` can be used either sequentially as a generator or in parallel as a context manager (formerly `irange` and `iarange`, respectively).

Sequential `plate` is similar to `range()` in that it generates a sequence of values.

Vectorized `plate` is similar to `torch.arange()` in that it yields an array of indices by which other tensors can be indexed. `plate` differs from `torch.arange()` in that it also informs inference algorithms that the variables being indexed are conditionally independent. To do this, `plate` is a provided as context manager rather than a function, and users must guarantee that all computation within an `plate` context is conditionally independent:

```
with plate("name", size) as ind:
    # ...do conditionally independent stuff with ind...
```

Additionally, `plate` can take advantage of the conditional independence assumptions by subsampling the indices and informing inference algorithms to scale various computed values. This is typically used to subsample minibatches of data:

```
with plate("data", len(data), subsample_size=100) as ind:
    batch = data[ind]
    assert len(batch) == 100
```

By default `subsample_size=False` and this simply yields a `torch.arange(0, size)`. If `0 < subsample_size <= size` this yields a single random batch of indices of size `subsample_size` and scales all log likelihood terms by `size/batch_size`, within this context.

Warning: This is only correct if all computation is conditionally independent within the context.

Parameters

- **name** (*str*) – A unique name to help inference algorithms match `plate` sites between models and guides.

- **size** (*int*) – Optional size of the collection being subsampled (like `stop` in builtin `range`).

- **subsample_size** (*int*) – Size of minibatches used in subsampling. Defaults to `size`.

- **subsample** (Anything supporting `len()`) – Optional custom subsample for user-defined subsampling schemes. If specified, then `subsample_size` will be set to `len(subsample)`.

- **dim** (*int*) – An optional dimension to use for this independence index. If specified, `dim` should be negative, i.e. should index from the right. If not specified, `dim` is set to the rightmost dim that is left of all enclosing `plate` contexts.

- **use_cuda** (*bool*) – DEPRECATED, use the `device` arg instead. Optional bool specifying whether to use cuda tensors for `subsample` and `log_prob`. Defaults to `torch.Tensor.is_cuda`.
• **device (str)** – Optional keyword specifying which device to place the results of `subsample` and `log_prob` on. By default, results are placed on the same device as the default tensor.

Returns A reusabe context manager yielding a single 1-dimensional `torch.Tensor` of indices.

Examples:

```python
>>> # This version declares sequential independence and subsamples data:
>>> for i in plate('data', 100, subsample_size=10):
...    if z[i]:  # Control flow in this example prevents vectorization.
...        obs = sample('obs_{}'.format(i), dist.Normal(loc, scale),
        ...           obs=data[i])
```

```python
>>> # This version declares vectorized independence:
>>> with plate('data'):
...    obs = sample('obs', dist.Normal(loc, scale), obs=data)
```

```python
>>> # This version subsamples data in vectorized way:
>>> with plate('data', 100, subsample_size=10) as ind:
...    obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])
```

```python
>>> # This wraps a user-defined subsampling method for use in pyro:
>>> ind = torch.randint(0, 100, (10,)).long()  # custom subsample
>>> with plate('data', 100, subsample=ind):
...    obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])
```

```python
>>> # This reuses two different independence contexts.
>>> x_axis = plate('outer', 320, dim=-1)
>>> y_axis = plate('inner', 200, dim=-2)
>>> with x_axis:
...    x_noise = sample("x_noise", dist.Normal(loc, scale))
...    assert x_noise.shape == (320,
>>> with y_axis:
...    y_noise = sample("y_noise", dist.Normal(loc, scale))
...    assert y_noise.shape == (200, 1)
>>> with x_axis, y_axis:
...    xy_noise = sample("xy_noise", dist.Normal(loc, scale))
...    assert xy_noise.shape == (200, 320)
```

See SVI Part II for an extended discussion.

get_param_store ()

Returns the ParamStore

clear_param_store ()

Clears the ParamStore. This is especially useful if you’re working in a REPL.

validation_enabled (is_validate=True)

Context manager that is useful when temporarily enabling/disabling validation checks.

Parameters

- **is_validate (bool)** – (optional; defaults to True) temporary validation check over-ride.

enable_validation (is_validate=True)

Enable or disable validation checks in Pyro. Validation checks provide useful warnings and errors, e.g. NaN checks, validating distribution arguments and support values, etc. which is useful for debugging. Since some of these checks may be expensive, we recommend turning this off for mature models.
Parameters **is_validate** (*bool*) – (optional; defaults to True) whether to enable validation checks.

trace (*fn=None, ignore_warnings=False, jit_options=None*)

Lazy replacement for `torch.jit.trace()` that works with Pyro functions that call `pyro.param()`.

The actual compilation artifact is stored in the `compiled` attribute of the output. Call diagnostic methods on this attribute.

Example:

```python
def model(x):
    scale = pyro.param("scale", torch.tensor(0.5), constraint=constraints.positive)
    return pyro.sample("y", dist.Normal(x, scale))

@pyro.ops.jit.trace
def model_log_prob_fn(x, y):
    cond_model = pyro.condition(model, data={"y": y})
    tr = pyro.poutine.trace(cond_model).get_trace(x)
    return tr.log_prob_sum()
```

Parameters

- **fn** (*callable*) – The function to be traced.
- **ignore_warnings** (*bool*) – Whether to ignore jit warnings.
- **jit_options** (*dict*) – Optional dict of options to pass to `torch.jit.trace()`, e.g. "optimize": False.

set_rng_seed (*rng_seed*)

Sets seeds of `torch` and `torch.cuda` (if available).

Parameters **rng_seed** (*int*) – The seed value.
In the context of probabilistic modeling, learning is usually called inference. In the particular case of Bayesian inference, this often involves computing (approximate) posterior distributions. In the case of parameterized models, this usually involves some sort of optimization. Pyro supports multiple inference algorithms, with support for stochastic variational inference (SVI) being the most extensive. Look here for more inference algorithms in future versions of Pyro.

See Intro II for a discussion of inference in Pyro.

4.1 SVI

class SVI (model, guide, optim, loss, loss_and_grads=None, num_samples=0, num_steps=0, **kwargs)

Bases: pyro.infer.abstract_infer.TracePosterior

Parameters

• **model** – the model (callable containing Pyro primitives)
• **guide** – the guide (callable containing Pyro primitives)
• **optim**(pyro.optim.PyroOptim) – a wrapper a for a PyTorch optimizer
• **loss**(pyro.infer.elbo.ELBO) – an instance of a subclass of ELBO. Pyro provides three built-in losses: Trace_ELBO, TraceGraph_ELBO, and TraceEnum_ELBO. See the ELBO docs to learn how to implement a custom loss.
• **num_samples** – (DEPRECATED) the number of samples for Monte Carlo posterior approximation
• **num_steps** – (DEPRECATED) the number of optimization steps to take in run()

A unified interface for stochastic variational inference in Pyro. The most commonly used loss is loss=Trace_ELBO(). See the tutorial SVI Part I for a discussion.

evaluate_loss(*args, **kwargs)

Returns estimate of the loss
Return type float

Evaluate the loss function. Any args or kwargs are passed to the model and guide.

```python
run(*args, **kwargs)
```

Warning: This method is deprecated, and will be removed in a future release. For inference, use `step()` directly, and for predictions, use the `Predictive` class.

```python
step(*args, **kwargs)
```

Returns estimate of the loss

Return type float

Take a gradient step on the loss function (and any auxiliary loss functions generated under the hood by `loss_and_grads`). Any args or kwargs are passed to the model and guide.

4.2 ELBO

class `ELBO`(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta=-1.0)

Bases: object

ELBO is the top-level interface for stochastic variational inference via optimization of the evidence lower bound.

Most users will not interact with this base class *ELBO* directly; instead they will create instances of derived classes: `Trace_ELBO`, `TraceGraph_ELBO`, or `TraceEnum_ELBO`.

Parameters

- **num_particles** – The number of particles/samples used to form the ELBO (gradient) estimators.
- **max_plate_nesting** *(int)* – Optional bound on max number of nested *pyro. plate()* contexts. This is only required when enumerating over sample sites in parallel, e.g. if a site sets `infer={"enumerate": "parallel"}`. If omitted, ELBO may guess a valid value by running the (model,guide) pair once, however this guess may be incorrect if model or guide structure is dynamic.
- **vectorize_particles** *(bool)* – Whether to vectorize the ELBO computation over `num_particles`. Defaults to False. This requires static structure in model and guide.
- **strictEnumerationWarning** *(bool)* – Whether to warn about possible misuse of enumeration, i.e. that `pyro.infer.traceenum_elbo.TraceEnum_ELBO` is used iff there are enumerated sample sites.
- **ignore jit warnings** *(bool)* – Flag to ignore warnings from the JIT tracer. When this is True, all `torch.jit.TracerWarning` will be ignored. Defaults to False.
- **jit options** *(bool)* – Optional dict of options to pass to `torch.jit.trace()`, e.g. `{"check_trace": True}`.
- **retain_graph** *(bool)* – Whether to retain autograd graph during an SVI step. Defaults to None (False).
tail_adaptive_beta *(float)* – Exponent beta with $-1.0 \leq \beta < 0.0$ for use with `TraceTailAdaptive_ELBO`.

References


```python
class Trace_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)
```

Bases: `pyro.infer.trace_elbo.Trace_ELBO`

A trace implementation of ELBO-based SVI. The estimator is constructed along the lines of references [1] and [2]. There are no restrictions on the dependency structure of the model or the guide. The gradient estimator includes partial Rao-Blackwellization for reducing the variance of the estimator when non-reparameterizable random variables are present. The Rao-Blackwellization is partial in that it only uses conditional independence information that is marked by `plate` contexts. For more fine-grained Rao-Blackwellization, see `TraceGraph_ELBO`.

References


```python
loss(model, guide, *args, **kwargs)
```

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses `num_particles` many samples/particles.

```python
differentiable_loss(model, guide, *args, **kwargs)
```

Computes the surrogate loss that can be differentiated with autograd to produce gradient estimates for the model and guide parameters

```python
loss_and_grads(model, guide, *args, **kwargs)
```

Returns returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. `Num_particle` many samples are used to form the estimators.

```python
class JitTrace_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)
```

Bases: `pyro.infer.trace_elbo.Trace_ELBO`

Like `Trace_ELBO` but uses `pyro.ops.jit.compile()` to compile `loss_and_grads()`.

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via `*args`.
- All model inputs that are not tensors must be passed in via `**kwargs`, and compilation will be triggered once per unique `**kwargs`.
loss_and_surrogate_loss *(model, guide, *args, **kwargs)*

differentiable_loss *(model, guide, *args, **kwargs)*

loss_and_grads *(model, guide, *args, **kwargs)*

class **TraceGraph_ELBO** *(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False, jit.options=None, retain graph=None, tail adaptive beta=-1.0)*

Bases: *pyro.infer.elbo.ELBO*

A TraceGraph implementation of ELBO-based SVI. The gradient estimator is constructed along the lines of reference [1] specialized to the case of the ELBO. It supports arbitrary dependency structure for the model and guide as well as baselines for non-reparameterizable random variables. Where possible, conditional dependency information as recorded in the Trace is used to reduce the variance of the gradient estimator. In particular two kinds of conditional dependency information are used to reduce variance:

- the sequential order of samples (z is sampled after y => y does not depend on z)
- plate generators

References

[2] *Neural Variational Inference and Learning in Belief Networks* Andriy Mnih, Karol Gregor

loss *(model, guide, *args, **kwargs)*

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads *(model, guide, *args, **kwargs)*

Returns returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators. If baselines are present, a baseline loss is also constructed and differentiated.

class **JitTraceGraph_ELBO** *(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False, jit.options=None, retain graph=None, tail adaptive beta=-1.0)*

Bases: *pyro.infer.tracegraph_elbo.TraceGraph_ELBO*

Like TraceGraph_ELBO but uses torch.jit.trace() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

loss_and_grads *(model, guide, *args, **kwargs)*
class BackwardSampleMessenger (enum_trace, guide_trace)
 Bases: pyro.poutine.messenger.Messenger

 Implements forward filtering / backward sampling for sampling from the joint posterior distribution

class TraceEnum_ELBO (num_particles=1, max_plate_nesting=inf, max iarange_nesting=None,
 vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None,
 tail adaptive beta=-1.0)
 Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO

 A trace implementation of ELBO-based SVI that supports - exhaustive enumeration over discrete sample sites, and - local parallel sampling over any sample site in the guide.

 To enumerate over a sample site in the guide, mark the site with either infer={'enumerate': 'sequential'} or infer={'enumerate': 'parallel'}. To configure all guide sites at once, use config_enumerate(). To enumerate over a sample site in the model, mark the site infer={'enumerate': 'parallel'} and ensure the site does not appear in the guide.

 This assumes restricted dependency structure on the model and guide: variables outside of an plate can never depend on variables inside that plate.

 loss (model, guide, *args, **kwargs)
 Returns an estimate of the ELBO
 Return type: float

 Estimates the ELBO using num_particles many samples (particles).

differentiable_loss (model, guide, *args, **kwargs)
 Returns a differentiable estimate of the ELBO
 Return type: torch.Tensor

 Raises ValueError – if the ELBO is not differentiable (e.g. is identically zero)

 Estimates a differentiable ELBO using num_particles many samples (particles). The result should be infinitely differentiable (as long as underlying derivatives have been implemented).

 loss_and_grads (model, guide, *args, **kwargs)
 Returns an estimate of the ELBO
 Return type: float

 Estimates the ELBO using num_particles many samples (particles). Performs backward on the ELBO of each particle.

 compute_marginals (model, guide, *args, **kwargs)
 Computes marginal distributions at each model-enumerated sample site.

 Returns a dict mapping site name to marginal Distribution object
 Return type: OrderedDict

 sample posterior (model, guide, *args, **kwargs)
 Sample from the joint posterior distribution of all model-enumerated sites given all observations

class JitTraceEnum_ELBO (num_particles=1, max_plate_nesting=inf, max iarange_nesting=None,
 vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None,
 tail adaptive beta=-1.0)
 Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO
Like *TraceEnum_ELBO* but uses *pyro.ops.jit.compile()* to compile *loss_and_grads()*.

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args*.
- All model inputs that are not tensors must be passed in via **kwargs**, and compilation will be triggered once per unique **kwargs**.

differentiable_loss (model, guide, *args, **kwargs)

loss_and_grads (model, guide, *args, **kwargs)

class **TraceMeanField_ELBO**(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: *pyro.infer.trace_elbo.Trace_ELBO*

A trace implementation of ELBO-based SVI. This is currently the only ELBO estimator in Pyro that uses analytic KL divergences when those are available.

In contrast to, e.g., *TraceGraph_ELBO* and *Trace_ELBO* this estimator places restrictions on the dependency structure of the model and guide. In particular it assumes that the guide has a mean-field structure, i.e., that it factorizes across the different latent variables present in the guide. It also assumes that all of the latent variables in the guide are reparameterized. This latter condition is satisfied for, e.g., the Normal distribution but is not satisfied for, e.g., the Categorical distribution.

Warning: This estimator may give incorrect results if the mean-field condition is not satisfied.

Note for advanced users:

The mean field condition is a sufficient but not necessary condition for this estimator to be correct. The precise condition is that for every latent variable *z* in the guide, its parents in the model must not include any latent variables that are descendants of *z* in the guide. Here ‘parents in the model’ and ‘descendants in the guide’ is with respect to the corresponding (statistical) dependency structure. For example, this condition is always satisfied if the model and guide have identical dependency structures.

loss (model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

class **JitTraceMeanField_ELBO**(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: *pyro.infer.trace_mean_field_elbo.TraceMeanField_ELBO*

Like *TraceMeanField_ELBO* but uses *pyro.ops.jit.trace()* to compile *loss_and_grads()*.

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

differentiable_loss (model, guide, *args, **kwargs)

loss_and_grads (model, guide, *args, **kwargs)

class TraceTailAdaptive_ELBO (num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore jit warnings=False, jit options=None, retain_graph=None, tail_adaptive beta=-1.0)

Bases: pyro.infer.trace_elbo.Trace_ELBO

Interface for Stochastic Variational Inference with an adaptive f-divergence as described in ref. [1]. Users should specify num_particles > 1 and vectorize_particles==True. The argument tail_adaptive_beta can be specified to modify how the adaptive f-divergence is constructed. See reference for details.

Note that this interface does not support computing the variational objective itself; rather it only supports computing gradients of the variational objective. Consequently, one might want to use another SVI interface (e.g. Renyi_ELBO) in order to monitor convergence.

Note that this interface only supports models in which all the latent variables are fully reparameterized. It also does not support data subsampling.

loss (model, guide, *args, **kwargs)

It is not necessary to estimate the tail-adaptive f-divergence itself in order to compute the corresponding gradients. Consequently the loss method is left unimplemented.

class RenyiELBO (alpha=0, num_particles=2, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True)

Bases: pyro.infer.elbo.ELBO

An implementation of Renyi’s α-divergence variational inference following reference [1].

In order for the objective to be a strict lower bound, we require α ≥ 0. Note, however, that according to reference [1], depending on the dataset α < 0 might give better results. In the special case α = 0, the objective function is that of the important weighted autoencoder derived in reference [2].

Note: Setting α < 1 gives a better bound than the usual ELBO. For α = 1, it is better to use Trace_ELBO class because it helps reduce variances of gradient estimations.

Parameters

• alpha (float) – The order of α-divergence. Here α ≠ 1. Default is 0.
• num_particles – The number of particles/samples used to form the objective (gradient) estimator. Default is 2.
• max_plate_nesting (int) – Bound on max number of nested pyro.plate() contexts. Default is infinity.
• strict Enumeration_warning (bool) – Whether to warn about possible misuse of enumeration, i.e. that TraceEnum_ELBO is used iff there are enumerated sample sites.

References:

4.2. ELBO
[1] Renyi Divergence Variational Inference, Yingzhen Li, Richard E. Turner

[2] Importance Weighted Autoencoders, Yuri Burda, Roger Grosse, Ruslan Salakhutdinov

loss(model, guide, *args, **kwargs)

Returns: returns an estimate of the ELBO

Return type: float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads(model, guide, *args, **kwargs)

Returns: returns an estimate of the ELBO

Return type: float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators.

class TraceTMC_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.elbo.ELBO

A trace-based implementation of Tensor Monte Carlo [1] by way of Tensor Variable Elimination [2] that supports: - local parallel sampling over any sample site in the model or guide - exhaustive enumeration over any sample site in the model or guide

To take multiple samples, mark the site with infer={'enumerate': 'parallel', 'num_samples': N}. To configure all sites in a model or guide at once, use config_enumerate() . To enumerate or sample a sample site in the model, mark the site and ensure the site does not appear in the guide.

This assumes restricted dependency structure on the model and guide: variables outside of an plate can never depend on variables inside that plate.

References

differentiable_loss(model, guide, *args, **kwargs)

Returns: a differentiable estimate of the marginal log-likelihood

Return type: torch.Tensor

Raises ValueError – if the ELBO is not differentiable (e.g. is identically zero)

Computes a differentiable TMC estimate using num_particles many samples (particles). The result should be infinitely differentiable (as long as underlying derivatives have been implemented).

loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)
4.3 Importance

class Importance (model, guide=None, num_samples=None)

Parameters

- **model** – probabilistic model defined as a function
- **guide** – guide used for sampling defined as a function
- **num_samples** – number of samples to draw from the guide (default 10)

This method performs posterior inference by importance sampling using the guide as the proposal distribution. If no guide is provided, it defaults to proposing from the model’s prior.

get_ESS()

Compute (Importance Sampling) Effective Sample Size (ESS).

get_log_normalizer()

Estimator of the normalizing constant of the target distribution. (mean of the unnormalized weights)

get_normalized_weights (log_scale=False)

Compute the normalized importance weights.

psis_diagnostic (model, guide, *args, **kwargs)

Computes the Pareto tail index k for a model/guide pair using the technique described in [1], which builds on previous work in [2]. If $0 < k < 0.5$ the guide is a good approximation to the model posterior, in the sense described in [1]. If $0.5 \leq k \leq 0.7$, the guide provides a suboptimal approximation to the posterior, but may still be useful in practice. If $k > 0.7$ the guide program provides a poor approximation to the full posterior, and caution should be used when using the guide. Note, however, that a guide may be a poor fit to the full posterior while still yielding reasonable model predictions. If $k < 0.0$ the importance weights corresponding to the model and guide appear to be bounded from above; this would be a bizarre outcome for a guide trained via ELBO maximization. Please see [1] for a more complete discussion of how the tail index k should be interpreted.

Please be advised that a large number of samples may be required for an accurate estimate of k.

Note that we assume that the model and guide are both vectorized and have static structure. As is canonical in Pyro, the args and kwargs are passed to the model and guide.

Parameters

- **model (callable)** – the model program.
- **guide (callable)** – the guide program.
- **num_particles (int)** – the total number of times we run the model and guide in order to compute the diagnostic. defaults to 1000.
- **max_simultaneous_particles** – the maximum number of simultaneous samples drawn from the model and guide. defaults to num_particles. num_particles must be divisible by max_simultaneous_particles. compute the diagnostic. defaults to 1000.
- **max_plate_nesting (int)** – optional bound on max number of nested pyro.plate() contexts in the model/guide. defaults to 7.

Returns float the PSIS diagnostic k

vectorized_importance_weights (model, guide, *args, **kwargs)
Parameters

- `model` – probabilistic model defined as a function
- `guide` – guide used for sampling defined as a function
- `num_samples` – number of samples to draw from the guide (default 1)
- `max_plate_nesting` (`int`) – Bound on max number of nested `pyro.plate()` contexts.
- `normalized` (`bool`) – set to True to return self-normalized importance weights

Returns

returns a `(num_samples,)`-shaped tensor of importance weights and the model and guide traces that produced them

Vectorized computation of importance weights for models with static structure:

```python
log_weights, model_trace, guide_trace = \
  vectorized_importance_weights(model, guide, *args, 
      num_samples=1000, 
      max_plate_nesting=4, 
      normalized=False)
```

4.4 Reweighted Wake-Sleep

class `ReweightedWakeSleep` (`num_particles=2`, `insomnia=1.0`, `model_has_params=True`,
`num_sleep_particles=None`, `vectorize_particles=True`,
`max_plate_nesting=inf`, `strict Enumeration warning=True`)

Bases: `pyro.infer.elbo.ELBO`

An implementation of Reweighted Wake Sleep following reference [1].

Note: Sampling and log_prob evaluation asymptotic complexity:

1) **Using wake-theta and/or wake-phi** \(O(num_particles)\) samples from guide, \(O(num_particles)\) log_prob evaluations of model and guide

2) **Using sleep-phi** \(O(num_sleep_particles)\) samples from model, \(O(num_sleep_particles)\) log_prob evaluations of guide

if 1) and 2) are combined, \(O(num_particles)\) samples from the guide, \(O(num_sleep_particles)\) from the model, \(O(num_particles + num_sleep_particles)\) log_prob evaluations of the guide, and \(O(num_particles)\) evaluations of the model

Note: This is particularly useful for models with stochastic branching, as described in [2].

Note: This returns _two_ losses, one each for (a) the model parameters (theta), computed using the iwae objective, and (b) the guide parameters (phi), computed using (a combination of) the csis objective and a self-normalized importance-sampled version of the csis objective.
Note: In order to enable computing the sleep-phi terms, the guide program must have its observations explicitly passed in through the keyworded argument `observations`. Where the value of the observations is unknown during definition, such as for amortized variational inference, it may be given a default argument as `observations=None`, and the correct value supplied during learning through `svi.step(observations=...)`.

Warning: Mini-batch training is not supported yet.

Parameters

- **num_particles** *(int)* – The number of particles/samples used to form the objective (gradient) estimator. Default is 2.

- **insomnia** – The scaling between the wake-phi and sleep-phi terms. Default is 1.0 [wake-phi]

- **model_has_params** *(bool)* – Indicate if model has learnable params. Useful in avoiding extra computation when running in pure sleep mode [csis]. Default is True.

- **num_sleep_particles** *(int)* – The number of particles used to form the sleep-phi estimator. Matches `num_particles` by default.

- **vectorize_particles** *(bool)* – Whether the traces should be vectorised across `num_particles`. Default is True.

- **max_plate_nesting** *(int)* – Bound on max number of nested `pyro.plate()` contexts. Default is infinity.

- **strict Enumeration warning** *(bool)* – Whether to warn about possible misuse of enumeration, i.e. that `TraceEnum_ELBO` is used iff there are enumerated sample sites.

References:

loss *(model, guide, *args, **kwargs)*

Returns returns model loss and guide loss

Return type float, float

Computes the re-weighted wake-sleep estimators for the model (wake-theta) and the guide (insomnia * wake-phi + (1 - insomnia) * sleep-phi).

loss_and_grads *(model, guide, *args, **kwargs)*

Returns returns model loss and guide loss

Return type float

Computes the RWS estimators for the model (wake-theta) and the guide (wake-phi). Performs backward as appropriate on both, using `num_particle` many samples/particles.
4.5 Sequential Monte Carlo

```python
class SMCFilter(model, guide, num_particles, max_plate_nesting)
    Bases: object

SMCFilter is the top-level interface for filtering via sequential monte carlo.

The model and guide should be objects with two methods: .init(state, ...) and .step(state, ...), intended to be called first with init(), then with step() repeatedly. These two methods should have the same signature as SMCFilter's init() and step() of this class, but with an extra first argument state that should be used to store all tensors that depend on sampled variables. The state will be a dict-like object, SMCState, with arbitrary keys and torch.Tensor values. Models can read and write state but guides can only read from it.

Inference complexity is \( O(len(state) \times num_time_steps) \), so to avoid quadratic complexity in Markov models, ensure that state has fixed size.

Parameters
- **model** (object) – probabilistic model with init and step methods
- **guide** (object) – guide used for sampling, with init and step methods
- **num_particles** (int) – The number of particles used to form the distribution.
- **max_plate_nesting** (int) – Bound on max number of nested pyro.plate() contexts.

get_empirical()

Returns a marginal distribution over all state tensors.

Return type a dictionary with keys which are latent variables and values which are Empirical objects.

init(*args, **kwargs)

Perform any initialization for sequential importance resampling. Any args or kwargs are passed to the model and guide

step(*args, **kwargs)

Take a filtering step using sequential importance resampling updating the particle weights and values while resampling if desired. Any args or kwargs are passed to the model and guide

class SMCState(num_particles)
    Bases: dict

Dictionary-like object to hold a vectorized collection of tensors to represent all state during inference with SMCFilter. During inference, the SMCFilter resample these tensors.

Keys may have arbitrary hashable type. Values must be torch.Tensors.

Parameters num_particles (int) –
```

4.6 Stein Methods

```python
class IMQSteinKernel(alpha=0.5, beta=-0.5, bandwidth_factor=None)
    Bases: pyro.infer.svgd.SteinKernel

An IMQ (inverse multi-quadratic) kernel for use in the SVGD inference algorithm [1]. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [2]. The kernel takes the form
```
\[K(x, y) = (\alpha + ||x - y||^2 / h)^\beta \]

where \(\alpha \) and \(\beta \) are user-specified parameters and \(h \) is the bandwidth.

Parameters

- **alpha** *(float)* – Kernel hyperparameter, defaults to 0.5.
- **beta** *(float)* – Kernel hyperparameter, defaults to -0.5.
- **bandwidth_factor** *(float)* – Optional factor by which to scale the bandwidth, defaults to 1.0.

Variables

- **bandwidth_factor** *(float)* – Property that controls the factor by which to scale the bandwidth at each iteration.

References


```python
log_kernel_and_grad(particles)
See pyro.infer.svgd.SteinKernel.log_kernel_and_grad()
```

class RBFSteinKernel(bandwidth_factor=None)

Bases: `pyro.infer.svgd.SteinKernel`

A RBF kernel for use in the SVGD inference algorithm. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [1].

Parameters

- **bandwidth_factor** *(float)* – Optional factor by which to scale the bandwidth, defaults to 1.0.

Variables

- **bandwidth_factor** *(float)* – Property that controls the factor by which to scale the bandwidth at each iteration.

References


```python
log_kernel_and_grad(particles)
See pyro.infer.svgd.SteinKernel.log_kernel_and_grad()
```

class SVGD(model, kernel, optim, num_particles, max_plate_nesting, mode='univariate')

Bases: `object`

A basic implementation of Stein Variational Gradient Descent as described in reference [1].

Parameters

- **model** – The model (callable containing Pyro primitives). Model must be fully vectorized and may only contain continuous latent variables.
- **kernel** – a SVGD compatible kernel like `RBFSteinKernel`.
- **optim** *(pyro.optim.PyroOptim)* – A wrapper for a PyTorch optimizer.
- **num_particles** *(int)* – The number of particles used in SVGD.
- **max_plate_nesting** *(int)* – The max number of nested `pyro.plate()` contexts in the model.
• **mode** *(str)* – Whether to use a Kernelized Stein Discrepancy that makes use of *multivariate* test functions (as in [1]) or *univariate* test functions (as in [2]). Defaults to *univariate*.

Example usage:

```python
from pyro.infer import SVGD, RBFSteinKernel
from pyro.optim import Adam

kernel = RBFSteinKernel()
adam = Adam({"lr": 0.1})
svgd = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)

for step in range(500):
    svgd.step(model_arg1, model_arg2)

final_particles = svgd.get_named_particles()
```

References

get_named_particles()
Create a dictionary mapping name to vectorized value, of the form `{name: tensor}`. The leading dimension of each tensor corresponds to particles, i.e. this creates a struct of arrays.

step(*args, **kwargs)
Computes the SVGD gradient, passing args and kwargs to the model, and takes a gradient step.

Return dict A dictionary of the form `{name: float}`, where each float is a mean squared gradient. This can be used to monitor the convergence of SVGD.

class SteinKernel
Bases: object

Abstract class for kernels used in the **SVGD** inference algorithm.

log_kernel_and_grad(*particles)*
Compute the component kernels and their gradients.

Parameters particles – a tensor with shape (N, D)

Returns A pair (`log_kernel`, `kernel_grad`) where `log_kernel` is a (N, N, D)-shaped tensor equal to the logarithm of the kernel and `kernel_grad` is a (N, N, D)-shaped tensor where the entry (n, m, d) represents the derivative of `log_kernel` w.r.t. `x_{m,d}`, where `x_{m,d}` is the d\(^{th}\) dimension of particle m.

vectorize(fn, num_particles, max_plate_nesting)

4.7 Likelihood free methods

class EnergyDistance(*beta=1.0, prior_scale=0.0, num_particles=2, max_plate_nesting=inf)*
Bases: object

Posterior predictive energy distance [1,2] with optional Bayesian regularization by the prior.
Let $p(x,z) = p(z) p(x|z)$ be the model, $q(z|x)$ be the guide. Then given data x and drawing an iid pair of samples (Z, X) and (Z', X') (where Z is latent and X is the posterior predictive),

$$
Z \sim q(z|x); \quad X \sim p(x|Z) \\
Z' \sim q(z|x); \quad X' \sim p(x|Z')
$$

$$
loss = \mathbb{E}_X \|X - x\|^\beta - \frac{1}{2} \mathbb{E}_{X,X'} \|X - X'\|^\beta - \lambda \mathbb{E}_Z \log p(Z)
$$

This is a likelihood-free inference algorithm, and can be used for likelihoods without tractable density functions. The β energy distance is a robust loss functions, and is well defined for any distribution with finite fractional moment $\mathbb{E}||X||^\beta$.

This requires static model structure, a fully reparametrized guide, and reparametrized likelihood distributions in the model. Model latent distributions may be non-reparametrized.

References

Parameters

- **beta (float)** – Exponent β from [1,2]. The loss function is strictly proper for distributions with finite β-absolute moment $\mathbb{E}||X||^\beta$. Thus for heavy tailed distributions β should be small, e.g. for Cauchy distributions, $\beta < 1$ is strictly proper. Defaults to 1. Must be in the open interval $(0,2)$.

- **prior_scale (float)** – Nonnegative scale for prior regularization. Model parameters are trained only if this is positive. If zero (default), then model log densities will not be computed (guide log densities are never computed).

- **num_particles (int)** – The number of particles/samples used to form the gradient estimators. Must be at least 2.

- **max_plate_nesting (int)** – Optional bound on max number of nested `pyro.plate()` contexts. If omitted, this will guess a valid value by running the (model,guide) pair once.

__call__ (model, guide, *args, **kwargs)

Computes the surrogate loss that can be differentiated with autograd to produce gradient estimates for the model and guide parameters.

loss (*args, **kwargs)

Not implemented. Added for compatibility with unit tests only.

4.8 Discrete Inference

infer_discrete (fn=None, first_available_dim=None, temperature=1)

A poutine that samples discrete sites marked with `site["infer"]["enumerate"] = "parallel"` from the posterior, conditioned on observations.

Example:
```python
@infer_discrete(first_available_dim=-1, temperature=0)
@config_enumerate
def viterbi_decoder(data, hidden_dim=10):
    transition = 0.3 / hidden_dim + 0.7 * torch.eye(hidden_dim)
    means = torch.arange(float(hidden_dim))
    states = [0]
    for t in pyro.markov(range(len(data))):
        states.append(pyro.sample("states_{}/".format(t),
            dist.Categorical(transition[states[-1]])))
        pyro.sample("obs_{}/".format(t),
            dist.Normal(means[states[-1]], 1.),
            obs=data[t])
    return states  # returns maximum likelihood states

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **first_available_dim**(int) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer.
- **temperature**(int) – Either 1 (sample via forward-filter backward-sample) or 0 (optimize via Viterbi-like MAP inference). Defaults to 1 (sample).

```
EXPERIMENTAL class used to construct predictive distribution. The predictive distribution is obtained by running the model conditioned on latent samples from posterior_samples. If a guide is provided, then posterior samples from all the latent sites are also returned.

Warning: The interface for the Predictive class is experimental, and might change in the future.

Parameters

- **model** – Python callable containing Pyro primitives.
- **posterior_samples** (*dict*) – dictionary of samples from the posterior.
- **guide** (*callable*) – optional guide to get posterior samples of sites not present in posterior_samples.
- **num_samples** (*int*) – number of samples to draw from the predictive distribution. This argument has no effect if posterior_samples is non-empty, in which case, the leading dimension size of samples in posterior_samples is used.
- **return_sites** (*list, tuple, or set*) – sites to return; by default only sample sites not present in posterior_samples are returned.
- **parallel** (*bool*) – predict in parallel by wrapping the existing model in an outermost plate messenger. Note that this requires that the model has all batch dims correctly annotated via plate. Default is False.

call (*args, **kwargs*)

Method that calls forward() and returns parameter values of the guide as a tuple instead of a dict, which is a requirement for JIT tracing. Unlike forward(), this method can be traced by torch.jit.trace_module().

Warning: This method may be removed once PyTorch JIT tracer starts accepting dict as valid return types. See issue.

forward (*args, **kwargs*)

Returns dict of samples from the predictive distribution. By default, only sample sites not contained in posterior_samples are returned. This can be modified by changing the return_sites keyword argument of this Predictive instance.

get_samples (*args, **kwargs*)

get_vectorized_trace (*args, **kwargs*)

Returns a single vectorized trace from the predictive distribution. Note that this requires that the model has all batch dims correctly annotated via plate.

Parameters

- **args** – model arguments.
- **kwargs** – model keyword arguments.
class EmpiricalMarginal (trace_posterior, sites=None, validate_args=None)
 Bases: pyro.distributions.empirical.Empirical
 Marginal distribution over a single site (or multiple, provided they have the same shape) from the TracePosterior's model.

 Note: If multiple sites are specified, they must have the same tensor shape. Samples from each site will be stacked and stored within a single tensor. See Empirical. To hold the marginal distribution of sites having different shapes, use Marginals instead.

Parameters

• trace_posterior (TracePosterior) – a TracePosterior instance representing a Monte Carlo posterior.
• sites (list) – optional list of sites for which we need to generate the marginal distribution.

class Marginals (trace_posterior, sites=None, validate_args=None)
 Bases: object
 Holds the marginal distribution over one or more sites from the TracePosterior's model. This is a convenience container class, which can be extended by TracePosterior subclasses. e.g. for implementing diagnostics.

Parameters

• trace_posterior (TracePosterior) – a TracePosterior instance representing a Monte Carlo posterior.
• sites (list) – optional list of sites for which we need to generate the marginal distribution.

 empirical
 A dictionary of sites’ names and their corresponding EmpiricalMarginal distribution.

 Type OrderedDict

 support (flatten=False)
 Gets support of this marginal distribution.

 Parameters flatten (bool) – A flag to decide if we want to flatten batch_shape when the marginal distribution is collected from the posterior with num_chains > 1. Defaults to False.

 Returns a dict with keys are sites’ names and values are sites’ supports.

 Return type OrderedDict

class TracePosterior (num_chains=1)
 Bases: object
 Abstract TracePosterior object from which posterior inference algorithms inherit. When run, collects a bag of execution traces from the approximate posterior. This is designed to be used by other utility classes like EmpiricalMarginal, that need access to the collected execution traces.

 information_criterion (pointwise=False)
 Computes information criterion of the model. Currently, returns only “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and the corresponding effective number of parameters.

 Reference:
[1] Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC, Aki Vehtari, Andrew Gelman, and Jonah Gabry

Parameters
- **pointwise** (bool) – a flag to decide if we want to get a vectorized WAIC or not. When pointwise=False, returns the sum.

Returns a dictionary containing values of WAIC and its effective number of parameters.

Return type OrderedDict

marginal (sites=None)
Generates the marginal distribution of this posterior.

Parameters
- **sites** (list) – optional list of sites for which we need to generate the marginal distribution.

Returns A Marginals class instance.

Return type Marginals

run (*args, **kwargs)
Calls self.traces to populate execution traces from a stochastic Pyro model.

Parameters
- **args** – optional args taken by self.traces.
- **kwargs** – optional keywords args taken by self.traces.

Warning: This class is deprecated and will be removed in a future release. Use the Predictive class instead.

Generates and holds traces from the posterior predictive distribution, given model execution traces from the approximate posterior. This is achieved by constraining latent sites to randomly sampled parameter values from the model execution traces and running the model forward to generate traces with new response (“_RETURN”) sites.

- param model: arbitrary Python callable containing Pyro primitives.
- param TracePosterior posterior: trace posterior instance holding samples from the model’s approximate posterior.
- param int num_samples: number of samples to generate.
- param keep_sites: The sites which should be sampled from posterior distribution (default: all)

marginal (sites=None)
Gets marginal distribution for this predictive posterior distribution.

4.10 MCMC

4.10.1 MCMC

class MCMC (kernel, num_samples, warmup_steps=None, initial_params=None, num_chains=1, hook_fn=None, mp_context=None, disable_progbar=False, disable_validation=True, transforms=None)
Bases: object

Wrapper class for Markov Chain Monte Carlo algorithms. Specific MCMC algorithms are TraceKernel instances and need to be supplied as a kernel argument to the constructor.
Note: The case of \texttt{num_chains > 1} uses python multiprocessing to run parallel chains in multiple processes. This goes with the usual caveats around multiprocessing in python, e.g. the model used to initialize the \texttt{kernel} must be serializable via \texttt{pickle}, and the performance / constraints will be platform dependent (e.g. only the “spawn” context is available in Windows). This has also not been extensively tested on the Windows platform.

Parameters

- \texttt{kernel} – An instance of the \texttt{TraceKernel} class, which when given an execution trace returns another sample trace from the target (posterior) distribution.

- \texttt{num_samples (int)} – The number of samples that need to be generated, excluding the samples discarded during the warmup phase.

- \texttt{warmup_steps (int)} – Number of warmup iterations. The samples generated during the warmup phase are discarded. If not provided, default is half of \texttt{num_samples}.

- \texttt{num_chains (int)} – Number of MCMC chains to run in parallel. Depending on whether \texttt{num_chains} is 1 or more than 1, this class internally dispatches to either _UnarySampler or _MultiSampler.

- \texttt{initial_params (dict)} – dict containing initial tensors in unconstrained space to initiate the markov chain. The leading dimension’s size must match that of \texttt{num_chains}. If not specified, parameter values will be sampled from the prior.

- \texttt{hook_fn} – Python callable that takes in \texttt{(kernel, samples, stage, i)} as arguments. stage is either \texttt{sample} or \texttt{warmup} and \texttt{i} refers to the \texttt{i}’th sample for the given stage. This can be used to implement additional logging, or more generally, run arbitrary code per generated sample.

- \texttt{mp_context (str)} – Multiprocessing context to use when \texttt{num_chains > 1}. Only applicable for Python 3.5 and above. Use \texttt{mp_context=’spawn’} for CUDA.

- \texttt{disable_progbar (bool)} – Disable progress bar and diagnostics update.

- \texttt{disable_validation (bool)} – Disables distribution validation check. This is disabled by default, since divergent transitions will lead to exceptions. Switch to \texttt{True} for debugging purposes.

- \texttt{transforms (dict)} – dictionary that specifies a transform for a sample site with constrained support to unconstrained space.

\texttt{diagnostics ()}

 Gets some diagnostics statistics such as effective sample size, split Gelman-Rubin, or divergent transitions from the sampler.

\texttt{get_samples (num_samples=None, group_by_chain=False)}

 Get samples from the MCMC run, potentially resampling with replacement.

Parameters

- \texttt{num_samples (int)} – Number of samples to return. If \texttt{None}, all the samples from an MCMC chain are returned in their original ordering.

- \texttt{group_by_chain (bool)} – Whether to preserve the chain dimension. If \texttt{True}, all samples will have \texttt{num_chains} as the size of their leading dimension.

Returns dictionary of samples keyed by site name.
summary(prob=0.9)

Prints a summary table displaying diagnostics of samples obtained from posterior. The diagnostics displayed are mean, standard deviation, median, the 90% Credibility Interval, `effective_sample_size()`, `split_gelman_rubin()`.

Parameters

- **prob** *(float)* – the probability mass of samples within the credibility interval.

4.10.2 HMC

class HMC(model=None, potential_fn=None, step_size=1, trajectory_length=None, num_steps=None, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8)

Bases: `pyro.infer.mcmc.mcmc_kernel.MCMCKernel`

Simple Hamiltonian Monte Carlo kernel, where `step_size` and `num_steps` need to be explicitly specified by the user.

References

Parameters

- **model** – Python callable containing Pyro primitives.
- **potential_fn** – Python callable calculating potential energy with input is a dict of real support parameters.
- **step_size** *(float)* – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- **trajectory_length** *(float)* – Length of a MCMC trajectory. If not specified, it will be set to `step_size` x `num_steps`. In case `num_steps` is not specified, it will be set to 2π.
- **num_steps** *(int)* – The number of discrete steps over which to simulate Hamiltonian dynamics. The state at the end of the trajectory is returned as the proposal. This value is always equal to int(trajectory_length / step_size).
- **adapt_step_size** *(bool)* – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.
- **adapt_mass_matrix** *(bool)* – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.
- **full_mass** *(bool)* – A flag to decide if mass matrix is dense or diagonal.
- **transforms** *(dict)* – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.
- **max_plate_nesting** *(int)* – Optional bound on max number of nested `pyro.plate()` contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
- **jit_compile** *(bool)* – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
• **jit_options** (*dict*) – A dictionary contains optional arguments for `torch.jit.trace()` function.

• **ignore_jit_warnings** (*bool*) – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.

• **target_accept_prob** (*float*) – Increasing this value will lead to a smaller step size, hence the sampling will be slower and more robust. Default to 0.8.

Note: Internally, the mass matrix will be ordered according to the order of the names of latent variables, not the order of their appearance in the model.

Example:

```python
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()
>>> def model(data):
...     coefs_mean = torch.zeros(dim)
...     coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
...     y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)),
...                   obs=labels)
...     return y

>>> hmc_kernel = HMC(model, step_size=0.0855, num_steps=4)
>>> mcmc = MCMC(hmc_kernel, num_samples=500, warmup_steps=100)
>>> mcmc.run(data)
>>> mcmc.get_samples()['beta'].mean(0)  # doctest: +SKIP
    tensor([ 0.9819,  1.9258,  2.9737])
```

4.10.3 NUTS

```python
class NUTS(model=None, potential_fn=None, step_size=1, adapt_step_size=True,
            adapt_mass_matrix=True, full_mass=False, use_multinomial_sampling=True,
            transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None,
            ignore_jit_warnings=False, target_accept_prob=0.8, max_tree_depth=10)
```
No-U-Turn Sampler kernel, which provides an efficient and convenient way to run Hamiltonian Monte Carlo. The number of steps taken by the integrator is dynamically adjusted on each call to \texttt{sample} to ensure an optimal length for the Hamiltonian trajectory [1]. As such, the samples generated will typically have lower autocorrelation than those generated by the \texttt{HMC} kernel. Optionally, the NUTS kernel also provides the ability to adapt step size during the warmup phase.

Refer to the baseball example to see how to do Bayesian inference in Pyro using NUTS.

References

[2] A Conceptual Introduction to Hamiltonian Monte Carlo, Michael Betancourt

[3] Slice Sampling, Radford M. Neal

Parameters

- \texttt{model} – Python callable containing Pyro primitives.
- \texttt{potential_fn} – Python callable calculating potential energy with input is a dict of real support parameters.
- \texttt{step_size} (\texttt{float}) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- \texttt{adapt_step_size} (\texttt{bool}) – A flag to decide if we want to adapt step size during warm-up phase using Dual Averaging scheme.
- \texttt{adapt_mass_matrix} (\texttt{bool}) – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.
- \texttt{full_mass} (\texttt{bool}) – A flag to decide if mass matrix is dense or diagonal.
- \texttt{use_multinomial_sampling} (\texttt{bool}) – A flag to decide if we want to sample candidates along its trajectory using “multinomial sampling” or using “slice sampling”. Slice sampling is used in the original NUTS paper [1], while multinomial sampling is suggested in [2]. By default, this flag is set to True. If it is set to \texttt{False}, NUTS uses slice sampling.
- \texttt{transforms} (\texttt{dict}) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement \texttt{log_abs_det_jacobian}. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in \texttt{torch.distributions.constraint_registry}.
- \texttt{max_plate_nesting} (\texttt{int}) – Optional bound on max number of nested \texttt{pyro.plate()} contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
- \texttt{jit_compile} (\texttt{bool}) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
- \texttt{jit_options} (\texttt{dict}) – A dictionary contains optional arguments for \texttt{torch.jit.trace()} function.
- \texttt{ignore_jit_warnings} (\texttt{bool}) – Flag to ignore warnings from the JIT tracer when \texttt{jit_compile=True}. Default is False.
- \texttt{target_accept_prob} (\texttt{float}) – Target acceptance probability of step size adaptation scheme. Increasing this value will lead to a smaller step size, so the sampling will be slower but more robust. Default to 0.8.
max_tree_depth(int) – Max depth of the binary tree created during the doubling scheme of NUTS sampler. Default to 10.

Example:

```python
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

``` >>> def model(data):
... coefs_mean = torch.zeros(dim)
... coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
... y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)),
... obs=labels)
... return y

``` python
>>> nuts_kernel = NUTS(model, adapt_step_size=True)
>>> mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=300)
>>> mcmc.run(data)
``` >>> mcmc.get_samples()['beta'].mean(0) # doctest: +SKIP
				
tensor([0.9221, 1.9464, 2.9228])

4.10.4 Utilities

initialize_model(model, model_args=(), model_kwargs={}, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, skip_jit_warnings=False, num_chains=1)

Given a Python callable with Pyro primitives, generates the following model-specific properties needed for inference using HMC/NUTS kernels:

- initial parameters to be sampled using a HMC kernel,
- a potential function whose input is a dict of parameters in unconstrained space,
- transforms to transform latent sites of model to unconstrained space,
- a prototype trace to be used in MCMC to consume traces from sampled parameters.

Parameters

- **model** – a Pyro model which contains Pyro primitives.
- **model_args**(tuple) – optional args taken by model.
- **model_kwargs**(dict) – optional kwargs taken by model.
- **transforms**(dict) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement *log_abs_det_jacobian*. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in *torch.distributions.constraint_registry*.
- **max_plate_nesting**(int) – Optional bound on max number of nested *pyro.plate()* contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
• **jit_compile** (*bool*) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.

• **jit_options** (*dict*) – A dictionary contains optional arguments for `torch.jit.trace()` function.

• **ignore_jit_warnings** (*bool*) – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.

• **num_chains** (*int*) – Number of parallel chains. If `num_chains > 1`, the returned `initial_params` will be a list with `num_chains` elements.

 Returns a tuple of `(initial_params, potential_fn, transforms, prototype_trace)

diagnostics(*samples, group_by_chain=True*)

Gets diagnostics statistics such as effective sample size and split Gelman-Rubin using the samples drawn from the posterior distribution.

Parameters

• **samples** (*dict*) – dictionary of samples keyed by site name.

• **group_by_chain** (*bool*) – If True, each variable in `samples` will be treated as having shape `num_chains x num_samples x sample_shape`. Otherwise, the corresponding shape will be `num_samples x sample_shape` (i.e. without chain dimension).

 Returns dictionary of diagnostic stats for each sample site.

4.11 Automatic Guide Generation

4.11.1 AutoGuide

class AutoGuide(*model*)

 Bases: `pyro.nn.module.PyroModule`

 Base class for automatic guides.

 Derived classes must implement the `forward()` method, with the same `*args, **kwargs` as the base model.

 Auto guides can be used individually or combined in an `AutoGuideList` object.

 Parameters

 • **model** (*callable*) – a pyro model

 call(*args, **kwargs*)

 Method that calls `forward()` and returns parameter values of the guide as a `tuple` instead of a `dict`, which is a requirement for JIT tracing. Unlike `forward()`, this method can be traced by `torch.jit.trace_module()`.

 Warning: This method may be removed once PyTorch JIT tracer starts accepting `dict` as valid return types. See issue https://github.com/pytorch/pytorch/issues/27743

 median(*args, **kwargs*)

 Returns the posterior median value of each latent variable.

 Returns A dict mapping sample site name to median tensor.

 Return type `dict`
model

sample_latent(**kwargs)
 Samples an encoded latent given the same *args, **kwargs as the base model.

4.11.2 AutoGuideList

class AutoGuideList(model)

 Container class to combine multiple automatic guides.

 Example usage:

    ```python
guide = AutoGuideList(my_model)
guide.add(AutoDiagonalNormal(poutine.block(model, hide=['assignment'])))
guide.add(AutoDiscreteParallel(poutine.block(model, expose=['assignment'])))
svi = SVI(model, guide, optim, Trace_ELBO())
```

 Parameters
 model (callable) – a Pyro model

 add(part)
 Deprecated alias for append().

 append(part)
 Add an automatic guide for part of the model. The guide should have been created by blocking the model
to restrict to a subset of sample sites. No two parts should operate on any one sample site.

 Parameters
 part (AutoGuide or callable) – a partial guide to add

 forward(*args, **kwargs)
 A composite guide with the same *args, **kwargs as the base model.

 Returns
 A dict mapping sample site name to sampled value.

 Return type
 dict

 median(*args, **kwargs)
 Returns the posterior median value of each latent variable.

 Returns
 A dict mapping sample site name to median tensor.

 Return type
 dict

4.11.3 AutoCallable

class AutoCallable(model, guide, median=<function AutoCallable.<lambda>>)
 Bases: pyro.infer.autoguide.guides.AutoGuide

 AutoGuide wrapper for simple callable guides.

 This is used internally for composing autoguides with custom user-defined guides that are simple callables, e.g.:

    ```python
def my_local_guide(*args, **kwargs):
        ...

guide = AutoGuideList(model)
```

(continues on next page)
To specify a median callable, you can instead:

```python
def my_local_median(*args, **kwargs)
    ...

guide.add(AutoCallable(model, my_local_guide, my_local_median))
```

For more complex guides that need e.g. access to plates, users should instead subclass `AutoGuide`.

Parameters

- **model** (*callable*) – a Pyro model
- **guide** (*callable*) – a Pyro guide (typically over only part of the model)
- **median** (*callable*) – an optional callable returning a dict mapping sample site name to computed median tensor.

```python
forward(*args, **kwargs)
```

4.11.4 AutoDelta

class AutoDelta (model, init_loc_fn=<function init_to_median>)

Bases: pyro.infer.autoguide.guides.AutoGuide

This implementation of `AutoGuide` uses Delta distributions to construct a MAP guide over the entire latent space. The guide does not depend on the model’s `*args, **kwargs`.

Note: This class does MAP inference in constrained space.

Usage:

```python
guide = AutoDelta(model)
svi = SVI(model, guide, ...)
```

Latent variables are initialized using `init_loc_fn()`. To change the default behavior, create a custom `init_loc_fn()` as described in `Initialization`, for example:

```python
def my_init_fn(site):
    if site['name'] == 'level':
        return torch.tensor([-1., 0., 1.])
    if site['name'] == 'concentration':
        return torch.ones(k)
    return init_to_sample(site)
```

Parameters

- **model** (*callable*) – A Pyro model.
- **init_loc_fn** (*callable*) – A per-site initialization function. See `Initialization` section for available functions.
forward(*args, **kwargs)
 An automatic guide with the same *args, **kwargs as the base model.
 Returns A dict mapping sample site name to sampled value.
 Return type dict

median(*args, **kwargs)
 Returns the posterior median value of each latent variable.
 Returns A dict mapping sample site name to median tensor.
 Return type dict

4.11.5 AutoContinuous

class AutoContinuous(model, init_loc_fn=<function init_to_median>)
 Bases: pyro.infer.autoguide.guides.AutoGuide

 Base class for implementations of continuous-valued Automatic Differentiation Variational Inference [1].
 This uses torch.distributions.transforms to transform each constrained latent variable to an unconstrained space, then concatenate all variables into a single unconstrained latent variable. Each derived class implements a get_posterior() method returning a distribution over this single unconstrained latent variable.

 Assumes model structure and latent dimension are fixed, and all latent variables are continuous.
 Parameters
 model (callable) – a Pyro model
 Reference:
 [1] Automatic Differentiation Variational Inference, Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei

 Parameters
 • model (callable) – A Pyro model.
 • init_loc_fn (callable) – A per-site initialization function. See Initialization section for available functions.

forward(*args, **kwargs)
 An automatic guide with the same *args, **kwargs as the base model.
 Returns A dict mapping sample site name to sampled value.
 Return type dict

get_posterior(*args, **kwargs)
 Returns the posterior distribution.

median(*args, **kwargs)
 Returns the posterior median value of each latent variable.
 Returns A dict mapping sample site name to median tensor.
 Return type dict

quantiles(quantiles, *args, **kwargs)
 Returns posterior quantiles each latent variable. Example:
print(guide.quantiles([0.05, 0.5, 0.95]))

Parameters quantiles (torch.Tensor or list) – A list of requested quantiles between 0 and 1.

Returns A dict mapping sample site name to a list of quantile values.

Return type dict

sample_latent (*args, **kwargs)

Samples an encoded latent given the same *args, **kwargs as the base model.

4.11.6 AutoMultivariateNormal

class AutoMultivariateNormal (model, init_loc_fn=<function init_to_median>, init_scale=0.1)

Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Cholesky factorization of a Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

guide = AutoMultivariateNormal(model)
svi = SVI(model, guide, ...)

By default the mean vector is initialized by init_loc_fn() and the Cholesky factor is initialized to the identity times a small factor.

Parameters

• model (callable) – A generative model.

• init_loc_fn (callable) – A per-site initialization function. See Initialization section for available functions.

• init_scale (float) – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.

get_posterior (*args, **kwargs)

Returns a MultivariateNormal posterior distribution.

4.11.7 AutoDiagonalNormal

class AutoDiagonalNormal (model, init_loc_fn=<function init_to_median>, init_scale=0.1)

Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Normal distribution with a diagonal covariance matrix to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

guide = AutoDiagonalNormal(model)
svi = SVI(model, guide, ...)

By default the mean vector is initialized to zero and the scale is initialized to the identity times a small factor.

Parameters
• **model**(callable) – A generative model.

• **init_loc_fn**(callable) – A per-site initialization function. See *Initialization* section for available functions.

• **init_scale**(float) – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.

get_posterior (*args, **kwargs)

Returns a diagonal Normal posterior distribution.

4.11.8 AutoLowRankMultivariateNormal

class AutoLowRankMultivariateNormal(model, init_loc_fn=<function init_to_median>, init_scale=0.1, rank=None)

Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of *AutoContinuous* uses a low rank plus diagonal Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.*

Usage:

```python
guide = AutoLowRankMultivariateNormal(model, rank=10)
svi = SVI(model, guide, ...)
```

By default the cov_diag is initialized to a small constant and the cov_factor is initialized randomly such that on average cov_factor.matmul(cov_factor.t()) has the same scale as cov_diag.

Parameters

• **model**(callable) – A generative model.

• **rank**(int or None) – The rank of the low-rank part of the covariance matrix. Defaults to approximately sqrt(latent_dim).

• **init_loc_fn**(callable) – A per-site initialization function. See *Initialization* section for available functions.

• **init_scale**(float) – Approximate initial scale for the standard deviation of each (unconstrained transformed) latent variable.

get_posterior (*args, **kwargs)

Returns a LowRankMultivariateNormal posterior distribution.

4.11.9 AutoIAFNormal

class AutoIAFNormal(model, hidden_dim=None, init_loc_fn=<function init_to_median>)

Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of *AutoContinuous* uses a Diagonal Normal distribution transformed via a AffineAutoregressive to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.*

Usage:

```python
guide = AutoIAFNormal(model, hidden_dim=latent_dim)
svi = SVI(model, guide, ...)
```

Parameters
• **model** *(callable)* – a generative model
• **hidden_dim** *(int)* – number of hidden dimensions in the IAF
• **init_loc_fn** *(callable)* – A per-site initialization function. See *Initialization* section for available functions.

get_posterior (*args, **kwargs*)
Returns a diagonal Normal posterior distribution transformed by *InverseAutoregressiveFlow*.

4.11.10 AutoLaplaceApproximation

class AutoLaplaceApproximation *(model, init_loc_fn=<function init_to_median>)*

Bases: pyro.infer.autoguide.guides.AutoContinuous

Laplace approximation (quadratic approximation) approximates the posterior \(\log p(z|x) \) by a multivariate normal distribution in the unconstrained space. Under the hood, it uses Delta distributions to construct a MAP guide over the entire (unconstrained) latent space. Its covariance is given by the inverse of the hessian of \(-\log p(x, z) \) at the MAP point of \(z \).

Usage:

```python
delta_guide = AutoLaplaceApproximation(model)
svi = SVI(model, delta_guide, ...)
# ...then train the delta_guide...
guide = delta_guide.laplace_approximation()
```

By default the mean vector is initialized to an empirical prior median.

Parameters

• **model** *(callable)* – a generative model

• **init_loc_fn** *(callable)* – A per-site initialization function. See *Initialization* section for available functions.

get_posterior (*args, **kwargs*)
Returns a Delta posterior distribution for MAP inference.

laplace_approximation (*args, **kwargs*)
Returns a *AutoMultivariateNormal* instance whose posterior’s *loc* and *scale_tril* are given by Laplace approximation.

4.11.11 AutoDiscreteParallel

class AutoDiscreteParallel *(model)*

Bases: pyro.infer.autoguide.guides.AutoGuide

A discrete mean-field guide that learns a latent discrete distribution for each discrete site in the model.

forward (*args, **kwargs*)
An automatic guide with the same *args, **kwargs* as the base model.

Returns A dict mapping sample site name to sampled value.

Return type *dict*
4.11.12 Initialization

The pyro.infer.autoguide.initialization module contains initialization functions for automatic guides.

The standard interface for initialization is a function that inputs a Pyro trace site dict and returns an appropriately sized value to serve as an initial constrained value for a guide estimate.

- `init_to_feasible(site)`
 - Initialize to an arbitrary feasible point, ignoring distribution parameters.
- `init_to_sample(site)`
 - Initialize to a random sample from the prior.
- `init_to_median(site, num_samples=15)`
 - Initialize to the prior median; fallback to a feasible point if median is undefined.
- `init_to_mean(site)`
 - Initialize to the prior mean; fallback to median if mean is undefined.

class InitMessenger(init_fn)

Bases: `pyro.poutine.messenger.Messenger`

Initializes a site by replacing `.sample()` calls with values drawn from an initialization strategy. This is mainly for internal use by autoguide classes.

- **Parameters**
 - `init_fn` (`callable`): An initialization function.

4.12 Reparameterizers

The `pyro.infer.reparam` module contains reparameterization strategies for the `pyro.poutine.handlers.reparam()` effect. These are useful for altering geometry of a poorly-conditioned parameter space to make the posterior better shaped. These can be used with a variety of inference algorithms, e.g. Auto*Normal guides and MCMC.

class Reparam

Base class for reparameterizers.

- **__call__(name, fn, obs)**

 - **Parameters**
 - `name` (`str`): A sample site name.
 - `fn` (`TorchDistribution`): A distribution.
 - `obs` (`Tensor`): Observed value or None.

 - **Returns**
 - A pair `(new_fn, value)`.

4.12.1 Loc-Scale Decentering

class LocScaleReparam(centered=None, shape_params=())

Bases: `pyro.infer.reparam.reparam.Reparam`

Generic decentering reparameterizer [1] for latent variables parameterized by `loc` and `scale` (and possibly additional `shape_params`).

This reparameterization works only for latent variables, not likelihoods.
Parameters

- `centered (float)` – optional centered parameter. If None (default) learn a per-site per-element centering parameter in [0, 1]. If 0, fully decenter the distribution; if 1, preserve the centered distribution unchanged.
- `shape_params (tuple or list)` – list of additional parameter names to copy unchanged from the centered to decentered distribution.

__call__(name, fn, obs)

4.12.2 Transformed Distributions

class TransformReparam
 Bases: pyro.infer.reparam.reparam.Reparam

 Reparameterizer for `pyro.distributions.torch.TransformedDistribution` latent variables.

 This is useful for transformed distributions with complex, geometry-changing transforms, where the posterior has simple shape in the space of `base_dist`.

 This reparameterization works only for latent variables, not likelihoods.

 __call__(name, fn, obs)

4.12.3 Discrete Cosine Transform

class DiscreteCosineReparam(dim=-1)
 Bases: pyro.infer.reparam.reparam.Reparam

 Discrete Cosine reparameterizer, using a `DiscreteCosineTransform`.

 This is useful for sequential models where coupling along a time-like axis (e.g. a banded precision matrix) introduces long-range correlation. This reparameterizes to a frequency-domain representation where posterior covariance should be closer to diagonal, thereby improving the accuracy of diagonal guides in SVI and improving the effectiveness of a diagonal mass matrix in HMC.

 This reparameterization works only for latent variables, not likelihoods.

 Parameters `dim (int)` – Dimension along which to transform. Must be negative. This is an absolute dim counting from the right.

 __call__(name, fn, obs)

4.12.4 StudentT Distributions

class StudentTReparam
 Bases: pyro.infer.reparam.reparam.Reparam

 Auxiliary variable reparameterizer for `StudentT` random variables.

 This is useful in combination with `LinearHMMReparam` because it allows StudentT processes to be treated as conditionally Gaussian processes, permitting cheap inference via `GaussianHMM`.
This reparameterizes a StudentT by introducing an auxiliary Gamma variable conditioned on which the result is Normal.

__call__(name, fn, obs)

4.12.5 Stable Distributions

class LatentStableReparam

Bases: `pyro.infer.reparam.reparam.Reparam`

Auxiliary variable reparameterizer for Stable latent variables.

This is useful in inference of latent Stable variables because the log_prob() is not implemented.

This uses the Chambers-Mallows-Stuck method [1], creating a pair of parameter-free auxiliary distributions (Uniform(-\(\pi/2, \pi/2\)) and Exponential(1)) with well-defined log_prob() methods, thereby permitting use of reparameterized stable distributions in likelihood-based inference algorithms like SVI and MCMC.

This reparameterization works only for latent variables, not likelihoods. For likelihood-compatible reparameterization see SymmetricStableReparam or StableReparam.

__call__(name, fn, obs)

class SymmetricStableReparam

Bases: `pyro.infer.reparam.reparam.Reparam`

Auxiliary variable reparameterizer for symmetric Stable random variables (i.e. those for which skew=0).

This is useful in inference of symmetric Stable variables because the log_prob() is not implemented.

This reparameterizes a symmetric Stable random variable as a totally-skewed (skew=1) Stable scale mixture of Normal random variables. See Proposition 3. of [1] (but note we differ since Stable uses Nolan’s continuous S0 parameterization).

__call__(name, fn, obs)

class StableReparam

Bases: `pyro.infer.reparam.reparam.Reparam`

Auxiliary variable reparameterizer for arbitrary Stable random variables.

This is useful in inference of non-symmetric Stable variables because the log_prob() is not implemented.

This reparameterizes a Stable random variable as sum of two other stable random variables, one symmetric and the other totally skewed (applying Property 2.3.a of [1]). The totally skewed variable is sampled as in LatentStableReparam, and the symmetric variable is decomposed as in SymmetricStableReparam.

__call__(name, fn, obs)
4.12.6 Hidden Markov Models

```python
class LinearHMMReparam(init=None, trans=None, obs=None)
Bases: pyro.infer.reparam.reparam.Reparam

Auxiliary variable reparameterizer for LinearHMM random variables.

This defers to component reparameterizers to create auxiliary random variables conditioned on which the process becomes a GaussianHMM. If the observation_dist is a TransformedDistribution this reorders those transforms so that the result is a TransformedDistribution of GaussianHMM.

This is useful for training the parameters of a LinearHMM distribution, whose log_prob() method is undefined. To perform inference in the presence of non-Gaussian factors such as Stable(), StudentT() or LogNormal(), configure with StudentTReparam, StableReparam, SymmetricStableReparam, etc. component reparameterizers for init, trans, and scale. For example:

```python
hmm = LinearHMM(
 init_dist=Stable(1,0,1,0).expand([2]).to_event(1),
 trans_matrix=torch.eye(2),
 trans_dist=MultivariateNormal(torch.zeros(2), torch.eye(2)),
 obs_matrix=torch.eye(2),
 obs_dist=TransformedDistribution(
 Stable(1.5,-0.5,1.0).expand([2]).to_event(1),
 ExpTransform()))

rep = LinearHMMReparam(init=SymmetricStableReparam(),
 obs=StableReparam())

with poutine.reparam(config={"hmm": rep}):
 pyro.sample("hmm", hmm, obs=data)
```

Parameters

- **init** (Reparam) – Optional reparameterizer for the initial distribution.
- **trans** (Reparam) – Optional reparameterizer for the transition distribution.
- **obs** (Reparam) – Optional reparameterizer for the observation distribution.

__call__(name, fn, obs)

4.12.7 Neural Transport

```python
class NeuTraReparam(guide)
Bases: pyro.infer.reparam.reparam.Reparam

This uses a trained AutoContinuous guide to alter the geometry of a model, typically for use e.g. in MCMC. Example usage:

```python
# Step 1. Train a guide
guide = AutoIAFNormal(model)
svi = SVI(model, guide, ...)
# ...train the guide...

# Step 2. Use trained guide in NeuTra MCMC
```

(continues on next page)
neutra = NeuTraReparam(guide)
model = poutine.reparam(model, config=lambda _: neutra)
nuts = NUTS(model)

...now use the model in HMC or NUTS...

This reparameterization works only for latent variables, not likelihoods. Note that all sites must share a single common NeuTraReparam instance, and that the model must have static structure.

Parameters

guide (AutoContinuous) – A trained guide.

reparam (fn=None)

__call__ (name, fn, obs)

transform_sample (latent)

Given latent samples from the warped posterior (with a possible batch dimension), return a dict of samples from the latent sites in the model.

Parameters

latent – sample from the warped posterior (possibly batched). Note that the batch dimension must not collide with plate dimensions in the model, i.e. any batch dims $d < -\text{max_plate_nesting}$.

Returns

dict of samples keyed by latent sites in the model.

Return type

dict
5.1 PyTorch Distributions

Most distributions in Pyro are thin wrappers around PyTorch distributions. For details on the PyTorch distribution interface, see `torch.distributions.distribution.Distribution`. For differences between the Pyro and PyTorch interfaces, see `TorchDistributionMixin`.

5.1.1 Bernoulli

class Bernoulli (probs=None, logits=None, validate_args=None)

5.1.2 Beta

class Beta (concentration1, concentration0, validate_args=None)

5.1.3 Binomial

class Binomial (total_count=1, probs=None, logits=None, validate_args=None)

5.1.4 Categorical

class Categorical (probs=None, logits=None, validate_args=None)
Wraps `torch.distributions.categorical.Categorical` with `TorchDistributionMixin`.
5.1.5 Cauchy

```python
class Cauchy(loc, scale, validate_args=None)
    Wraps `torch.distributions.cauchy.Cauchy` with `TorchDistributionMixin`.
```

5.1.6 Chi2

```python
class Chi2(df, validate_args=None)
    Wraps `torch.distributions.chi2.Chi2` with `TorchDistributionMixin`.
```

5.1.7 Dirichlet

```python
class Dirichlet(concentration, validate_args=None)
    Wraps `torch.distributions.dirichlet.Dirichlet` with `TorchDistributionMixin`.
```

5.1.8 Exponential

```python
class Exponential(rate, validate_args=None)
    Wraps `torch.distributions.exponential.Exponential` with `TorchDistributionMixin`.
```

5.1.9 ExponentialFamily

```python
class ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)
    Wraps `torch.distributions.exp_family.ExponentialFamily` with `TorchDistributionMixin`.
```

5.1.10 FisherSnedecor

```python
class FisherSnedecor(df1, df2, validate_args=None)
```

5.1.11 Gamma

```python
class Gamma(concentration, rate, validate_args=None)
    Wraps `torch.distributions.gamma.Gamma` with `TorchDistributionMixin`.
```

5.1.12 Geometric

```python
class Geometric(probs=None, logits=None, validate_args=None)
```

5.1.13 Gumbel

```python
class Gumbel(loc, scale, validate_args=None)
```
5.1.14 HalfCauchy

class HalfCauchy(scale, validate_args=None)
 Wraps torch.distributions.half_cauchy.HalfCauchy with TorchDistributionMixin.

5.1.15 HalfNormal

class HalfNormal(scale, validate_args=None)

5.1.16 Independent

class Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None)
 Wraps torch.distributions.independent.Independent with TorchDistributionMixin.

5.1.17 Laplace

class Laplace(loc, scale, validate_args=None)
 Wraps torch.distributions.laplace.Laplace with TorchDistributionMixin.

5.1.18 LogNormal

class LogNormal(loc, scale, validate_args=None)
 Wraps torch.distributions.log_normal.LogNormal with TorchDistributionMixin.

5.1.19 LogisticNormal

class LogisticNormal(loc, scale, validate_args=None)
 Wraps torch.distributions.logistic_normal.LogisticNormal with TorchDistributionMixin.

5.1.20 LowRankMultivariateNormal

class LowRankMultivariateNormal(loc, cov_factor, cov_diag, validate_args=None)
 Wraps torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal with TorchDistributionMixin.

5.1.21 Multinomial

class Multinomial(total_count=1, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.multinomial.Multinomial with TorchDistributionMixin.

5.1.22 MultivariateNormal

class MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)
5.1.23 NegativeBinomial

```python
class NegativeBinomial(total_count, probs=None, logits=None, validate_args=None)
    Wraps torch.distributions.negative_binomial.NegativeBinomial with TorchDistributionMixin.
```

5.1.24 Normal

```python
class Normal(loc, scale, validate_args=None)
```

5.1.25 OneHotCategorical

```python
class OneHotCategorical(probs=None, logits=None, validate_args=None)
    Wraps torch.distributions.one_hot_categorical.OneHotCategorical with TorchDistributionMixin.
```

5.1.26 Pareto

```python
class Pareto(scale, alpha, validate_args=None)
    Wraps torch.distributions.pareto.Pareto with TorchDistributionMixin.
```

5.1.27 Poisson

```python
class Poisson(rate, validate_args=None)
    Wraps torch.distributions.poisson.Poisson with TorchDistributionMixin.
```

5.1.28 RelaxedBernoulli

```python
class RelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)
    Wraps torch.distributions.relaxed_bernoulli.RelaxedBernoulli with TorchDistributionMixin.
```

5.1.29 RelaxedOneHotCategorical

```python
class RelaxedOneHotCategorical(temperature, probs=None, logits=None, validate_args=None)
    Wraps torch.distributions.relaxed_categorical.RelaxedOneHotCategorical with TorchDistributionMixin.
```

5.1.30 StudentT

```python
class StudentT(df, loc=0.0, scale=1.0, validate_args=None)
    Wraps torch.distributions.studentT.StudentT with TorchDistributionMixin.
```
5.1.31 TransformedDistribution

class TransformedDistribution(base_distribution, transforms, validate_args=None)
 Wraps torch.distributions.transformed_distribution.TransformedDistribution with TorchDistributionMixin.

5.1.32 Uniform

class Uniform(low, high, validate_args=None)
 Wraps torch.distributions.uniform.Uniform with TorchDistributionMixin.

5.1.33 Weibull

class Weibull(scale, concentration, validate_args=None)
 Wraps torch.distributions.weibull.Weibull with TorchDistributionMixin.

5.2 Pyro Distributions

5.2.1 Abstract Distribution

class Distribution
 Bases: object

 Base class for parameterized probability distributions.

 Distributions in Pyro are stochastic function objects with sample() and log_prob() methods. Distribution are stochastic functions with fixed parameters:

 .. code-block:: python

 d = dist.Bernoulli(param)
 x = d() # Draws a random sample.
 p = d.log_prob(x) # Evaluates log probability of x.

Implementing New Distributions:

Derived classes must implement the methods: sample(), log_prob().

Examples:

Take a look at the examples to see how they interact with inference algorithms.

__call__(*args, **kwargs)

Samples a random value (just an alias for .sample(*args, **kwargs)).

For tensor distributions, the returned tensor should have the same .shape as the parameters.

 Returns A random value.
 Return type torch.Tensor

enumerate_support(expand=True)

Returns a representation of the parametrized distribution’s support, along the first dimension. This is implemented only by discrete distributions.

Note that this returns support values of all the batched RVs in lock-step, rather than the full cartesian product.
Parameters expand (bool) – whether to expand the result to a tensor of shape \((n,) + \text{batch_shape} + \text{event_shape}\). If false, the return value has unexpanded shape \((n,) + (1,) \ast \text{len(batch_shape)} + \text{event_shape}\) which can be broadcasted to the full shape.

Returns An iterator over the distribution’s discrete support.

Return type iterator

hasEnumerateSupport = False

hasRSample = False

log_prob(x, *args, **kwargs)
Evaluates log probability densities for each of a batch of samples.

Parameters x (torch.Tensor) – A single value or a batch of values batched along axis 0.

Returns log probability densities as a one-dimensional Tensor with same batch size as value and params. The shape of the result should be self.batch_size.

Return type torch.Tensor

sample(*args, **kwargs)
Samples a random value.

For tensor distributions, the returned tensor should have the same .shape as the parameters, unless otherwise noted.

Parameters sample_shape (torch.Size) – the size of the iid batch to be drawn from the distribution.

Returns A random value or batch of random values (if parameters are batched). The shape of the result should be self.shape().

Return type torch.Tensor

score_parts(x, *args, **kwargs)
Computes ingredients for stochastic gradient estimators of ELBO.

The default implementation is correct both for non-reparameterized and for fully reparameterized distributions. Partially reparameterized distributions should override this method to compute correct .score_function and .entropy_term parts.

Parameters x (torch.Tensor) – A single value or batch of values.

Returns A ScoreParts object containing parts of the ELBO estimator.

Return type ScoreParts

5.2.2 TorchDistributionMixin
class TorchDistributionMixin
Bases: pyro.distributions.distribution.Distribution

Mixin to provide Pyro compatibility for PyTorch distributions.

You should instead use TorchDistribution for new distribution classes.

This is mainly useful for wrapping existing PyTorch distributions for use in Pyro. Derived classes must first inherit from torch.distributions.distribution.Distribution and then inherit from TorchDistributionMixin.
__call__(sample_shape=torch.Size([]))
Samples a random value.

This is reparameterized whenever possible, calling `rsample()` for reparameterized distributions and `sample()` for non-reparameterized distributions.

Parameters **sample_shape** (*torch.Size*) – the size of the iid batch to be drawn from the distribution.

Returns A random value or batch of random values (if parameters are batched). The shape of the result should be `self.shape()`.

Return type `torch.Tensor`

event_dim

Returns Number of dimensions of individual events.

Return type `int`

shape (sample_shape=torch.Size([]))
The tensor shape of samples from this distribution.

Samples are of shape:

\[
d.\text{shape}(\text{sample_shape}) == \text{sample_shape} + d.\text{batch_shape} + d.\text{event_shape}
\]

Parameters **sample_shape** (*torch.Size*) – the size of the iid batch to be drawn from the distribution.

Returns Tensor shape of samples.

Return type `torch.Size`

expand (`batch_shape`, `_instance=None`)

Returns a new `ExpandedDistribution` instance with batch dimensions expanded to `batch_shape`.

Parameters

- `batch_shape` (*tuple*) – batch shape to expand to.
- `_instance` – unused argument for compatibility with `torch.distributions.Distribution.expand()`

Returns an instance of `ExpandedDistribution`.

Return type `ExpandedDistribution`

expand_by (sample_shape)
Expands a distribution by adding `sample_shape` to the left side of its `batch_shape`.

To expand internal dims of `self.batch_shape` from 1 to something larger, use `expand()` instead.

Parameters **sample_shape** (*torch.Size*) – The size of the iid batch to be drawn from the distribution.

Returns An expanded version of this distribution.

Return type `ExpandedDistribution`

reshape (sample_shape=None, extra_event_dims=None)

to_event (reinterpreted_batch_ndims=None)
Reinterprets the `n` rightmost dimensions of this distribution's `batch_shape` as event dims, adding them to the left side of `event_shape`.

5.2. Pyro Distributions 53
Example:

```python
globals()['d1'] = torch.distributions.Normal(torch.tensor([0.0]), torch.tensor([1.0]))
globals()['d2'] = d1.to_event(1)
globals()['d3'] = d1.to_event(2)
```

Parameters `reinterpreted_batch_ndims` *(int)* — The number of batch dimensions to reinterpret as event dimensions. May be negative to remove dimensions from an `pyro.distributions.torch.Independent`. If None, convert all dimensions to event dimensions.

Returns A reshaped version of this distribution.

Return type `pyro.distributions.torch.Independent`

`independent` *(reinterpreted_batch_ndims=None)*

`mask` *(mask)*

Masks a distribution by a boolean or boolean-valued tensor that is broadcastable to the distributions `batch_shape`.

Parameters `mask` *(bool or torch.Tensor)* — A boolean or boolean valued tensor.

Returns A masked copy of this distribution.

Return type `MaskedDistribution`

5.2.3 TorchDistribution

```python
class TorchDistribution(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None):
```


Base class for PyTorch-compatible distributions with Pyro support.

This should be the base class for almost all new Pyro distributions.

Note: Parameters and data should be of type `Tensor` and all methods return type `Tensor` unless otherwise noted.

Tensor Shapes:

TorchDistributions provide a method `.shape()` for the tensor shape of samples:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
```

Pyro follows the same distribution shape semantics as PyTorch. It distinguishes between three different roles for tensor shapes of samples:

* `sample shape` corresponds to the shape of the iid samples drawn from the distribution. This is taken as an argument by the distribution’s `sample` method.
• **batch shape** corresponds to non-identical (independent) parameterizations of the distribution, inferred from the distribution’s parameter shapes. This is fixed for a distribution instance.

• **event shape** corresponds to the event dimensions of the distribution, which is fixed for a distribution class. These are collapsed when we try to score a sample from the distribution via $d.log_prob(x)$.

These shapes are related by the equation:

```python
assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape
```

Distributions provide a vectorized `log_prob()` method that evaluates the log probability density of each event in a batch independently, returning a tensor of shape `sample_shape + d.batch_shape`:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
log_p = d.log_prob(x)
assert log_p.shape == sample_shape + d.batch_shape
```

Implementing New Distributions:

Derived classes must implement the methods `sample()` (or `rsample()` if `.has_rsample == True`) and `log_prob()`, and must implement the properties `batch_shape`, and `event_shape`. Discrete classes may also implement the `enumerate_support()` method to improve gradient estimates and set `.has_enumerate_support = True`.

`expand(batch_shape, _instance=None)`

Returns a new `ExpandedDistribution` instance with batch dimensions expanded to `batch_shape`.

Parameters

- **batch_shape** *(tuple)* – batch shape to expand to.

- **_instance** – unused argument for compatibility with `torch.distributions.Distribution.expand()`

Returns an instance of `ExpandedDistribution`.

Return type `ExpandedDistribution`

5.2.4 AVFMultivariateNormal

class AVFMultivariateNormal *(loc, scale_tril, control_var)*

Bases: `pyro.distributions.torch.MultivariateNormal`

Multivariate normal (Gaussian) distribution with transport equation inspired control variates (adaptive velocity fields).

A distribution over vectors in which all the elements have a joint Gaussian density.

Parameters

- **loc** *(torch.Tensor)* – D-dimensional mean vector.

- **scale_tril** *(torch.Tensor)* – Cholesky of Covariance matrix; D x D matrix.

- **control_var** *(torch.Tensor)* – 2 x L x D tensor that parameterizes the control variate; L is an arbitrary positive integer. This parameter needs to be learned (i.e. adapted) to achieve lower variance gradients. In a typical use case this parameter will be adapted concurrently with the `loc` and `scale_tril` that define the distribution.

Example usage:
control_var = torch.tensor(0.1 * torch.ones(2, 1, D), requires_grad=True)
opt_cv = torch.optim.Adam([control_var], lr=0.1, betas=(0.5, 0.999))

for _ in range(1000):
 d = AVFMultivariateNormal(loc, scale_tril, control_var)
 z = d.rsample()
 cost = torch.pow(z, 2.0).sum()
 cost.backward()
 opt_cv.step()
 opt_cv.zero_grad()

arg_constraints = {'control_var': Real(), 'loc': Real(), 'scale_tril': LowerTriangular()}
rsample(sample_shape=torch.Size(1))

5.2.5 BetaBinomial

class BetaBinomial(concentration1, concentration0, total_count=1, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Compound distribution comprising of a beta-binomial pair. The probability of success (probs for the
Binomial distribution) is unknown and randomly drawn from a Beta distribution prior to a certain num-
ber of Bernoulli trials given by total_count.

Parameters

* or torch.Tensor concentration1 (float) – 1st concentration parameter (al-
pha) for the Beta distribution.

* or torch.Tensor concentration0 (float) – 2nd concentration parameter
(beta) for the Beta distribution.

* or torch.Tensor total_count (int) – number of Bernoulli trials.

arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1':
concentration0
concentration1
enumerate_support(expand=True)
expand(batch_shape, _instance=None)
has enumerate support = True
log_prob(value)
mean
sample(sample_shape=())
support
variance

5.2.6 ConditionalDistribution

class ConditionalDistribution
Bases: abc.ABC
condition(context)

Return type torch.distributions.Distribution

5.2.7 ConditionalTransformedDistribution

class ConditionalTransformedDistribution(base_dist, transforms)
 Bases: pyro.distributions.conditional.ConditionalDistribution
 condition(context)

5.2.8 Delta

class Delta(v, log_density=0.0, event_dim=0, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution
 Degenerate discrete distribution (a single point).
 Discrete distribution that assigns probability one to the single element in its support. Delta distribution parameterized by a random choice should not be used with MCMC based inference, as doing so produces incorrect results.

Parameters
 • v(torch.Tensor) – The single support element.
 • log_density(torch.Tensor) – An optional density for this Delta. This is useful to keep the class of Delta distributions closed under differentiable transformation.
 • event_dim(int) – Optional event dimension, defaults to zero.

arg_constraints = {'log_density': Real(), 'v': Real()}
expand(batch_shape, _instance=None)
has_rsample = True
log_prob(x)
mean
rsample(sample_shape=torch.Size([]))
support = Real()
variance

5.2.9 DirichletMultinomial

class DirichletMultinomial(concentration, total_count=1, is_sparse=False, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution
 Compound distribution comprising of a dirichlet-multinomial pair. The probability of classes (probs for the Multinomial distribution) is unknown and randomly drawn from a Dirichlet distribution prior to a certain number of Categorical trials given by total_count.

Parameters
 • or torch.Tensor concentration(float) – concentration parameter (alpha) for the Dirichlet distribution.
• or torch.Tensor total_count (int) – number of Categorical trials.
• is_sparse (bool) – Whether to assume value is mostly zero when computing log_prob(), which can speed up computation when data is sparse.

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'total_count': IntegerGreaterThan(lower_bound=0)}

concentration
expand(batch_shape, _instance=None)
log_prob(value)
mean
sample(sample_shape=())
support
variance

5.2.10 DiscreteHMM

class DiscreteHMM(initial_logits, transition_logits, observation_dist, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Hidden Markov Model with discrete latent state and arbitrary observation distribution. This uses [1] to parallelize over time, achieving O(log(time)) parallel complexity.

The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_logits and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing log_prob() to work with arbitrary length data:

```python
# homogeneous + homogeneous case:
event_shape = (1,) + observation_dist.event_shape
```

References:

Parameters

• initial_logits (Tensor) – A logits tensor for an initial categorical distribution over latent states. Should have rightmost size state_dim and be broadcastable to batch_shape + (state_dim,).

• transition_logits (Tensor) – A logits tensor for transition conditional distributions between latent states. Should have rightmost shape (state_dim, state_dim) (old, new), and be broadcastable to batch_shape + (num_steps, state_dim, state_dim).

• observation_dist (Distribution) – A conditional distribution of observed data conditioned on latent state. The .batch_shape should have rightmost size state_dim and be broadcastable to batch_shape + (num_steps, state_dim). The .event_shape may be arbitrary.
arg_constraints = {'initial_logits': Real(), 'transition_logits': Real()}

expand(batch_shape, _instance=None)

filter(value)

Compute posterior over final state given a sequence of observations.

Parameters

value (Tensor) – A sequence of observations.

Returns

A posterior distribution over latent states at the final time step. result.logits can
then be used as initial_logits in a sequential Pyro model for prediction.

Return type

Categorical

def log_prob(value)

5.2.11 EmpiricalDistribution

class Empirical(samples, log_weights, validate_args=None)

Bases: pyro.distributions.torch_distribution.TorchDistribution

Empirical distribution associated with the sampled data. Note that the shape requirement for log_weights is that
its shape must match the leftmost shape of samples. Samples are aggregated along the aggregation_dim, which is the rightmost dim of log_weights.

Example:

```python
>>> emp_dist = Empirical(torch.randn(2, 3, 10), torch.ones(2, 3))
>>> emp_dist.batch_shape
torch.Size([2])
>>> emp_dist.event_shape
torch.Size([10])
```

```python
>>> single_sample = emp_dist.sample()
>>> single_sample.shape
torch.Size([2, 10])
>>> batch_sample = emp_dist.sample((100,))
>>> batch_sample.shape
torch.Size([100, 2, 10])
```

```python
>>> emp_dist.log_prob(single_sample).shape
torch.Size([2])
>>> # Vectorized samples cannot be scored by log_prob.
>>> with pyro.validation_enabled():
...     ...     emp_dist.log_prob(batch_sample).shape
Traceback (most recent call last):
...     ...     ValueError: `value.shape` must be torch.Size([2, 10])
```

Parameters

- samples (torch.Tensor) – samples from the empirical distribution.
- log_weights (torch.Tensor) – log weights (optional) corresponding to the samples.

arg_constraints = {()}

5.2. Pyro Distributions
enumerate_support (expand=True)
 See pyro.distributions.torch_distribution.TorchDistribution.
 enumerate_support()

event_shape
 See pyro.distributions.torch_distribution.TorchDistribution.
 event_shape()

has enumerate_support = True

log_prob (value)
 Returns the log of the probability mass function evaluated at value. Note that this currently only supports
 scoring values with empty sample_shape.

 Parameters value (torch.Tensor) – scalar or tensor value to be scored.

log_weights

mean
 See pyro.distributions.torch_distribution.TorchDistribution.mean()

sample (sample_shape=torch.Size([]))
 See pyro.distributions.torch_distribution.TorchDistribution.sample()

sample_size
 Number of samples that constitute the empirical distribution.

 Return int number of samples collected.

support = Real()

variance
 See pyro.distributions.torch_distribution.TorchDistribution.variance()

5.2.12 FoldedDistribution

class FoldedDistribution (base_dist, validate_args=None)
 Bases: pyro.distributions.torch.TransformedDistribution

 Equivalent to TransformedDistribution(base_dist, AbsTransform()), but additionally supports log_prob().

 Parameters base_dist (Distribution) – The distribution to reflect.

 expand (batch_shape, _instance=None)

 log_prob (value)

 support = GreaterThan(lower_bound=0.0)

5.2.13 GammaGaussianHMM

class GammaGaussianHMM (scale_dist, initial_dist, transition_matrix, transition_dist, observation_matrix, observation_dist, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Hidden Markov Model with the joint distribution of initial state, hidden state, and observed state is a
 MultivariateStudentT distribution along the line of references [2] and [3]. This adapts [1] to parallelize over time to achieve \(O(\log(\text{time})) \) parallel complexity.

 This GammaGaussianHMM class corresponds to the generative model:
s = Gamma(df/2, df/2).sample()
z = scale(initial_dist, s).sample()
x = []
for t in range(num_events):
 z = z @ transition_matrix + scale(transition_dist, s).sample()
x.append(z @ observation_matrix + scale(observation_dist, s).sample())

where \(\text{scale}(\text{mvn}(\text{loc}, \text{precision}), s) := \text{mvn}(\text{loc}, s \times \text{precision}) \).

The event_shape of this distribution includes time on the left:

\[
\text{event_shape} = (\text{num_steps},) + \text{observation_dist.event_shape}
\]

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_dist and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with \(\text{num_steps} = 1 \), allowing \(\log_\text{prob}() \) to work with arbitrary length data:

\[
\text{event_shape} = (1, \text{obs_dim}) \quad \# \text{homogeneous + homogeneous case}
\]

References:

Variables

- hidden_dim (int) – The dimension of the hidden state.
- obs_dim (int) – The dimension of the observed state.

Parameters

- scale_dist (Gamma) – Prior of the mixing distribution.
- initial_dist (MultivariateNormal) – A distribution with unit scale mixing over initial states. This should have batch_shape broadcastable to \(\text{self.batch_shape} \). This should have event_shape \(\text{(hidden_dim,)} \).
- transition_matrix (Tensor) – A linear transformation of hidden state. This should have shape broadcastable to \(\text{self.batch_shape} + (\text{num_steps, hidden_dim, hidden_dim}) \) where the rightmost dims are ordered \(\text{(old, new)} \).
- transition_dist (MultivariateNormal) – A process noise distribution with unit scale mixing. This should have batch_shape broadcastable to \(\text{self.batch_shape} + (\text{num_steps,}) \). This should have event_shape \(\text{(hidden_dim,)} \).
- observation_matrix (Tensor) – A linear transformation from hidden to observed state. This should have shape broadcastable to \(\text{self.batch_shape} + (\text{num_steps, hidden_dim, obs_dim}) \).
- observation_dist (MultivariateNormal) – An observation noise distribution with unit scale mixing. This should have batch_shape broadcastable to \(\text{self.batch_shape} + (\text{num_steps,)}. This should have event_shape \(\text{(obs_dim,)}. \)

arg_constraints = {}
Compute posteriors over the multiplier and the final state given a sequence of observations. The posterior is a pair of Gamma and MultivariateNormal distributions (i.e. a GammaGaussian instance).

Parameters

- **value** (*Tensor*) – A sequence of observations.

Returns

A pair of posterior distributions over the mixing and the latent state at the final time step.

Return type

A tuple of `~pyro.distributions.Gamma` and `~pyro.distributions.MultivariateNormal`

5.2.14 GammaPoisson

class GammaPoisson(concentration, rate, validate_args=None)

Bases: `pyro.distributions.torch_distribution.TorchDistribution`

Compound distribution comprising of a gamma-poisson pair, also referred to as a gamma-poisson mixture. The rate parameter for the Poisson distribution is unknown and randomly drawn from a Gamma distribution.

Note: This can be treated as an alternate parametrization of the NegativeBinomial (total_count, probs) distribution, with concentration = total_count and rate = (1 - probs) / probs.

Parameters

- **concentration** (float) – shape parameter (alpha) of the Gamma distribution.
- **rate** (float) – rate parameter (beta) for the Gamma distribution.

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}

expand(*batch_shape*, _instance=None)

log_prob(*value*)

mean

rate

sample(*sample_shape=*())

support = IntegerGreaterThan(lower_bound=0)

variance

5.2.15 GaussianHMM

class GaussianHMM(initial_dist, transition_matrix, transition_dist, observation_matrix, observation_dist, validate_args=None)

Bases: `pyro.distributions.torch_distribution.TorchDistribution`
Hidden Markov Model with Gaussians for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve O(log(time)) parallel complexity, however it differs in that it tracks the log normalizer to ensure \(\log \text{prob}() \) is differentiable.

This corresponds to the generative model:

```python
z = initial_distribution.sample()
x = []
for t in range(num_events):
    z = z @ transition_matrix + transition_dist.sample()
x.append(z @ observation_matrix + observation_dist.sample())
```

The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_dist and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing \(\log \text{prob}() \) to work with arbitrary length data:

```python
event_shape = (1, obs_dim)  # homogeneous + homogeneous case
```

References:

Variables

- **hidden_dim** (int) – The dimension of the hidden state.
- **obs_dim** (int) – The dimension of the observed state.

Parameters

- **initial_dist** (MultivariateNormal) – A distribution over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape (hidden_dim,).
- **transition_matrix** (Tensor) – A linear transformation of hidden state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, hidden_dim) where the rightmost dims are ordered (old, new).
- **transition_dist** (MultivariateNormal) – A process noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (hidden_dim,).
- **observation_matrix** (Tensor) – A linear transformation from hidden to observed state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, obs_dim).
- **observation_dist** (MultivariateNormal or Normal) – An observation noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (obs_dim,).

```
arg_constraints = {}
expand(batch_shape, _instance=None)
```
filter (*value*)
Compute posterior over final state given a sequence of observations.

Parameters
- **value** (*Tensor*) – A sequence of observations.

Returns
A posterior distribution over latent states at the final time step. `result` can then be used as `initial_dist` in a sequential Pyro model for prediction.

Return type `MultivariateNormal`

log_prob (*value*)

rsample (*sample_shape=torch.Size([]))

5.2.16 GaussianMRF

class GaussianMRF (*initial_dist*, *transition_dist*, *observation_dist*, *validate_args=None*)
Bases: `pyro.distributions.torch_distribution.TorchDistribution`

Temporal Markov Random Field with Gaussian factors for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve $O(\log(\text{time}))$ parallel complexity, however it differs in that it tracks the log normalizer to ensure `log_prob()` is differentiable.

The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of `transition_dist` and `observation_dist`. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with `num_steps = 1`, allowing `log_prob()` to work with arbitrary length data:

```python
event_shape = (1, obs_dim)  # homogeneous + homogeneous case
```

References:

Variables

- `hidden_dim` (*int*) – The dimension of the hidden state.
- `obs_dim` (*int*) – The dimension of the observed state.

Parameters

- `initial_dist` (*MultivariateNormal*) – A distribution over initial states. This should have batch_shape broadcastable to `self.batch_shape`. This should have event_shape `(hidden_dim,)`.
- `transition_dist` (*MultivariateNormal*) – A joint distribution factor over a pair of successive time steps. This should have batch_shape broadcastable to `self.batch_shape + (num_steps,)`. This should have event_shape `(hidden_dim + hidden_dim,) (old+new)`.
- `observation_dist` (*MultivariateNormal*) – A joint distribution factor over a hidden and an observed state. This should have batch_shape broadcastable to `self.batch_shape + (num_steps,)`. This should have event_shape `(hidden_dim + obs_dim,)`.
arg_constraints = {}
expand(batch_shape, _instance=None)
log_prob(value)

5.2.17 GaussianScaleMixture

class GaussianScaleMixture(coord_scale, component_logits, component_scale)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Mixture of Normal distributions with zero mean and diagonal covariance matrices.
That is, this distribution is a mixture with K components, where each component distribution is a D-dimensional Normal distribution with zero mean and a D-dimensional diagonal covariance matrix. The K different covariance matrices are controlled by the parameters coord_scale and component_scale. That is, the covariance matrix of the k’th component is given by

\[\Sigma_{ii} = (\text{component}_\text{scale}_k \times \text{coord}_\text{scale}_i)^2 \quad (i = 1, \ldots, D) \]

where \(\text{component}_\text{scale}_k \) is a positive scale factor and \(\text{coord}_\text{scale}_i \) are positive scale parameters shared between all K components. The mixture weights are controlled by a K-dimensional vector of softmax logits, \(\text{component}_\text{logits} \). This distribution implements pathwise derivatives for samples from the distribution. This distribution does not currently support batched parameters.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research.

Note that this distribution supports both even and odd dimensions, but the former should be more a bit higher precision, since it doesn’t use any erfs in the backward call. Also note that this distribution does not support \(D = 1 \).

Parameters

- coord_scale (torch.tensor) – D-dimensional vector of scales
- component_logits (torch.tensor) – K-dimensional vector of logits
- component_scale (torch.tensor) – K-dimensional vector of scale multipliers

arg_constraints = {'component_logits': Real(), 'component_scale': GreaterThan(lower_bound=0.0)}
has_rsample = True
log_prob(value)
rsample(sample_shape=torch.Size(()))

5.2.18 InverseGamma

class InverseGamma(concentration, rate, validate_args=None)
Bases: pyro.distributions.torch.TransformedDistribution

Creates an inverse-gamma distribution parameterized by concentration and rate.

\[X \sim \Gamma(\text{concentration}, \text{rate}) \quad Y = 1/X \sim \text{InverseGamma}(\text{concentration}, \text{rate}) \]

Parameters
• **concentration** (*torch.Tensor*) – the concentration parameter (i.e. alpha).

• **rate** (*torch.Tensor*) – the rate parameter (i.e. beta).

```python
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}
```

```python
concentration
expand(batch_shape, _instance=None)
has_rsample = True
rate
support = GreaterThan(lower_bound=0.0)
```

5.2.19 LinearHMM

class **LinearHMM** (*initial_dist*, *transition_matrix*, *transition_dist*, *observation_matrix*, *observation_dist*,
validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Hidden Markov Model with linear dynamics and observations and arbitrary noise for initial, transition, and observation distributions. Each of those distributions can be e.g. :class:`~pyro.distributions.MultivariateNormal` or :class:`~pyro.distributions.Independent` of :class:`~pyro.distributions.Normal`, :class:`~pyro.distributions.StudentT`, or :class:`~pyro.distributions.Stable`. Additionally the observation distribution may be constrained, e.g. :class:`~pyro.distributions.LogNormal`.

This corresponds to the generative model:

```python
z = initial_distribution.sample()
x = []
for t in range(num_events):
    z = z @ transition_matrix + transition_dist.sample()
    y = z @ observation_matrix + obs_base_dist.sample()
    x.append(obs_transform(y))
```

where `observation_dist` is split into `obs_base_dist` and an optional `obs_transform` (defaulting to the identity).

This implements a reparameterized `rsample()` method but does not implement a `log_prob()` method. Derived classes may implement `log_prob()`.

Inference without `log_prob()` can be performed using either reparameterization with `LinearHMMReparam` or likelihood-free algorithms such as `EnergyDistance`. Note that while stable processes generally require a common shared stability parameter α, this distribution and the above inference algorithms allow heterogeneous stability parameters.

The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of `transition_dist` and `observation_dist`. However at least one of the distributions or matrices must be expanded to contain the time dimension.

Variables

- **hidden_dim** (*int*) – The dimension of the hidden state.
- **obs_dim** (*int*) – The dimension of the observed state.
Parameters

- **initial_dist** – A distribution over initial states. This should have batch_shape broadcastable to `self.batch_shape`. This should have event_shape `(hidden_dim,)`.

- **transition_matrix** (`Tensor`) – A linear transformation of hidden state. This should have shape broadcastable to `self.batch_shape + (num_steps, hidden_dim, hidden_dim)` where the rightmost dims are ordered `(old, new)`.

- **transition_dist** – A distribution over process noise. This should have batch_shape broadcastable to `self.batch_shape + (num_steps,)`. This should have event_shape `(hidden_dim,)`.

- **observation_matrix** (`Tensor`) – A linear transformation from hidden to observed state. This should have shape broadcastable to `self.batch_shape + (num_steps, hidden_dim, obs_dim)`.

- **observation_dist** – A observation noise distribution. This should have batch_shape broadcastable to `self.batch_shape + (num_steps,)`. This should have event_shape `(obs_dim,)`.

```python
class LKJCorrCholesky(d, eta, validate_args=None):
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Generates cholesky factors of correlation matrices using an LKJ prior.

    The expected use is to combine it with a vector of variances and pass it to the scale_tril parameter of a multi-variate distribution such as MultivariateNormal.

    E.g., if theta is a (positive) vector of covariances with the same dimensionality as this distribution, and Omega is sampled from this distribution, scale_tril=torch.mm(torch.diag(sqrt(theta)), Omega)

    Note that the event_shape of this distribution is [d, d]
```

Note: When using this distribution with HMC/NUTS, it is important to use a step_size such as 1e-4. If not, you are likely to experience LAPACK errors regarding positive-definiteness.

For example usage, refer to `pyro/examples/lkj.py`.

Parameters

- **d** (`int`) – Dimensionality of the matrix
- **eta** (`torch.Tensor`) – A single positive number parameterizing the distribution.

```python
d = 3
eta = torch.tensor(1.5)
```

arg_constraints =

- `'eta': GreaterThan(lower_bound=0.0)`
- `'d': IntegerGreaterThan(lower_bound=2)`

```python
arg_constraints = {'eta': GreaterThan(lower_bound=0.0), 'd': IntegerGreaterThan(lower_bound=2)}
```
has_rsample = False
lkj_constant (eta, K)
log_prob (x)
sample (sample_shape=torch.Size([]))
support = CorrCholesky()

5.2.21 MaskedMixture

class MaskedMixture (mask, component0, component1, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

A masked deterministic mixture of two distributions.
This is useful when the mask is sampled from another distribution, possibly correlated across the batch. Often
the mask can be marginalized out via enumeration.

Example:

```python
code
change_point = pyro.sample("change_point",
    dist.Categorical(torch.ones(len(data) + 1)),
    infer={'enumerate': 'parallel'})
mask = torch.arange(len(data), dtype=torch.long) >= changepoint
with pyro.plate("data", len(data)):
    pyro.sample("obs", MaskedMixture(mask, dist1, dist2), obs=data)
```

Parameters

- **mask** (torch.Tensor) – A byte tensor toggling between component0 and component1.
- **component0** (pyro.distributions.TorchDistribution) – A distribution for
 batch elements mask == 0.
- **component1** (pyro.distributions.TorchDistribution) – A distribution for
 batch elements mask == 1.

arg_constraints = {}
expand (batch_shape)
has_rsample
log_prob (value)
mean
rsample (sample_shape=torch.Size([]))
sample (sample_shape=torch.Size([]))
support
variance

Chapter 5. Distributions
5.2.22 MixtureOfDiagNormals

```python
class MixtureOfDiagNormals(locs, coord_scale, component_logits):
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Mixture of Normal distributions with arbitrary means and arbitrary diagonal covariance matrices.
    That is, this distribution is a mixture with \( K \) components, where each component distribution is a \( D \)-dimensional Normal distribution with a \( D \)-dimensional mean parameter and a \( D \)-dimensional diagonal covariance matrix.
    The \( K \) different component means are gathered into the \( K \times D \) dimensional parameter `locs` and the \( K \) different scale parameters are gathered into the \( K \times D \) dimensional parameter `coord_scale`. The mixture weights are controlled by a \( K \)-dimensional vector of softmax logits, `component_logits`. This distribution implements pathwise derivatives for samples from the distribution.

    See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension \( D = 1 \).

    Parameters
    - `locs` (torch.Tensor) – \( K \times D \) mean matrix
    - `coord_scale` (torch.Tensor) – \( K \times D \) scale matrix
    - `component_logits` (torch.Tensor) – \( K \)-dimensional vector of softmax logits

    arg_constraints = {'component_logits': Real(), 'coord_scale': GreaterThan(lower_bound=0.0), 'locs': Real()}

    expand(batch_shape, _instance=None)

    has_rsample = True

    log_prob(value)

    rsample(sample_shape=torch.Size([]))
```

5.2.23 MixtureOfDiagNormalsSharedCovariance

```python
class MixtureOfDiagNormalsSharedCovariance(locs, coord_scale, component_logits):
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Mixture of Normal distributions with diagonal covariance matrices.
    That is, this distribution is a mixture with \( K \) components, where each component distribution is a \( D \)-dimensional Normal distribution with a \( D \)-dimensional mean parameter `loc` and a \( D \)-dimensional diagonal covariance matrix specified by a scale parameter `coord_scale`. The \( K \) different component means are gathered into the parameter `locs` and the scale parameter is shared between all \( K \) components. The mixture weights are controlled by a \( K \)-dimensional vector of softmax logits, `component_logits`. This distribution implements pathwise derivatives for samples from the distribution.

    See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension \( D = 1 \).


    Parameters
    ```
• locs (torch.Tensor) – K x D mean matrix
• coord_scale (torch.Tensor) – shared D-dimensional scale vector
• component_logits (torch.Tensor) – K-dimensional vector of softmax logits

arg_constraints = {'component_logits': Real(), 'coord_scale': GreaterThan(lower_bound=0.0), 'locs': Real()}

expand (batch_shape, _instance=None)

has_rsample = True

log_prob (value)

rsample (sample_shape=torch.Size([]))

5.2.24 MultivariateStudentT

class MultivariateStudentT (df, loc, scale_tril, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Creates a multivariate Student’s t-distribution parameterized by degree of freedom df, mean loc and scale scale_tril.

Parameters

• df (Tensor) – degrees of freedom
• loc (Tensor) – mean of the distribution
• scale_tril (Tensor) – scale of the distribution, which is a lower triangular matrix with positive diagonal entries

arg_constraints = {'df': GreaterThan(lower_bound=0.0), 'loc': RealVector(), 'scale_tril': LowerCholesky()}

covariance_matrix

expand (batch_shape, _instance=None)

has_rsample = True

log_prob (value)

mean

precision_matrix

rsample (sample_shape=torch.Size([]))

scale_tril

support = RealVector()

variance

5.2.25 OMTMultivariateNormal

class OMTMultivariateNormal (loc, scale_tril)
Bases: pyro.distributions.torch.MultivariateNormal

Multivariate normal (Gaussian) distribution with OMT gradients w.r.t. both parameters. Note the gradient computation w.r.t. the Cholesky factor has cost O(D^3), although the resulting gradient variance is generally expected to be lower.

A distribution over vectors in which all the elements have a joint Gaussian density.
Parameters

- **loc** (*torch.Tensor*) – Mean.
- **scale_tril** (*torch.Tensor*) – Cholesky of Covariance matrix.

```
arg_constraints = {'loc': Real(), 'scale_tril': LowerTriangular()}
```

```
rsample(sample_shape=torch.Size([]))
```

5.2.26 RelaxedBernoulliStraightThrough

class RelaxedBernoulliStraightThrough(*temperature, *probs=None, *logits=None, validate_args=None*)

Bases: `pyro.distributions.torch.RelaxedBernoulli`

An implementation of `RelaxedBernoulli` with a straight-through gradient estimator.

This distribution has the following properties:

- The samples returned by the `rsample()` method are discrete/quantized.
- The `log_prob()` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution.
- In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

References:

[2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

```
log_prob(value)
```

```
rsample(sample_shape=torch.Size([]))
```

5.2.27 RelaxedOneHotCategoricalStraightThrough

class RelaxedOneHotCategoricalStraightThrough(*temperature, *probs=None, *logits=None, validate_args=None*)

Bases: `pyro.distributions.torch.RelaxedOneHotCategorical`

An implementation of `RelaxedOneHotCategorical` with a straight-through gradient estimator.

This distribution has the following properties:

- The samples returned by the `rsample()` method are discrete/quantized.
- The `log_prob()` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution.
- In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

References:

[2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

`log_prob(value)`
See `pyro.distributions.torch.RelaxedOneHotCategorical.log_prob()`

`rsample(sample_shape=torch.Size([]))`
See `pyro.distributions.torch.RelaxedOneHotCategorical.rsample()`

5.2.28 Rejector

class Rejector(propose, log_prob_accept, log_scale)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Rejection sampled distribution given an acceptance rate function.

Parameters

• `propose(Distribution)` – A proposal distribution that samples batched proposals via `propose().rsample()` supports a `sample_shape` arg only if `propose()` supports a `sample_shape` arg.

• `log_prob_accept(callable)` – A callable that inputs a batch of proposals and returns a batch of log acceptance probabilities.

• `log_scale` – Total log probability of acceptance.

`has_rsample = True`

`log_prob(x)`

`rsample(sample_shape=torch.Size([]))`

`score_parts(x)`

5.2.29 SpanningTree

class SpanningTree(edge_logits, sampler_options=None, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Distribution over spanning trees on a fixed number \(V \) of vertices.

A tree is represented as `torch.LongTensor edges` of shape \((V-1, 2)\) satisfying the following properties:

1. The edges constitute a tree, i.e. are connected and cycle free.
2. Each edge \((v_1, v_2) = edges[e]\) is sorted, i.e. \(v_1 < v_2\).
3. The entire tensor is sorted in colexicographic order.

Use `validate_edges()` to verify `edges` are correctly formed.

The `edge_logits` tensor has one entry for each of the \(V * (V-1) // 2\) edges in the complete graph on \(V\) vertices, where edges are each sorted and the edge order is colexicographic:

\[(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), (0,4), (1,4), (2,4), ...\]

This ordering corresponds to the size-independent pairing function:

\[k = v_1 + v_2 * (v_2 - 1) // 2\]

where \(k\) is the rank of the edge \((v_1, v_2)\) in the complete graph. To convert a matrix of edge logits to the linear representation used here:
```python
assert my_matrix.shape == (V, V)
i, j = make_complete_graph(V)
edge_logits = my_matrix[i, j]
```

Parameters

- **edge_logits** (*torch.Tensor*) — A tensor of length \(V \times (V-1) / 2\) containing logits (aka negative energies) of all edges in the complete graph on \(V\) vertices. See above comment for edge ordering.

- **sampler_options** (*dict*) — An optional dict of sampler options including:
 - `mcmc_steps` defaulting to a single MCMC step (which is pretty good);
 - `initial_edges` defaulting to a cheap approximate sample;
 - `backend` one of “python” or “cpp”, defaulting to “python”.

```python
arg_constraints = {'edge_logits': Real()}
```

enumerate_support (*expand=True*)

This is implemented for trees with up to 6 vertices (and 5 edges).

```python
has enumerate_support = True
```

log_partition_function

log_prob(*edges*)

sample(*sample_shape=torch.Size([]))

This sampler is implemented using MCMC run for a small number of steps after being initialized by a cheap approximate sampler. This sampler is approximate and cubic time. This is faster than the classic Aldous-Broder sampler [1,2], especially for graphs with large mixing time. Recent research [3,4] proposes samplers that run in sub-matrix-multiply time but are more complex to implement.

References

[1] *Generating random spanning trees*
Andrei Broder (1989)

David J. Aldous (1990)

support = IntegerGreaterThan(lower_bound=0)

validate_edges(*edges*)

Validates a batch of `edges` tensors, as returned by `sample()` or `enumerate_support()` or as input to `log_prob()`.

- **Parameters**
 - `edges` (*torch.LongTensor*) — A batch of edges.

- **Raises**
 - `ValueError`

- **Returns**
 - `None`

5.2.30 Stable

```python
class Stable(stability, skew, scale=1.0, loc=0.0, coords='S0', validate_args=None)
```

Bases: `pyro.distributions.torch_distribution.TorchDistribution`
Levy α-stable distribution. See [1] for a review.

This uses Nolan’s parametrization [2] of the \(\text{loc} \) parameter, which is required for continuity and differentiability. This corresponds to the notation \(S_0^\alpha(\beta, \sigma, \mu_0) \) of [1], where \(\alpha = \) stability, \(\beta = \) skew, \(\sigma = \) scale, and \(\mu_0 = \) loc. To instead use the S parameterization as in scipy, pass \(\text{coords} = "S" \), but BEWARE this is discontinuous at \(\alpha = 1 \) and has poor geometry for inference.

This implements a reparametrized sampler \(\text{rsample}() \), but does not implement \(\text{log_prob}() \). Inference can be performed using either likelihood-free algorithms such as EnergyDistance, or reparameterization via the \(\text{reparam}() \) handler with one of the reparameterizers \(\text{LatentStableReparam} \), \(\text{SymmetricStableReparam} \), or \(\text{StableReparam} \). e.g.:

```python
with poutine.reparam(config={"x": StableReparam()}):
    pyro.sample("x", Stable(stability, skew, scale, loc))
```


Parameters

- \(\text{stability} (\text{Tensor}) \) – Levy stability parameter \(\alpha \in (0, 2] \).
- \(\text{skew} (\text{Tensor}) \) – Skewness \(\beta \in [-1, 1] \).
- \(\text{scale} (\text{Tensor}) \) – Scale \(\sigma > 0 \). Defaults to 1.
- \(\text{loc} (\text{Tensor}) \) – Location \(\mu_0 \) when using Nolan’s S0 parametrization [2], or \(\mu \) when using the S parameterization. Defaults to 0.
- \(\text{coords} (\text{str}) \) – Either “S0” (default) to use Nolan’s continuous S0 parametrization, or “S” to use the discontinuous parameterization.

\[
\text{arg_constraints} = \{'\text{loc}': \text{Real()}, '\text{scale}': \text{GreaterThan}(\text{lower_bound}=0.0), '\text{skew}': \text{Interval}(-1, 1)\}
\]

\[
\text{expand}(\text{batch_shape}, _\text{instance}=\text{None})
\]

\[
\text{has_rsample} = \text{True}
\]

\[
\text{log_prob}(\text{value})
\]

\[
\text{rsample}(\text{sample_shape}=\text{torch.Size}())
\]

\[
\text{support} = \text{Real}()
\]

5.2.31 Unit

```python
class Unit (log_factor, validate_args=None)
```

Bases: `pyro.distributions.torch_distribution.TorchDistribution`

Trivial nonnormalized distribution representing the unit type.

The unit type has a single value with no data, i.e. \(\text{value.numel()} == 0 \).

This is used for \(\text{pyro.factor()} \) statements.
arg_constraints = {'log_factor': Real()}
expand(batch_shape, _instance=None)
log_prob(value)
sample(sample_shape=torch.Size([]))
support = Real()

5.2.32 VonMises

class VonMises(loc, concentration, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution
A circular von Mises distribution.
This implementation uses polar coordinates. The loc and value args can be any real number (to facilitate unconstrained optimization), but are interpreted as angles modulo 2 pi.
See VonMises3D for a 3D cartesian coordinate cousin of this distribution.

Parameters
 • loc(torch.Tensor) – an angle in radians.
 • concentration(torch.Tensor) – concentration parameter

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'loc': Real()}
expand(batch_shape)
has_rsample = False
log_prob(value)
mean
 The provided mean is the circular one.
sample(sample_shape=torch.Size([]))
support = Real()
variance
 The provided variance is the circular one.

5.2.33 VonMises3D

class VonMises3D(concentration, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution
Spherical von Mises distribution.
This implementation combines the direction parameter and concentration parameter into a single combined parameter that contains both direction and magnitude. The value arg is represented in cartesian coordinates: it must be a normalized 3-vector that lies on the 2-sphere.
See VonMises for a 2D polar coordinate cousin of this distribution.
Currently only log_prob() is implemented.
Parameters `concentration(torch.Tensor)` – A combined location-and-concentration vector. The direction of this vector is the location, and its magnitude is the concentration.

```
arg_constraints = {'concentration': Real()}
expand(batch_shape)
log_prob(value)
support = Real()
```

5.2.34 ZeroInflatedPoisson

class ZeroInflatedPoisson(gate, rate, validate_args=None)

Bases: pyro.distributions.zero_inflated.ZeroInflatedDistribution

A Zero Inflated Poisson distribution.

Parameters

- **gate(torch.Tensor)** – probability of extra zeros.
- **rate(torch.Tensor)** – rate of poisson distribution.

```
support = IntegerGreaterThan(lower_bound=0)
```

5.2.35 ZeroInflatedNegativeBinomial

class ZeroInflatedNegativeBinomial(gate, total_count, probs=None, logits=None, validate_args=None)

Bases: pyro.distributions.zero_inflated.ZeroInflatedDistribution

A Zero Inflated Negative Binomial distribution.

Parameters

- **gate(torch.Tensor)** – probability of extra zeros.
- **total_count(float or torch.Tensor)** – non-negative number of negative Bernoulli trials.
- **probs(torch.Tensor)** – Event probabilities of success in the half open interval [0, 1).

```
support = IntegerGreaterThan(lower_bound=0)
```

5.2.36 ZeroInflatedDistribution

class ZeroInflatedDistribution(gate, base_dist, validate_args=None)

Bases: pyro.distributions.torch_distribution.TorchDistribution

Base class for a Zero Inflated distribution.

Parameters

- **gate(torch.Tensor)** – probability of extra zeros given via a Bernoulli distribution.
- **base_dist(TorchDistribution)** – the base distribution.

```
arg_constraints = {'gate': Interval(lower_bound=0.0, upper_bound=1.0)}
expand(batch_shape, _instance=None)
```
log_prob (value)
mean
sample (sample_shape=torch.Size([]))
variance

5.3 Transforms

5.3.1 ConditionalTransform
class ConditionalTransform
 Bases: abc.ABC
 condition (context)
 Return type torch.distributions.Transform

5.3.2 CorrLCholeskyTransform
class CorrLCholeskyTransform (cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Transforms a vector into the cholesky factor of a correlation matrix.
The input should have shape [batch_shape] + [d * (d-1)/2]. The output will have shape [batch_shape] + [d, d].
 Reference:
 bijective = True
 codomain = CorrCholesky()
 domain = Real()
 event_dim = 1
 log_abs_det_jacobian (x, y)
 sign = 1

5.3.3 ELUTransform
class ELUTransform (cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Bijective transform via the mapping y = ELU(x).
 bijective = True
 codomain = GreaterThan(lower_bound=0.0)
 domain = Real()
 log_abs_det_jacobian (x, y)
 sign = 1
5.3.4 LeakyReLUTransform

class LeakyReLUTransform(cache_size=0):
 Bases: torch.distributions.transforms.Transform

 Bijective transform via the mapping \(y = \text{LeakyReLU}(x) \).

 bijective = True
 codomain = GreaterThan(lower_bound=0.0)
 domain = Real()
 log_abs_det_jacobian(x, y)
 sign = 1

5.3.5 LowerCholeskyAffine

class LowerCholeskyAffine(loc, scale_tril):
 Bases: torch.distributions.transforms.Transform

 A bijection of the form \(y = \mathbf{L}x + \mathbf{r} \) where \(\mathbf{L} \) is a lower triangular matrix and \(\mathbf{r} \) is a vector.

 Parameters
 • loc (torch.tensor) – the fixed D-dimensional vector to shift the input by.
 • scale_tril (torch.tensor) – the D x D lower triangular matrix used in the transformation.

 bijective = True
 codomain = RealVector()
 event_dim = 1
 log_abs_det_jacobian(x, y)
 volume_preserving = False

5.3.6 Permute

class Permute(permutation):
 Bases: torch.distributions.transforms.Transform

 A bijection that reorders the input dimensions, that is, multiplies the input by a permutation matrix. This is useful in between AffineAutoregressive transforms to increase the flexibility of the resulting distribution and stabilize learning. Whilst not being an autoregressive transform, the log absolute determinate of the Jacobian is easily calculable as 0. Note that reordering the input dimension between two layers of AffineAutoregressive is not equivalent to reordering the dimension inside the MADE networks that those IAFs use; using a Permute transform results in a distribution with more flexibility.

 Example usage:

    ```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions.transforms import AffineAutoregressive, Permute
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iaf1 = AffineAutoregressive(AutoRegressiveNN(10, [40]))
    ```
```python
>>> ff = Permute(torch.randperm(10, dtype=torch.long))
>>> iaf2 = AffineAutoregressive(AutoRegressiveNN(10, [40]))
>>> flow_dist = dist.TransformedDistribution(base_dist, [iaf1, ff, iaf2])
>>> flow_dist.sample()  # doctest: +SKIP
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
         0.1389, -0.4629, 0.0986])
```

Parameters

- **permutation** *(torch.LongTensor)* – a permutation ordering that is applied to the inputs.

- **bijective** = True
- **codomain** = Real()
- **event_dim** = 1
- **inv_permutation**

log_abs_det_jacobian *(x, y)*

Calculates the elementwise determinant of the log Jacobian, i.e. \(\log(\text{abs}(\frac{dy_0}{dx_0}, \ldots, \frac{dy_{N-1}}{dx_{N-1}})) \). Note that this type of transform is not autoregressive, so the log Jacobian is not the sum of the previous expression. However, it turns out it’s always 0 (since the determinant is -1 or +1), and so returning a vector of zeros works.

- **volume_preserving** = True

5.3.7 TanhTransform

class `TanhTransform(cache_size=0)`

- **Bases:** torch.distributions.transforms.Transform
- **Bijective** transform via the mapping \(y = \tanh(x) \).

- **static** **atanh**(x)

- **bijective** = True
- **codomain** = Interval(lower_bound=-1.0, upper_bound=1.0)
- **domain** = Real()

- **log_abs_det_jacobian** *(x, y)*

- **sign** = 1

5.3.8 DiscreteCosineTransform

class `DiscreteCosineTransform(dim=-1, cache_size=0)`

- **Bases:** torch.distributions.transforms.Transform
- **Discrete Cosine Transform of type-II.**

This uses `dct()` and `idct()` to compute orthonormal DCT and inverse DCT transforms. The jacobian is 1.

- **Parameters**
 - **dim**(int) – Dimension along which to transform. Must be negative.

- **bijective** = True
- **codomain** = Real()
domain = Real()

\[\log \text{abs det jacobian}(x, y) \]

5.4 TransformModules

5.4.1 AffineAutoregressive

class AffineAutoregressive(autoregressive_nn, log_scale_min_clip=-5.0, log_scale_max_clip=3.0, sigmoid_bias=2.0, stable=False)

Bases: pyro.distributions.torch_transform.TransformModule

An implementation of the bijective transform of Inverse Autoregressive Flow (IAF), using by default Eq (10) from Kingma et al., 2016,

\[y = \mu_t + \sigma_t \odot x \]

where \(x \) are the inputs, \(y \) are the outputs, \(\mu_t, \sigma_t \) are calculated from an autoregressive network on \(x \), and \(\sigma_t > 0 \).

If the stable keyword argument is set to True then the transformation used is,

\[y = \sigma_t \odot x + (1 - \sigma_t) \odot \mu_t \]

where \(\sigma_t \) is restricted to \((0, 1)\). This variant of IAF is claimed by the authors to be more numerically stable than one using Eq (10), although in practice it leads to a restriction on the distributions that can be represented, presumably since the input is restricted to rescaling by a number on \((0, 1)\).

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = AffineAutoregressive(AutoRegressiveNN(10, [40]))
>>> pyro.module("my_transform", transform)  # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()  # doctest: +SKIP
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
         0.1389, -0.4629, 0.0986])
```

The inverse of the Bijector is required when, e.g., scoring the log density of a sample with `TransformedDistribution`. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from `TransformedDistribution`. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually. Note that this is an operation that scales as \(O(D)\) where \(D\) is the input dimension, and so should be avoided for large dimensional uses. So in general, it is cheap to sample from IAF and score a value that was sampled by IAF, but expensive to score an arbitrary value.

Parameters

- **autoregressive_nn** (nn.Module) – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple
- **log_scale_min_clip** (float) – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip** (float) – The maximum value for clipping the log(scale) from the autoregressive NN
• **sigmoid_bias** *(float)* – A term to add the logit of the input when using the stable transform.

• **stable** *(bool)* – When true, uses the alternative “stable” version of the transform (see above).

References:


```python
autoregressive = True
bijective = True
codomain = Real()
domain = Real()
event_dim = 1
log_abs_det_jacobian(x, y)
```

Calculates the elementwise determinant of the log Jacobian

5.4.2 AffineCoupling

```python
class AffineCoupling(split_dim, hypernet, log_scale_min_clip=-5.0, log_scale_max_clip=3.0)
    Bases: pyro.distributions.torch_transform.TransformModule

An implementation of the affine coupling layer of RealNVP (Dinh et al., 2017) that uses the bijective transform,

\[ y_{1:d} = x_{1:d} \ y_{(d+1):D} = \mu + \sigma \odot x_{(d+1):D} \]

where \( x \) are the inputs, \( y \) are the outputs, e.g. \( x_{1:d} \) represents the first \( d \) elements of the inputs, and \( \mu, \sigma \) are shift and translation parameters calculated as the output of a function inputting only \( x_{1:d} \).

That is, the first \( d \) components remain unchanged, and the subsequent \( D - d \) are shifted and translated by a function of the previous components.

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn import DenseNN
>>> input_dim = 10
>>> split_dim = 6
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> hypernet = DenseNN(split_dim, [10*input_dim], [input_dim-split_dim, input_dim-split_dim])
>>> transform = AffineCoupling(split_dim, hypernet)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample() # doctest: +SKIP

tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986])
```
The inverse of the Bijector is required when, e.g., scoring the log density of a sample with \texttt{TransformedDistribution}. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from \texttt{TransformedDistribution}. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitary value is being scored, it will calculate it manually.

This is an operation that scales as O(1), i.e. constant in the input dimension. So in general, it is cheap to sample and score (an arbitary value) from \texttt{AffineCoupling}.

**Parameters**

- \texttt{split_dim (int)} – Zero-indexed dimension \(d\) upon which to perform input/output split for transformation.
- \texttt{hypernet (callable)} – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple. The input should have final dimension \(\text{split_dim}\) and the output final dimension \(\text{input_dim} - \text{split_dim}\) for each member of the tuple.
- \texttt{log_scale_min_clip (float)} – The minimum value for clipping the log(scale) from the autoregressive NN
- \texttt{log_scale_max_clip (float)} – The maximum value for clipping the log(scale) from the autoregressive NN

**References:**


```python
bijective = True

codomain = Real()
domain = Real()
event_dim = 1

log_abs_det_jacobian(x, y)
```

Calculates the elementwise determinant of the log jacobian

### 5.4.3 BatchNorm

**class BatchNorm** (\texttt{input_dim, momentum=0.1, epsilon=1e-05})

\texttt{Bases: pyro.distributions.torch_transform.TransformModule}

A type of batch normalization that can be used to stabilize training in normalizing flows. The inverse operation is defined as

\[
x = (y - \hat{\mu}) \odot \frac{1}{\sqrt{\hat{\sigma}^2}} \odot \gamma + \beta
\]

that is, the standard batch norm equation, where \(x\) is the input, \(y\) is the output, \(\gamma, \beta\) are learnable parameters, and \(\hat{\mu}, \hat{\sigma}^2\) are smoothed running averages of the sample mean and variance, respectively. The constraint \(\gamma > 0\) is enforced to ease calculation of the log-det-Jacobian term.

This is an element-wise transform, and when applied to a vector, learns two parameters \((\gamma, \beta)\) for each dimension of the input.

When the module is set to training mode, the moving averages of the sample mean and variance are updated every time the inverse operator is called, e.g., when a normalizing flow scores a minibatch with the \texttt{log_prob} method.
Also, when the module is set to training mode, the sample mean and variance on the current minibatch are used in place of the smoothed averages, \( \hat{\mu} \) and \( \hat{\sigma^2} \), for the inverse operator. For this reason it is not the case that \( x = g(g^{-1}(x)) \) during training, i.e., that the inverse operation is the inverse of the forward one.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions.transforms import AffineAutoregressive
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iafs = [AffineAutoregressive(AutoRegressiveNN(10, [40])) for _ in range(2)]
>>> bn = BatchNorm(10)
>>> flow_dist = dist.TransformedDistribution(base_dist, [iafs[0], bn, iafs[1]])
>>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
```

**Parameters**

- `input_dim (int)` – the dimension of the input
- `momentum (float)` – momentum parameter for updating moving averages
- `epsilon (float)` – small number to add to variances to ensure numerical stability

**References:**


**5.4.4 BlockAutoregressive**

class `BlockAutoregressive` (*input_dim*, *hidden_factors=[8, 8]*, *activation='tanh'*), `residual=None`)  
Bases: `pyro.distributions.torch_transform.TransformModule`  
An implementation of Block Neural Autoregressive Flow (block-NAF) (De Cao et al., 2019) bijective transform. Block-NAF uses a similar transformation to deep dense NAF, building the autoregressive NN into the structure of the transform, in a sense.  
Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:
The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **input_dim** (int) – The dimensionality of the input and output variables.
- **hidden_factors** (list) – Hidden layer i has hidden_factors[i] hidden units per input dimension. This corresponds to both a and b in De Cao et al. (2019). The elements of hidden_factors must be integers.
- **activation** (string) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **residual** (string) – Type of residual connections to use. Choices are “None”, “normal” for y + f(y), and “gated” for αy + (1 – α) for learnable parameter α.

References:


```python
>>> autoregressive = True
```
```python
>>> from pyro.nn.dense_nn import DenseNN

>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3

>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))

>>> hypernet = DenseNN(context_dim, [50, 50], param_dims=[1, input_dim, input_dim])

>>> transform = ConditionalPlanar(hypernet)

>>> z = torch.rand(batch_size, context_dim)

>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, [transform]).

>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))

doctest: +SKIP
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the
inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar
transform can be scored.

**Parameters**

- `nn (callable)` – a function inputting the context variable and outputting a triplet of
real-valued parameters of dimensions $(1, D, D)$.

**References:** Variational Inference with Normalizing Flows [arXiv:1505.05770] Danilo Jimenez Rezende, Shakir Mohamed

- `bijective = True`
- `codomain = Real()`

- `condition(context)`

  See `pyro.distributions.conditional.ConditionalTransformModule.condition()`

- `domain = Real()`
- `event_dim = 1`

### 5.4.6 ConditionalTransformModule

**class** **ConditionalTransformModule**(*args, **kwargs*)

**Bases:** `pyro.distributions.conditional.ConditionalTransform`, `torch.nn.modules.module.Module`

Conditional transform modules with learnable parameters such as normalizing flows should inherit from this class rather than `ConditionalTransform` so they are also a subclass of `Module` and inherit all the useful methods of that class.

### 5.4.7 Householder

**class** **Householder**(*input_dim, count_transforms=1*)

**Bases:** `pyro.distributions.torch_transform.TransformModule`

Represents multiple applications of the Householder bijective transformation. A single Householder transformation takes the form,

$$y = (I - 2 * \frac{uu^T}{||u||^2})x$$

where $x$ are the inputs, $y$ are the outputs, and the learnable parameters are $u \in \mathbb{R}^D$ for input dimension $D$.

The transformation represents the reflection of $x$ through the plane passing through the origin with normal $u$.
$D$ applications of this transformation are able to transform standard i.i.d. standard Gaussian noise into a Gaussian variable with an arbitrary covariance matrix. With $K < D$ transformations, one is able to approximate a full-rank Gaussian distribution using a linear transformation of rank $K$.

Together with `TransformedDistribution` this provides a way to create richer variational approximations. Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Householder(10, count_transforms=5)
>>> pyro.module("my_transform", p) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, (transform])
>>> flow_dist.sample() # doctest: +SKIP
```
```
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
```

Parameters

- `input_dim (int)` – the dimension of the input (and output) variable.
- `count_transforms (int)` – number of applications of Householder transformation to apply.

References:


- `bijective = True`
- `codomain = Real()`
- `domain = Real()`
- `event_dim = 1`
- `log_abs_det_jacobian(x, y)`
  Calculates the elementwise determinant of the log jacobian. Householder flow is measure preserving, so
  $\log(|\det J|) = 0$
- `reset_parameters()`
- `u()`
- `volume_preserving = True`

### 5.4.8 NeuralAutoregressive

class `NeuralAutoregressive` *(autoregressive_nn, hidden_units=16, activation='sigmoid')*

Bases: `pyro.distributions.torch_transform.TransformModule`

An implementation of the deep Neural Autoregressive Flow (NAF) bijective transform of the “IAF flavour” that can be used for sampling and scoring samples drawn from it (but not arbitrary ones).

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> arn = AutoRegressiveNN(10, [40], param_dims=[16]*3)
>>> transform = NeuralAutoregressive(arn, hidden_units=16)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
```

>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()  # doctest: +SKIP
  tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986])

The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **autoregressive_nn** ([nn.Module]) – an autoregressive neural network whose forward call returns a tuple of three real-valued tensors, whose last dimension is the input dimension, and whose penultimate dimension is equal to hidden_units.

- **hidden_units** ([int]) – the number of hidden units to use in the NAF transformation (see Eq (8) in reference)

- **activation** ([string]) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.

Reference:


bijective = True
codomain = Real()
domain = Real()
event_dim = 1

**log_abs_det_jacobian**(x, y)

Calculates the elementwise determinant of the log Jacobian

### 5.4.9 Planar

class Planar([input_dim])

**Bases:** pyro.distributions.transforms.planar.ConditionedPlanar, pyro.distributions.torch_transform.TransformModule

A ‘planar’ bijective transform with equation,

\[ y = x + u \tanh(w^T z + b) \]

where x are the inputs, y are the outputs, and the learnable parameters are \( b \in \mathbb{R}, u \in \mathbb{R}^D, w \in \mathbb{R}^D \) for input dimension \( D \). For this to be an invertible transformation, the condition \( w^T u > -1 \) is enforced.

Together with TransformedDistribution this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Planar(10)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986])
```
The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar transform can be scored.

**Parameters**

- `input_dim` *(int)* – the dimension of the input (and output) variable.

**References:**


```python
bijective = True
codomain = Real()
domain = Real()
event_dim = 1
reset_parameters()
```

### 5.4.10 Polynomial

#### class Polynomial(*autoregressive_nn, input_dim, count_degree, count_sum*)

Bases: pyro.distributions.torch_transform.TransformModule

An autoregressive bijective transform as described in Jaini et al. (2019) applying following equation element-wise,

\[ y_n = c_n + \int_0^{x_n} \sum_{k=1}^K \left( \sum_{r=0}^R a_{r,k} u^r \right) du \]

where \( x_n \) is the \( n \)th \( x \), \( \{ a_{r,k} \in \mathbb{R} \} \) are learnable parameters that are the output of an autoregressive NN inputting \( x_{\prec n} = x_1, x_2, \ldots, x_{n-1} \).

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

**Example usage:**

```python
>>> from pyro.nn import AutoRegressiveNN
>>> input_dim = 10
>>> count_degree = 4
>>> count_sum = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> arn = AutoRegressiveNN(input_dim, [input_dim+1]*count_sum)
>>> transform = Polynomial(arn, input_dim=input_dim, count_degree=count_degree, count_sum=count_sum)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using a polynomial transform can be scored.

**Parameters**

- `autoregressive_nn` *(nn.Module)* – an autoregressive neural network whose forward call returns a tensor of real-valued numbers of size (batch_size, (count_degree+1)*count_sum, input_dim)
• **count_degree** *(int)* – The degree of the polynomial to use for each element-wise transformation.

• **count_sum** *(int)* – The number of polynomials to sum in each element-wise transformation.

References:


```python
count_degree: int
count_sum: int
```

autoregressive = True

bijective = True
codomain = Real()
domain = Real()
event_dim = 1

```python
log_abs_det_jacobian(x, y)
```

Calculates the elementwise determinant of the log Jacobian

```python
reset_parameters()
```

### 5.4.11 Radial

```python
class Radial(input_dim)
```

Bases: `pyro.distributions.torch_transform.TransformModule`

A ‘radial’ bijective transform using the equation,

\[
y = x + \beta h(\alpha, r)(x - x_0)
\]

where \(x\) are the inputs, \(y\) are the outputs, and the learnable parameters are \(\alpha \in \mathbb{R}^+, \beta \in \mathbb{R}, x_0 \in \mathbb{R}^D\), for input dimension \(D, r = ||x - x_0||_2^2, h(\alpha, r) = 1/(\alpha + r)\). For this to be an invertible transformation, the condition \(\beta > -\alpha\) is enforced.

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Radial(10)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the radial transform can be scored.

**Parameters**

`input_dim` *(int)* – the dimension of the input (and output) variable.

References:


```python
autoregressive = True
bijective = True
codomain = Real()
```

5.4. TransformModules
domain = Real()

event_dim = 1

log_abs_det_jacobian(x, y)
Calculates the elementwise determinant of the log Jacobian

reset_parameters()

5.4.12 Sylvester

class Sylvester(input_dim, count_transforms=1)
Bases: pyro.distributions.transforms.householder.Householder

An implementation of the Sylvester bijective transform of the Householder variety (Van den Berg Et Al., 2018),

\[ y = x + QR \tanh(SQ^T x + b) \]

where \( x \) are the inputs, \( y \) are the outputs, \( R, S \sim D \times D \) are upper triangular matrices for input dimension \( D \), \( Q \sim D \times D \) is an orthogonal matrix, and \( b \sim D \) is learnable bias term.

The Sylvester transform is a generalization of Planar. In the Householder type of the Sylvester transform, the orthogonality of \( Q \) is enforced by representing it as the product of Householder transformations.

Together with TransformedDistribution it provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Sylvester(10, count_transforms=4)
>>> pyro.module("my_transform", transform) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the Sylvester transform can be scored.

References:


\[ Q(x) \]
\[ R() \]
\[ S() \]

bijective = True
codomain = Real()
domain = Real()
dtanh_dx(x)
event_dim = 1

log_abs_det_jacobian(x, y)
Calculates the elementwise determinant of the log Jacobian
5.4.13 TransformModule

```python
class TransformModule(*args, **kwargs):

 Transforms with learnable parameters such as normalizing flows should inherit from this class rather than Transform so they are also a subclass of nn.Module and inherit all the useful methods of that class.
```

5.5 Transform Factories

Each Transform and TransformModule includes a corresponding helper function in lower case that inputs, at minimum, the input dimensions of the transform, and possibly additional arguments to customize the transform in an intuitive way. The purpose of these helper functions is to hide from the user whether or not the transform requires the construction of a hypernet, and if so, the input and output dimensions of that hypernet.

5.5.1 affine_autoregressive

```python
affine_autoregressive(input_dim, hidden_dims=None, **kwargs)
```

A helper function to create an AffineAutoregressive object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- **input_dim (int)** – Dimension of input variable
- **hidden_dims (list[int])** – The desired hidden dimensions of the autoregressive network. Defaults to using [3*input_dim + 1]
- **log_scale_min_clip (float)** – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip (float)** – The maximum value for clipping the log(scale) from the autoregressive NN
- **sigmoid_bias (float)** – A term to add the logit of the input when using the stable transform.
- **stable (bool)** – When true, uses the alternative “stable” version of the transform (see above).

5.5.2 affine_coupling

```python
affine_coupling(input_dim, hidden_dims=None, split_dim=None, **kwargs)
```

A helper function to create an AffineCoupling object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim (int)** – Dimension of input variable
- **hidden_dims (list[int])** – The desired hidden dimensions of the dense network. Defaults to using [10*input_dim]
• split_dim (int) – The dimension to split the input on for the coupling transform. Defaults to using input_dim // 2
• log_scale_min_clip (float) – The minimum value for clipping the log(scale) from the autoregressive NN
• log_scale_max_clip (float) – The maximum value for clipping the log(scale) from the autoregressive NN

5.5.3 batchnorm

batchnorm (input_dim, **kwargs)

A helper function to create a BatchNorm object for consistency with other helpers.

Parameters

• input_dim (int) – Dimension of input variable
• momentum (float) – momentum parameter for updating moving averages
• epsilon (float) – small number to add to variances to ensure numerical stability

5.5.4 block_autoregressive

block_autoregressive (input_dim, **kwargs)

A helper function to create a BlockAutoregressive object for consistency with other helpers.

Parameters

• input_dim (int) – Dimension of input variable
• hidden_factors (list) – Hidden layer i has hidden_factors[i] hidden units per input dimension. This corresponds to both a and b in De Cao et al. (2019). The elements of hidden_factors must be integers.
• activation (string) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
• residual (string) – Type of residual connections to use. Choices are “None”, “normal” for $y + f(y)$, and “gated” for $\alpha y + (1 - \alpha y)$ for learnable parameter $\alpha$.

5.5.5 conditional_planar

conditional_planar (input_dim, context_dim, hidden_dims=None)

A helper function to create a ConditionalPlanar object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

• input_dim (int) – Dimension of input variable
• context_dim (int) – Dimension of context variable
• hidden_dims (list [int]) – The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10]
5.5.6 elu

elu()
A helper function to create an ELUTransform object for consistency with other helpers.

5.5.7 householder

householder(input_dim, count_transforms=None)
A helper function to create a Householder object for consistency with other helpers.

Parameters

- input_dim (int) – Dimension of input variable
- count_transforms (int) – number of applications of Householder transformation to apply.

5.5.8 leaky_relu

leaky_relu()
A helper function to create a LeakyReLUTransform object for consistency with other helpers.

5.5.9 neural_autoregressive

neural_autoregressive(input_dim, hidden_dims=None, activation='sigmoid', width=16)
A helper function to create a NeuralAutoregressive object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- input_dim (int) – Dimension of input variable
- hidden_dims (list[int]) – The desired hidden dimensions of the autoregressive network. Defaults to using [3*input_dim + 1]
- activation (string) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- width (int) – The width of the “multilayer perceptron” in the transform (see paper). Defaults to 16

5.5.10 permute

permute(input_dim, permutation=None)
A helper function to create a Permute object for consistency with other helpers.

Parameters

- input_dim (int) – Dimension of input variable
5.5.11 planar

`planar(input_dim)`
A helper function to create a `Planar` object for consistency with other helpers.

**Parameters**

- `input_dim (int)` – Dimension of input variable

5.5.12 polynomial

`polynomial(input_dim, hidden_dims=None)`
A helper function to create a `Polynomial` object that takes care of constructing an autoregressive network with the correct input/output dimensions.

**Parameters**

- `input_dim (int)` – Dimension of input variable
- `hidden_dims` – The desired hidden dimensions of the autoregressive network. Defaults to using `[input_dim * 10]`

5.5.13 radial

`radial(input_dim)`
A helper function to create a `Radial` object for consistency with other helpers.

**Parameters**

- `input_dim (int)` – Dimension of input variable

5.5.14 sylvester

`sylvester(input_dim, count_transforms=None)`
A helper function to create a `Sylvester` object for consistency with other helpers.

**Parameters**

- `input_dim (int)` – Dimension of input variable
- `count_transforms (int)` – Number of Sylvester operations to apply. Defaults to `input_dim // 2 + 1`.

5.5.15 tanh

`tanh()`
A helper function to create a `TanhTransform` object for consistency with other helpers.
Parameters in Pyro are basically thin wrappers around PyTorch Tensors that carry unique names. As such Parameters are the primary stateful objects in Pyro. Users typically interact with parameters via the Pyro primitive `pyro.param`. Parameters play a central role in stochastic variational inference, where they are used to represent point estimates for the parameters in parameterized families of models and guides.

### 6.1 ParamStore

**class ParamStoreDict**

Bases: object

Global store for parameters in Pyro. This is basically a key-value store. The typical user interacts with the ParamStore primarily through the primitive `pyro.param`.

See Intro Part II for further discussion and SVI Part I for some examples.

Some things to bear in mind when using parameters in Pyro:

- parameters must be assigned unique names
- the `init_tensor` argument to `pyro.param` is only used the first time that a given (named) parameter is registered with Pyro.
- for this reason, a user may need to use the `clear()` method if working in a REPL in order to get the desired behavior. this method can also be invoked with `pyro.clear_param_store()`.
- the internal name of a parameter within a PyTorch `nn.Module` that has been registered with Pyro is prepended with the Pyro name of the module. so nothing prevents the user from having two different modules each of which contains a parameter named `weight`. by contrast, a user can only have one top-level parameter named `weight` (outside of any module).
- parameters can be saved and loaded from disk using `save` and `load`.

**clear()**

Clear the ParamStore
items()
Iterate over (name, constrained_param) pairs.

keys()
Iterate over param names.

values()
Iterate over constrained parameter values.

setdefault(name, init_constrained_value, constraint=Real())
Retrieve a constrained parameter value from the if it exists, otherwise set the initial value. Note that this is a little fancier than dict.setdefault().

If the parameter already exists, init_constrained_tensor will be ignored. To avoid expensive creation of init_constrained_tensor you can wrap it in a lambda that will only be evaluated if the parameter does not already exist:

```
param_store.get("foo", lambda: (0.001 * torch.randn(1000, 1000)).exp(), constraint=constraints.positive)
```

Parameters
- **name** *(str)* – parameter name
- **init_constrained_value** *(torch.Tensor or callable returning a torch.Tensor)* – initial constrained value
- **constraint** *(torch.distributions.constraints.Constraint)* – torch constraint object

Returns constrained parameter value

Return type torch.Tensor

named_parameters()
Returns an iterator over (name, unconstrained_value) tuples for each parameter in the ParamStore.

get_all_param_names()

replace_param(param_name, new_param, old_param)

get_param(name, init_tensor=None, constraint=Real(), event_dim=None)
Get parameter from its name. If it does not yet exist in the ParamStore, it will be created and stored. The Pyro primitive pyro.param dispatches to this method.

Parameters
- **name** *(str)* – parameter name
- **init_tensor** *(torch.Tensor)* – initial tensor
- **constraint** *(torch.distributions.constraints.Constraint)* – torch constraint
- **event_dim** *(int)* – (ignored)

Returns parameter

Return type torch.Tensor

match(name)
Get all parameters that match regex. The parameter must exist.
Parameters `name (str)` – regular expression

Returns dict with key `param name` and value torch Tensor

`param_name (p)`
Get parameter name from parameter

Parameters `p` – parameter

Returns parameter name

`get_state ()`
Get the ParamStore state.

`set_state (state)`
Set the ParamStore state using state from a previous `get_state()` call

`save (filename)`
Save parameters to disk

Parameters `filename (str)` – file name to save to

`load (filename, map_location=None)`
Loads parameters from disk

Note: If using `pyro.module()` on parameters loaded from disk, be sure to set the `update_module_params` flag:

```python
pyro.get_param_store().load('saved_params.save')
pyro.module('module', nn, update_module_params=True)
```

Parameters

- `filename (str)` – file name to load from
- `map_location (function, torch.device, string or a dict)` – specifies how to remap storage locations

`param_with_module_name (pyro_name, param_name)`

`module_from_param_with_module_name (param_name)`

`user_param_name (param_name)`
The module `pyro.nn` provides implementations of neural network modules that are useful in the context of deep probabilistic programming.

### 7.1 Pyro Modules

Pyro includes an experimental class `PyroModule`, a subclass of `torch.nn.Module`, whose attributes can be modified by Pyro effects. To create a poutine-aware attribute, use either the `PyroParam` struct or the `PyroSample` struct:

```python
my_module = PyroModule()
my_module.x = PyroParam(torch.tensor(1.), constraint=constraints.positive)
my_module.y = PyroSample(dist.Normal(0, 1))
```

**class PyroParam**

Bases: `tuple`

Structure to declare a Pyro-managed learnable parameter of a `PyroModule`.

- `constraint`
  - Alias for field number 1

- `event_dim`
  - Alias for field number 2

- `init_value`
  - Alias for field number 0

**class PyroSample**

Bases: `tuple`

Structure to declare a Pyro-managed random parameter of a `PyroModule`.

- `prior`
  - Alias for field number 0
class PyroModule(name="")

Bases: torch.nn.modules.module.Module

EXPERIMENTAL Subclass of torch.nn.Module whose attributes can be modified by Pyro effects. Attributes can be set using helpers PyroParam and PyroSample, and methods can be decorated by pyro_method().

Parameters

To create a Pyro-managed parameter attribute, set that attribute using either torch.nn.Parameter (for unconstrained parameters) or PyroParam (for constrained parameters). Reading that attribute will then trigger a pyro.param() statement. For example:

```python
Create Pyro-managed parameter attributes.
my_module = PyroModule()
my_module.loc = nn.Parameter(torch.tensor(0.))
my_module.scale = PyroParam(torch.tensor(1.),
 constraint=constraints.positive)

Read the attributes.
loc = my_module.loc # Triggers a pyro.param statement.
scale = my_module.scale # Triggers another pyro.param statement.
```

Note that, unlike normal torch.nn.Module s, PyroModule s should not be registered with pyro.module() statements. PyroModule s can contain other PyroModule s and normal torch.nn.Module s. Accessing a normal torch.nn.Module attribute of a PyroModule triggers a pyro.module() statement. If multiple PyroModule s appear in a single Pyro model or guide, they should be included in a single root PyroModule for that model.

PyroModule s synchronize data with the param store at each setattr, getattr, and delattr event, based on the nested name of an attribute:

- Setting `mod.x = x_init` tries to read `x` from the param store. If a value is found in the param store, that value is copied into `mod` and `x_init` is ignored; otherwise `x_init` is copied into both `mod` and the param store.

- Reading `mod.x` tries to read `x` from the param store. If a value is found in the param store, that value is copied into `mod`; otherwise `mod`'s value is copied into the param store. Finally `mod` and the param store agree on a single value to return.

- Deleting `del mod.x` removes a value from both `mod` and the param store.

Note two PyroModule of the same name will both synchronize with the global param store and thus contain the same data. When creating a PyroModule, then deleting it, then creating another with the same name, the latter will be populated with the former's data from the param store. To avoid this persistence, either pyro.clear_param_store() or call clear() before deleting a PyroModule.

PyroModule s can be saved and loaded either directly using torch.save() / torch.load() or indirectly using the param store's save() / load(). Note that torch.load() will be overridden by any values in the param store, so it is safest to pyro.clear_param_store() before loading.

Samples

To create a Pyro-managed random attribute, set that attribute using the PyroSample helper, specifying a prior distribution. Reading that attribute will then trigger a pyro.sample() statement. For example:

```python
Create Pyro-managed random attributes.
my_module.x = PyroSample(dist.Normal(0, 1))
my_module.y = PyroSample(lambda self: dist.Normal(self.loc, self.scale))

Sample the attributes.
```
x = my_module.x  # Triggers a pyro.sample statement.
y = my_module.y  # Triggers one pyro.sample + two pyro.param statements.

Sampling is cached within each invocation of .__call__() or method decorated by pyro_method(). Because sample statements can appear only once in a Pyro trace, you should ensure that traced access to sample attributes is wrapped in a single invocation of .__call__() or method decorated by pyro_method().

To make an existing module probabilistic, you can create a subclass and overwrite some parameters with PyroSamples:

class RandomLinear(nn.Linear, PyroModule):  # used as a mixin
def __init__(self, in_features, out_features):
    super().__init__(in_features, out_features)
    self.weight = PyroSample(
        lambda self: dist.Normal(0, 1)
        .expand([self.out_features,
                  self.in_features])
        .to_event(2))

Mixin classes

PyroModule can be used as a mixin class, and supports simple syntax for dynamically creating mixins, for example the following are equivalent:

# Version 1. create a named mixin class
class PyroLinear(nn.Linear, PyroModule):
    pass
m.linear = PyroLinear(m, n)

# Version 2. create a dynamic mixin class
m.linear = PyroModule[nn.Linear](m, n)

This notation can be used recursively to create Bayesian modules, e.g.:

model = PyroModule[nn.Sequential](
    PyroModule[nn.Linear](28 * 28, 100),
    PyroModule[nn.Sigmoid](),
    PyroModule[nn.Linear](100, 100),
    PyroModule[nn.Sigmoid](),
    PyroModule[nn.Linear](100, 10),
)
assert isinstance(model, nn.Sequential)
assert isinstance(model, PyroModule)

# Now we can be Bayesian about weights in the first layer.
model[0].weight = PyroSample(
    prior=dist.Normal(0, 1).expand([28 * 28, 100]).to_event(2))
guide = AutoDiagonalNormal(model)

Note that PyroModule[...] does not recursively mix in PyroModule to submodules of the input Module; hence we needed to wrap each submodule of the nn.Sequential above.

Parameters name (str) – Optional name for a root PyroModule. This is ignored in sub-
PyroModules of another PyroModule.

add_module (name, module)
    Adds a child module to the current module.
**named_params** *(prefix=", recurse=True)*

Returns an iterator over PyroModule parameters, yielding both the name of the parameter as well as the parameter itself.

**Parameters**

- **prefix** *(str)* – prefix to prepend to all parameter names.
- **recurse** *(bool)* – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

**Returns** a generator which yields tuples containing the name and parameter

**pyro_method** *(fn)*

Decorator for top-level methods of a PyroModule to enable pyro effects and cache pyro.sample statements.

This should be applied to all public methods that read Pyro-managed attributes, but is not needed for .forward().

**clear** *(mod)*

Removes data from both a PyroModule and the param store.

**Parameters**

- **mod** *(PyroModule)* – A module to clear.

**to_pyro_module** *(m, recurse=True)*

Converts an ordinary torch.nn.Module instance to a PyroModule in-place.

This is useful for adding Pyro effects to third-party modules: no third-party code needs to be modified. For example:

```python
model = nn.Sequential(
 nn.Linear(28 * 28, 100),
 nn.Sigmoid(),
 nn.Linear(100, 100),
 nn.Sigmoid(),
 nn.Linear(100, 10),
)
to_pyro_module_(model)
assert isinstance(model, PyroModule[nn.Sequential])
assert isinstance(model[0], PyroModule[nn.Linear])

Now we can attempt to be fully Bayesian:
for m in model.modules():
 for name, value in list(m.named_parameters(recurse=False)):
 setattr(m, name, PyroSample(prior=dist.Normal(0, 1)
 .expand(value.shape)
 .to_event(value.dim())))
guide = AutoDiagonalNormal(model)
```

**Parameters**

- **m** *(torch.nn.Module)* – A module instance.
- **recurse** *(bool)* – Whether to convert submodules to PyroModules.
7.2 AutoRegressiveNN

class AutoRegressiveNN(input_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())
Bases: pyro.nn.auto_reg_nn.ConditionalAutoRegressiveNN

An implementation of a MADE-like auto-regressive neural network.

Example usage:

```python
>>> x = torch.randn(100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1])
>>> p = arn(x) # 1 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 1])
>>> m, s = arn(x) # 2 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 5, 3])
>>> a, b, c = arn(x) # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)
```

Parameters

- **input_dim**(int) – the dimensionality of the input variable
- **hidden_dims**(list[int]) – the dimensionality of the hidden units per layer
- **param_dims**(list[int]) – shape the output into parameters of dimension (p_n, input_dim) for p_n in param_dims when p_n > 1 and dimension (input_dim) when p_n == 1. The default is [1, 1], i.e. output two parameters of dimension (input_dim), which is useful for inverse autoregressive flow.
- **permutation**(torch.LongTensor) – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. in particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.
- **skip_connections**(bool) – Whether to add skip connections from the input to the output.
- **nonlinearity**(torch.nn.module) – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:


forward(x)
The forward method

7.3 ConditionalAutoRegressiveNN

class ConditionalAutoRegressiveNN(input_dim, context_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())
Bases: torch.nn.modules.module.Module
An implementation of a MADE-like auto-regressive neural network that can input an additional context variable. (See Reference [2] Section 3.3 for an explanation of how the conditional MADE architecture works.)

Example usage:

```python
>>> x = torch.randn(100, 10)
>>> y = torch.randn(100, 5)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1])
>>> p = arn(x, context=y) # 1 parameters of size (100, 10)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 1])
>>> m, s = arn(x, context=y) # 2 parameters of size (100, 10)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 5, 3])
>>> a, b, c = arn(x, context=y) # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)
```

Parameters

- **input_dim** *(int)* – the dimensionality of the input variable
- **context_dim** *(int)* – the dimensionality of the context variable
- **hidden_dims** *(list[int])* – the dimensionality of the hidden units per layer
- **param_dims** *(list[int])* – shape the output into parameters of dimension (p_n, input_dim) for p_n in param_dims when p_n > 1 and dimension (input_dim) when p_n == 1. The default is [1, 1], i.e. output two parameters of dimension (input_dim), which is useful for inverse autoregressive flow.
- **permutation** *(torch.LongTensor)* – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. In particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.
- **skip_connections** *(bool)* – Whether to add skip connections from the input to the output.
- **nonlinearity** *(torch.nn.module)* – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:


**forward**(x, context)

The forward method

**get_permutation**()

Get the permutation applied to the inputs (by default this is chosen at random)
The module `pyro.optim` provides support for optimization in Pyro. In particular it provides `PyroOptim`, which is used to wrap PyTorch optimizers and manage optimizers for dynamically generated parameters (see the tutorial SVI Part I for a discussion). Any custom optimization algorithms are also to be found here.

### 8.1 Pyro Optimizers

```python
class PyroOptim(optim_constructor, optim_args, clip_args=None)
Bases: object

A wrapper for torch.optim.Optimizer objects that helps with managing dynamically generated parameters.

Parameters

- **optim_constructor** – a torch.optim.Optimizer
- **optim_args** – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries
- **clip_args** – a dictionary of clip_norm and/or clip_value args or a callable that returns such dictionaries

__call__ (params, *args, **kwargs)

Parameters

- **params** (an iterable of strings) – a list of parameters

Do an optimization step for each param in params. If a given param has never been seen before, initialize an optimizer for it.

get_state ()

Get state associated with all the optimizers in the form of a dictionary with key-value pairs (parameter name, optim state dicts)

set_state (state_dict)

Set the state associated with all the optimizers using the state obtained from a previous call to get_state()

save (filename)
```

105
Parameters `filename` (str) – file name to save to

Save optimizer state to disk

load (filename)

Parameters `filename` (str) – file name to load from

Load optimizer state from disk

**AdagradRMSProp** *(optim_args)*

Wraps `pyro.optim.adagrad_rmsprop.AdagradRMSProp` with `PyroOptim`.

**ClippedAdam** *(optim_args)*

Wraps `pyro.optim.clipped_adam.ClippedAdam` with `PyroOptim`.

**class PyroLRScheduler** *(scheduler_constructor, optim_args, clip_args=None)*

Bases: `pyro.optim.optim.PyroOptim`

A wrapper for lr_scheduler objects that adjusts learning rates for dynamically generated parameters.

Parameters

- `scheduler_constructor` – a lr_scheduler
- `optim_args` – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries. must contain the key `optimizer` with pytorch optimizer value
- `clip_args` – a dictionary of clip_norm and/or clip_value args or a callable that returns such dictionaries.

Example:

```python
optimizer = torch.optim.SGD
scheduler = pyro.optim.ExponentialLR({'optimizer': optimizer, 'optim_args': {'lr →': 0.01}, 'gamma': 0.1})
svi = SVI(model, guide, scheduler, loss=TraceGraph_ELBO())
for i in range(epochs):
 for minibatch in DataLoader(dataset, batch_size):
 svi.step(minibatch)
 scheduler.step(epoch=i)
```

__call__ *(params, *args, **kwargs)*

step (*args, **kwargs)

Takes the same arguments as the PyTorch scheduler (optional epoch kwarg or loss in for `ReduceLROnPlateau`)

**class AdagradRMSProp** *(params, eta=1.0, delta=1e-16, t=0.1)*

Bases: `torch.optim.optimizer.Optimizer`

Implements a mash-up of the Adagrad algorithm and RMSProp. For the precise update equation see equations 10 and 11 in reference [1].


Arguments:

Parameters

- `params` – iterable of parameters to optimize or dicts defining parameter groups
• **eta** (*float*) – sets the step size scale (optional; default: 1.0)
• **t** (*float*) – t, optional): momentum parameter (optional; default: 0.1)
• **delta** (*float*) – modulates the exponent that controls how the step size scales (optional: default: 1e-16)

```python
def share_memory()
```

```python
def step(closure=None)
```

Performs a single optimization step.

**Parameters**

- **closure** – A (optional) closure that reevaluates the model and returns the loss.

```python
class ClippedAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, clip_norm=10.0, lrd=1.0)
```

Bases: `torch.optim.optimizer.Optimizer`

**Parameters**

- **params** – iterable of parameters to optimize or dicts defining parameter groups
- **lr** – learning rate (default: 1e-3)
- **betas** (*Tuple*) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
- **eps** – term added to the denominator to improve numerical stability (default: 1e-8)
- **weight_decay** – weight decay (L2 penalty) (default: 0)
- **clip_norm** – magnitude of norm to which gradients are clipped (default: 10.0)
- **lrd** – rate at which learning rate decays (default: 1.0)

Small modification to the Adam algorithm implemented in torch.optim.Adam to include gradient clipping and learning rate decay.

**Reference**


```python
def step(closure=None)
```

**Parameters**

- **closure** – An optional closure that reevaluates the model and returns the loss.

Performs a single optimization step.

## 8.2 PyTorch Optimizers

- **Adadelta** (*optim_args*, *clip_args*=None)
  Wraps `torch.optim.Adadelta` with **PyroOptim**.

- **Adagrad** (*optim_args*, *clip_args*=None)
  Wraps `torch.optim.Adagrad` with **PyroOptim**.

- **Adam** (*optim_args*, *clip_args*=None)
  Wraps `torch.optim.Adam` with **PyroOptim**.

- **AdamW** (*optim_args*, *clip_args*=None)
  Wraps `torch.optim.AdamW` with **PyroOptim**.

- **SparseAdam** (*optim_args*, *clip_args*=None)
  Wraps `torch.optim.SparseAdam` with **PyroOptim**.
Adamax (optim_args, clip_args=None)
  Wraps torch.optim.Adamax with PyroOptim.

ASGD (optim_args, clip_args=None)
  Wraps torch.optim.ASGD with PyroOptim.

SGD (optim_args, clip_args=None)
  Wraps torch.optim.SGD with PyroOptim.

Rprop (optim_args, clip_args=None)
  Wraps torch.optim.Rprop with PyroOptim.

RMSprop (optim_args, clip_args=None)
  Wraps torch.optim.RMSprop with PyroOptim.

LambdaLR (optim_args, clip_args=None)
  Wraps torch.optim.LambdaLR with PyroLRScheduler.

MultiplicativeLR (optim_args, clip_args=None)
  Wraps torch.optim.MultiplicativeLR with PyroLRScheduler.

StepLR (optim_args, clip_args=None)
  Wraps torch.optim.StepLR with PyroLRScheduler.

MultiStepLR (optim_args, clip_args=None)
  Wraps torch.optim.MultiStepLR with PyroLRScheduler.

ExponentialLR (optim_args, clip_args=None)
  Wraps torch.optim.ExponentialLR with PyroLRScheduler.

CosineAnnealingLR (optim_args, clip_args=None)
  Wraps torch.optim.CosineAnnealingLR with PyroLRScheduler.

ReduceLROnPlateau (optim_args, clip_args=None)
  Wraps torch.optim.ReduceLROnPlateau with PyroLRScheduler.

CyclicLR (optim_args, clip_args=None)
  Wraps torch.optim.CyclicLR with PyroLRScheduler.

CosineAnnealingWarmRestarts (optim_args, clip_args=None)
  Wraps torch.optim.CosineAnnealingWarmRestarts with PyroLRScheduler.

OneCycleLR (optim_args, clip_args=None)
  Wraps torch.optim.OneCycleLR with PyroLRScheduler.

8.3 Higher-Order Optimizers

class MultiOptimizer
  Bases: object

  Base class of optimizers that make use of higher-order derivatives.

  Higher-order optimizers generally use torch.autograd.grad() rather than torch.Tensor.
  backward(), and therefore require a different interface from usual Pyro and PyTorch optimizers. In this
  interface, the step() method inputs a loss tensor to be differentiated, and backpropagation is triggered one
  or more times inside the optimizer.

  Derived classes must implement step() to compute derivatives and update parameters in-place.

  Example:
```python
tr = poutine.trace(model).get_trace(*args, **kwargs)
loss = -tr.log_prob_sum()
params = {name: site['value'].unconstrained()
 for name, site in tr.nodes.items()
 if site['type'] == 'param'}
optim.step(loss, params)
```

**step** *(loss, params)*

Performs an in-place optimization step on parameters given a differentiable `loss` tensor.

Note that this detaches the updated tensors.

**Parameters**

- **loss** *(torch.Tensor)* – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.
- **params** *(dict)* – A dictionary mapping param name to unconstrained value as stored in the param store.

**get_step** *(loss, params)*

Computes an optimization step of parameters given a differentiable `loss` tensor, returning the updated values.

Note that this preserves derivatives on the updated tensors.

**Parameters**

- **loss** *(torch.Tensor)* – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.
- **params** *(dict)* – A dictionary mapping param name to unconstrained value as stored in the param store.

**Returns** A dictionary mapping param name to updated unconstrained value.

**Return type** *dict*

**class PyroMultiOptimizer**(optim)

* Bases: `pyro.optim.multi.MultiOptimizer`

Facade to wrap `PyroOptim` objects in a `MultiOptimizer` interface.

**step** *(loss, params)*

**class TorchMultiOptimizer**(optim_constructor, optim_args)

* Bases: `pyro.optim.multi.PyroMultiOptimizer`

Facade to wrap `Optimizer` objects in a `MultiOptimizer` interface.

**class MixedMultiOptimizer**(parts)

* Bases: `pyro.optim.multi.MultiOptimizer`

Container class to combine different `MultiOptimizer` instances for different parameters.

**Parameters**

- **parts** *(list)* – A list of `(names, optim)` pairs, where each `names` is a list of parameter names, and each `optim` is a `MultiOptimizer` or `PyroOptim` object to be used for the named parameters. Together the `names` should partition up all desired parameters to optimize.

**Raises** `ValueError` – if any name is optimized by multiple optimizers.

**step** *(loss, params)*

**get_step** *(loss, params)*
class Newton(trust_radii={})
  Bases: pyro.optim.multi.MultiOptimizer

  Implementation of MultiOptimizer that performs a Newton update on batched low-dimensional variables, optionally regularizing via a per-parameter trust_radius. See newton_step() for details.

  The result of get_step() will be differentiable, however the updated values from step() will be detached.

  Parameters trust_radii (dict) – a dict mapping parameter name to radius of trust region.
  Missing names will use unregularized Newton update, equivalent to infinite trust radius.

  get_step (loss, params)
Beneath the built-in inference algorithms, Pyro has a library of composable effect handlers for creating new inference algorithms and working with probabilistic programs. Pyro’s inference algorithms are all built by applying these handlers to stochastic functions.

### 9.1 Handlers

Poutine is a library of composable effect handlers for recording and modifying the behavior of Pyro programs. These lower-level ingredients simplify the implementation of new inference algorithms and behavior.

Handlers can be used as higher-order functions, decorators, or context managers to modify the behavior of functions or blocks of code:

For example, consider the following Pyro program:

```python
def model(x):
 s = pyro.param("s", torch.tensor(0.5))
 z = pyro.sample("z", dist.Normal(x, s))
 return z ** 2
```

We can mark sample sites as observed using `condition`, which returns a callable with the same input and output signatures as `model`:

```python
conditioned_model = poutine.condition(model, data={"z": 1.0})
```

We can also use handlers as decorators:

```python
@pyro.condition(data={"z": 1.0})
def model(x):
 s = pyro.param("s", torch.tensor(0.5))
 z = pyro.sample("z", dist.Normal(x, s))
 return z ** 2
```

Or as context managers:
Handler's compose freely:

```python
>>> conditioned_model = poutine.condition(model, data={"z": 1.0})
>>> traced_model = poutine.trace(conditioned_model)
```

Many inference algorithms or algorithmic components can be implemented in just a few lines of code:

```python
guide_tr = poutine.trace(guide).get_trace(...)
model_tr = poutine.trace(poutine.replay(conditioned_model, trace=guide_tr)).get_trace(...)
monte_carlo_elbo = model_tr.log_prob_sum() - guide_tr.log_prob_sum()
```

**block** *(fn=None, *args, **kwargs)*

Convenient wrapper of `BlockMessenger`

This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

1. `hide_fn(msg)` is True or (not `expose_fn(msg)`) is True
2. msg["name"] in `hide`
3. msg["type"] in `hide_types`
4. msg["name"] not in `expose` and msg["type"] not in `expose_types`

For example, suppose the stochastic function `fn` has two sample sites “a” and “b”. Then any effect outside of `BlockMessenger(fn, hide=['a'])` will not be applied to site “a” and will only see site “b”:

```python
>>> def fn():
... a = pyro.sample("a", dist.Normal(0., 1.))
... return pyro.sample("b", dist.Normal(a, 1.))
... >>> fn_inner = pyro.poutine.trace(fn)
... >>> fn_outer = pyro.poutine.trace(pyro.poutine.block(fn_inner, hide=['a']))
... >>> "a" in fn_inner
True
... >>> "a" in fn_outer
False
... >>> "b" in fn_inner
True
... >>> "b" in fn_outer
True
```

**Parameters**

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `hide_fn` – function that takes a site and returns True to hide the site or False/None to expose it. If specified, all other parameters are ignored. Only specify one of `hide_fn` or `expose_fn`, not both.
• **expose_fn** – function that takes a site and returns True to expose the site or False/None to hide it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.

• **hide_all** (bool) – hide all sites

• **expose_all** (bool) – expose all sites normally

• **hide** (list) – list of site names to hide

• **expose** (list) – list of site names to be exposed while all others hidden

• **hide_types** (list) – list of site types to be hidden

• **expose_types** (lits) – list of site types to be exposed while all others hidden

**Returns** stochastic function decorated with a `BlockMessenger`.

**broadcast** *(fn=None, *args, **kwargs)*

Convenient wrapper of `BroadcastMessenger`

Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing batch_shape must be broadcastable with the size of the plate contexts installed in the cond_indep_stack.

Notice how `model_automatic_broadcast` below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping plate contexts.

```python
>>> def model_broadcast_by_hand():
... with IndepMessenger("batch", 100, dim=-2):
... with IndepMessenger("components", 3, dim=-1):
... sample = pyro.sample("sample", dist.Bernoulli(torch.ones(3) * 0.5).expand_by(100))
... assert sample.shape == torch.Size((100, 3))
... return sample

>>> @poutine.broadcast
... def model_automatic_broadcast():
... with IndepMessenger("batch", 100, dim=-2):
... with IndepMessenger("components", 3, dim=-1):
... sample = pyro.sample("sample", dist.Bernoulli(torch.tensor(0.5))).expand_by(100)
... assert sample.shape == torch.Size((100, 3))
... return sample
```

**condition** *(fn=None, *args, **kwargs)*

Convenient wrapper of `ConditionMessenger`

Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

To observe a value for site `z`, we can write

```python
>>> conditioned_model = pyro.poutine.condition(model, data={"z": torch.tensor(1.)})
```
This is equivalent to adding \texttt{obs=value} as a keyword argument to \texttt{pyro.sample(“z”, \ldots)} in \texttt{model}.

\textbf{Parameters}

\begin{itemize}
\item \texttt{fn} – a stochastic function (callable containing Pyro primitive calls)
\item \texttt{data} – a dict or a \texttt{Trace}
\end{itemize}

\textbf{Returns} stochastic function decorated with a \texttt{ConditionMessenger}

\textbf{do} \begin{small}(fn=None, *args, **kwargs)\end{small}

Convenient wrapper of \texttt{DoMessenger}

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values as if they were hard-coded to those values and introduce fresh sample sites with the same names whose values do not propagate.

Composes freely with \texttt{condition()} to represent counterfactual distributions over potential outcomes. See Single World Intervention Graphs \cite{1} for additional details and theory.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

To intervene with a value for site \texttt{z}, we can write

```python
>>> intervened_model = pyro.poutine.do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing \texttt{z = pyro.sample("z", \ldots)} with \texttt{z = torch.tensor(1.)} and introducing a fresh sample site \texttt{pyro.sample("z", \ldots)} whose value is not used elsewhere.

\textbf{References}

\cite{1} \textit{Single World Intervention Graphs: A Primer}, Thomas Richardson, James Robins

\textbf{Parameters}

\begin{itemize}
\item \texttt{fn} – a stochastic function (callable containing Pyro primitive calls)
\item \texttt{data} – a dict mapping sample site names to interventions
\end{itemize}

\textbf{Returns} stochastic function decorated with a \texttt{DoMessenger}

\textbf{enum} \begin{small}(fn=None, *args, **kwargs)\end{small}

Convenient wrapper of \texttt{EnumMessenger}

Enumerates in parallel over discrete sample sites marked \texttt{infer=\{"enumerate": \"parallel\"\}}.

\textbf{Parameters} \texttt{first_available_dim (int)} – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer or None.

\textbf{escape} \begin{small}(fn=None, *args, **kwargs)\end{small}

Convenient wrapper of \texttt{EscapeMessenger}

Messenger that does a nonlocal exit by raising a util.NonlocalExit exception

\textbf{infer_config} \begin{small}(fn=None, *args, **kwargs)\end{small}

Convenient wrapper of \texttt{InferConfigMessenger}
Given a callable \( fn \) that contains Pyro primitive calls and a callable \( \text{config}_\text{fn} \) taking a trace site and returning a dictionary, updates the value of the infer kwarg at a sample site to \( \text{config}_\text{fn}(\text{site}) \).

**Parameters**
- \( \text{fn} \) – a stochastic function (callable containing Pyro primitive calls)
- \( \text{config}_\text{fn} \) – a callable taking a site and returning an infer dict

**Returns**

stochastic function decorated with \( \text{InferConfigMessenger} \)

lift \( (\text{fn=}\text{None}, *\text{args}, **\text{kwargs}) \)

Convenient wrapper of \( \text{LiftMessenger} \)

Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2

>>> lifted_model = pyro.poutine.lift(model, prior={"s": dist.Exponential(0.3)})
```

lift makes param statements behave like sample statements using the distributions in prior. In this example, site \( s \) will now behave as if it was replaced with \( s = \text{pyro.sample("s", dist.Exponential(0.3))} \):

```python
>>> tr = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> tr.nodes["s"]["type"] == "sample"
True
>>> tr2 = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
False
```

**Parameters**
- \( \text{fn} \) – function whose parameters will be lifted to random values
- \( \text{prior} \) – prior function in the form of a Distribution or a dict of stochastic fns

**Returns**

\( \text{fn} \) decorated with a \( \text{LiftMessenger} \)

markov \( (\text{fn=}\text{None}, \text{history=}1, \text{keep=}\text{False}, \text{dim=}\text{None}, \text{name=}\text{None}) \)

Markov dependency declaration.

This can be used in a variety of ways: - as a context manager - as a decorator for recursive functions - as an iterator for markov chains

**Parameters**
- \( \text{history} (\text{int}) \) – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to \( \text{pyro.plate} \).
- \( \text{keep} (\text{bool}) \) – If true, frames are replayable. This is important when branching: if \( \text{keep=}\text{True} \), neighboring branches at the same level can depend on each other; if \( \text{keep=}\text{False} \), neighboring branches are independent (conditioned on their share”
- \( \text{dim} (\text{int}) \) – An optional dimension to use for this independence index. Interface stub, behavior not yet implemented.
name (str) – An optional unique name to help inference algorithms match pyro.markov sites between models and guides. Interface stub, behavior not yet implemented.

mask (fn=None, *args, **kwargs)
Convenient wrapper of MaskMessenger

Given a stochastic function with some batched sample statements and masking tensor, mask out some of the sample statements elementwise.

Parameters

- fn – a stochastic function (callable containing Pyro primitive calls)
- mask (torch.BoolTensor) – a {0,1}-valued masking tensor (1 includes a site, 0 excludes a site)

Returns stochastic function decorated with a MaskMessenger

queue (fn=None, queue=None, max_tries=None, extend_fn=None, escape_fn=None, num_samples=None)
Used in sequential enumeration over discrete variables.

Given a stochastic function and a queue, return a return value from a complete trace in the queue.

Parameters

- fn – a stochastic function (callable containing Pyro primitive calls)
- queue – a queue data structure like multiprocessing.Queue to hold partial traces
- max_tries – maximum number of attempts to compute a single complete trace
- extend_fn – function (possibly stochastic) that takes a partial trace and a site, and returns a list of extended traces
- escape_fn – function (possibly stochastic) that takes a partial trace and a site, and returns a boolean value to decide whether to exit
- num_samples – optional number of extended traces for extend_fn to return

Returns stochastic function decorated with poutine logic

reparam (fn=None, *args, **kwargs)
Convenient wrapper of ReparamMessenger

Reparametrizes each affected sample site into one or more auxiliary sample sites followed by a deterministic transformation [1].

To specify reparameterizers, pass a config dict or callable to the constructor. See the pyro.infer.reparam module for available reparameterizers.


Parameters config (dict or callable) – Configuration, either a dict mapping site name to Reparameterizer, or a function mapping site to Reparameterizer or None.

replay (fn=None, *args, **kwargs)
Convenient wrapper of ReplayMessenger

Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace.

Consider the following Pyro program:
replay makes sample statements behave as if they had sampled the values at the corresponding sites in the trace:

```python
>>> old_trace = pyro.poutine.trace(model).get_trace(1.0)
>>> replayed_model = pyro.poutine.replay(model, trace=old_trace)
>>> bool(replayed_model(0.0) == old_trace.nodes["_RETURN"]['value'])
True
```

**Parameters**
- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `trace` – a `Trace` data structure to replay against
- `params` – dict of names of param sites and constrained values in fn to replay against

**Returns** a stochastic function decorated with a `ReplayMessenger`

### scale

Convenient wrapper of `ScaleMessenger`

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s), obs=1.0)
... return z ** 2
```

scale multiplicatively scales the log-probabilities of sample sites:

```python
>>> scaled_model = pyro.poutine.scale(model, scale=0.5)
>>> scaled_tr = pyro.poutine.trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = pyro.poutine.trace(model).get_trace(0.0)
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True
```

**Parameters**
- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `scale` – a positive scaling factor

**Returns** stochastic function decorated with a `ScaleMessenger`

### seed

Convenient wrapper of `SeedMessenger`

Handler to set the random number generator to a pre-defined state by setting its seed. This is the same as calling `pyro.set_rng_seed()` before the call to `fn`. This handler has no additional effect on primitive statements on the standard Pyro backend, but it might intercept `pyro.sample` calls in other backends. e.g. the NumPy backend.

9.1. Handlers
Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls).
- **rng_seed**(int) – rng seed.

**trace**(fn=None, *args, **kwargs)

Convenient wrapper of *TraceMessenger*

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

We can record its execution using `trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

**uncondition**(fn=None, *args, **kwargs)

Convenient wrapper of *UnconditionMessenger*

Messenger to force the value of observed nodes to be sampled from their distribution, ignoring observations.

**config_enumerate**(guide=None, default='parallel', expand=False, num_samples=None, tmc='diagonal')

Configures enumeration for all relevant sites in a guide. This is mainly used in conjunction with *TraceEnum_ELBO.*

When configuring for exhaustive enumeration of discrete variables, this configures all sample sites whose distribution satisfies .has_enumerate_support == True. When configuring for local parallel Monte Carlo sampling via default="parallel", num_samples=n, this configures all sample sites. This does not overwrite existing annotations infer={"enumerate": ...}).

This can be used as either a function:

```python
guide = config_enumerate(guide)
```

or as a decorator:

```python
@config_enumerate
def guided(*args, **kwargs):
...
```
@config_enumerate(default="sequential", expand=True)
def guide2(*args, **kwargs):
    ...

Parameters

- **guide (callable)** – a pyro model that will be used as a guide in SVI.
- **default (str)** – Which enumerate strategy to use, one of “sequential”, “parallel”, or None. Defaults to “parallel”.
- **expand (bool)** – Whether to expand enumerated sample values. See `enumerate_support()` for details. This only applies to exhaustive enumeration, where `num_samples=None`. If `num_samples` is not None, then this samples will always be expanded.
- **num_samples (int or None)** – if not None, use local Monte Carlo sampling rather than exhaustive enumeration. This makes sense for both continuous and discrete distributions.
- **tmc (string or None)** – “mixture” or “diagonal” strategies to use in Tensor Monte Carlo

Returns an annotated guide

Return type callable

9.2 Trace

class Trace(graph_type='flat')

Bases: object

Graph data structure denoting the relationships amongst different pyro primitives in the execution trace.

An execution trace of a Pyro program is a record of every call to `pyro.sample()` and `pyro.param()` in a single execution of that program. Traces are directed graphs whose nodes represent primitive calls or input/output, and whose edges represent conditional dependence relationships between those primitive calls. They are created and populated by `poutine.trace`.

Each node (or site) in a trace contains the name, input and output value of the site, as well as additional metadata added by inference algorithms or user annotation. In the case of `pyro.sample`, the trace also includes the stochastic function at the site, and any observed data added by users.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

We can record its execution using `pyro.poutine.trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```
We can also inspect or manipulate individual nodes in the trace. \texttt{trace.nodes} contains a collections.OrderedDict of site names and metadata corresponding to \texttt{x}, \texttt{s}, \texttt{z}, and the return value:

\begin{verbatim}
>>> list(name for name in trace.nodes.keys())  # doctest: +SKIP
["_INPUT", "s", "z", "_RETURN"]
\end{verbatim}

Values of \texttt{trace.nodes} are dictionaries of node metadata:

\begin{verbatim}
>>> trace.nodes["z"]  # doctest: +SKIP
{'type': 'sample', 'name': 'z', 'is_observed': False, 'fn': Normal(), 'value': tensor(0.6480), 'args': {}, 'kwargs': {}, 'infer': {}, 'scale': 1.0, 'cond_indep_stack': (), 'done': True, 'stop': False, 'continuation': None}
\end{verbatim}

'\texttt{infer}' is a dictionary of user- or algorithm-specified metadata. '\texttt{args}' and '\texttt{kwargs}' are the arguments passed via \texttt{pyro.sample} to \texttt{fn.__call__} or \texttt{fn.log_prob}. '\texttt{scale}' is used to scale the log-probability of the site when computing the log-joint. '\texttt{cond_indep_stack}' contains data structures corresponding to \texttt{pyro.plate} contexts appearing in the execution. '\texttt{done}', '\texttt{stop}', and '\texttt{continuation}' are only used by Pyro's internals.

**Parameters**

- **graph_type** (*string*) – string specifying the kind of trace graph to construct

**Methods**

- **add_edge** (*site1*, *site2*)
- **add_node** (*site_name**, **kwargs*)
  - **Parameters**
  - **site_name** (*string*) – the name of the site to be added

  Adds a site to the trace.

  Raises an error when attempting to add a duplicate node instead of silently overwriting.

- **compute_log_prob** (*site_filter=<function Trace.<lambda>>*)
  - Computes the site-wise log probabilities of the trace. Each log\_prob has shape equal to the corresponding batch\_shape. Each log\_prob\_sum is a scalar. Both computations are memoized.

- **compute_score_parts**()
  - Computes the batched local score parts at each site of the trace. Each log\_prob has shape equal to the corresponding batch\_shape. Each log\_prob\_sum is a scalar. All computations are memoized.

- **copy**()
  - Makes a shallow copy of self with nodes and edges preserved.

- **detach_**()
  - Detach values (in-place) at each sample site of the trace.

- **edges**

- **format_shapes** (*title='Trace Shapes:', last_site=None*)
  - Returns a string showing a table of the shapes of all sites in the trace.

- **iter_stochastic_nodes**()
  - Returns an iterator over stochastic nodes in the trace.

- **log_prob_sum** (*site_filter=<function Trace.<lambda>>*)
  - Computes the site-wise log probabilities of the trace. Each log\_prob has shape equal to the corresponding batch\_shape. Each log\_prob\_sum is a scalar. The computation of log\_prob\_sum is memoized.

  - **Returns**
  - total log probability.

  - **Return type** *torch.Tensor*

- **nonreparam_stochastic_nodes**
**Returns** a list of names of sample sites whose stochastic functions are not reparameterizable primitive distributions

**observation_nodes**

**Returns** a list of names of observe sites

**pack_tensors** *(plate_to_symbol=None)*

Computes packed representations of tensors in the trace. This should be called after `compute_log_prob()` or `compute_score_parts()`.

**param_nodes**

**Returns** a list of names of param sites

**predecessors** *(site_name)*

**remove_node** *(site_name)*

**reparameterized_nodes**

**Returns** a list of names of sample sites whose stochastic functions are reparameterizable primitive distributions

**stochastic_nodes**

**Returns** a list of names of sample sites

**successors** *(site_name)*

**symbolize_dims** *(plate_to_symbol=None)*

Assign unique symbols to all tensor dimensions.

**topological_sort** *(reverse=False)*

Return a list of nodes (site names) in topologically sorted order.

**Parameters**

**reverse** *(bool)* – Return the list in reverse order.

**Returns** list of topologically sorted nodes (site names).

### 9.3 Runtime

**exception NonlocalExit** *(site, *args, **kwargs)*

**Bases:** Exception

Exception for exiting nonlocally from poutine execution.

Used by poutine.EscapeMessenger to return site information.

**reset_stack** ()

Reset the state of the frames remaining in the stack. Necessary for multiple re-executions in poutine.queue.

**am_i_wrapped** ()

Checks whether the current computation is wrapped in a poutine. :returns: bool

**apply_stack** *(initial_msg)*

Execute the effect stack at a single site according to the following scheme:

1. For each Messenger in the stack from bottom to top, execute Messenger._process_message with the message; if the message field “stop” is True, stop; otherwise, continue

2. Apply default behavior *(default_process_message)* to finish remaining site execution
3. For each Messenger in the stack from top to bottom, execute _postprocess_message to update
the message and internal messenger state with the site results

4. If the message field “continuation” is not None, call it with the message

Parameters initial_msg (dict) – the starting version of the trace site
Returns None

default_process_message (msg)
Default method for processing messages in inference.
Parameters msg – a message to be processed
Returns None

effective (fn=None, type=None)
Parameters
  • fn – function or callable that performs an effectful computation
  • type (str) – the type label of the operation, e.g. “sample”

Wrapper for calling apply_stack () to apply any active effects.

9.4 Utilities

all_escape (trace, msg)
Parameters
  • trace – a partial trace
  • msg – the message at a Pyro primitive site

Returns boolean decision value
Utility function that checks if a site is not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for approximately
integrating out variables for variance reduction.

discrete_escape (trace, msg)
Parameters
  • trace – a partial trace
  • msg – the message at a Pyro primitive site

Returns boolean decision value
Utility function that checks if a sample site is discrete and not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for integrating out
discrete variables for variance reduction.

enable_validation (is_validate)
enum_extend (trace, msg, num_samples=None)
Parameters
  • trace – a partial trace
• **msg** – the message at a Pyro primitive site
• **num_samples** – maximum number of extended traces to return.

**Returns** a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are enumerated from the support of the input site’s distribution.

Used for exact inference and integrating out discrete variables.

*is_validation_enabled*

*mc_extend* (*trace*, *msg*, *num_samples=None*)

**Parameters**
• **trace** – a partial trace
• **msg** – the message at a Pyro primitive site
• **num_samples** – maximum number of extended traces to return.

**Returns** a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are sampled from the input site’s function.

Used for Monte Carlo marginalization of individual sample sites.

*prune_subsample_sites* (*trace*)

Copies and removes all subsample sites from a trace.

*site_is_subsample* (*site*)

Determines whether a trace site originated from a subsample statement inside an *plate*.

## 9.5 Messengers

Messenger objects contain the implementations of the effects exposed by handlers. Advanced users may modify the implementations of messengers behind existing handlers or write new messengers that implement new effects and compose correctly with the rest of the library.

### 9.5.1 Messenger

**class** **Messenger**

**Bases:** *object*

Context manager class that modifies behavior and adds side effects to stochastic functions i.e. callables containing Pyro primitive statements.

This is the base Messenger class. It implements the default behavior for all Pyro primitives, so that the joint distribution induced by a stochastic function `fn` is identical to the joint distribution induced by `Messenger() (fn)`.

Class of transformers for messages passed during inference. Most inference operations are implemented in subclasses of this.

**classmethod** **register** (*fn=None*, *type=None*, *post=None*)

**Parameters**
• **fn** – function implementing operation
• **type** (*str*) – name of the operation (also passed to `effectful()`)

• **post** (*bool*) – if True, use this operation as postprocess

Dynamically add operations to an effect. Useful for generating wrappers for libraries.

Example:

```python
@SomeMessengerClass.register
def some_function(msg):
 ...do_something...
 return msg
```

### classmethod unregister (*fn=None*, *type=None*)

Parameters

• **fn** – function implementing operation

• **type** (*str*) – name of the operation (also passed to `effectful()`)

Dynamically remove operations from an effect. Useful for removing wrappers from libraries.

Example:

```python
SomeMessengerClass.unregister(some_function, "name")
```

### 9.5.2 BlockMessenger

**class** BlockMessenger (*hide_fn=None*, *expose_fn=None*, *hide_all=True*, *expose_all=False*, *hide=None*, *expose=None*, *hide_types=None*, *expose_types=None*)

**Bases:** pyro.poutine.messenger.Messenger

This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

0. `hide_fn(msg)` is True or (not `expose_fn(msg)`) is True
1. `msg["name"]` in `hide`
2. `msg["type"]` in `hide_types`
3. `msg["name"]` not in `expose` and `msg["type"]` not in `expose_types`
4. `hide`, `hide_types`, and `expose_types` are all None

For example, suppose the stochastic function `fn` has two sample sites “a” and “b”. Then any effect outside of `BlockMessenger(fn, hide=["a"])` will not be applied to site “a” and will only see site “b”:

```python
>>> def fn():
... a = pyro.sample("a", dist.Normal(0., 1.))
... return pyro.sample("b", dist.Normal(a, 1.))
>>> fn_inner = pyro.poutine.trace(fn)
>>> fn_outer = pyro.poutine.trace(pyro.poutine.block(fn_inner, hide=["a"]))
>>> trace_inner = fn_inner.get_trace()
>>> trace_outer = fn_outer.get_trace()
>>> "a" in trace_inner
True
>>> "a" in trace_outer
False
>>> "b" in trace_inner
```

(continues on next page)
Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **hide_fn** – function that takes a site and returns True to hide the site or False/None to expose it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.
- **expose_fn** – function that takes a site and returns True to expose the site or False/None to hide it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.
- **hide_all** *(bool)* – hide all sites
- **expose_all** *(bool)* – expose all sites normally
- **hide** *(list)* – list of site names to hide
- **expose** *(list)* – list of site names to be exposed while all others hidden
- **hide_types** *(list)* – list of site types to be hidden
- **expose_types** *(list)* – list of site types to be exposed while all others hidden

Returns: stochastic function decorated with a `BlockMessenger`

### 9.5.3 BroadcastMessenger

class BroadcastMessenger

**Bases:** `pyro.poutine.messenger.Messenger`

Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing `batch_shape` must be broadcastable with the size of the `plate` contexts installed in the `cond_indep_stack`.

Notice how `model_automatic_broadcast` below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping `plate` contexts.

```python
>>> def model_broadcast_by_hand():
... with IndepMessenger("batch", 100, dim=-2):
... with IndepMessenger("components", 3, dim=-1):
... sample = pyro.sample("sample", dist.Bernoulli(torch.ones(3) * 0.5)
... .expand_by(100))
... assert sample.shape == torch.Size((100, 3))
... return sample

>>> @poutine.broadcast
... def model_automatic_broadcast():
... with IndepMessenger("batch", 100, dim=-2):
... with IndepMessenger("components", 3, dim=-1):
... sample = pyro.sample("sample", dist.Bernoulli(torch.tensor(0.5))))
... assert sample.shape == torch.Size((100, 3))
... return sample
```
# 9.5.4 ConditionMessenger

**class** ConditionMessenger(*data*)

**Bases:** pyro.poutine.messenger.Messenger

Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

To observe a value for site $z$, we can write

```python
>>> conditioned_model = pyro.poutine.condition(model, data={"z": torch.tensor(1.)})
```

This is equivalent to adding `obs=value` as a keyword argument to `pyro.sample("z", ...)` in `model`.

**Parameters**
- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `data` – a dict or a Trace

**Returns** stochastic function decorated with a ConditionMessenger

# 9.5.5 DoMessenger

**class** DoMessenger(*data*)

**Bases:** pyro.poutine.messenger.Messenger

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values as if they were hard-coded to those values and introduce fresh sample sites with the same names whose values do not propagate.

Composes freely with `condition()` to represent counterfactual distributions over potential outcomes. See Single World Intervention Graphs [1] for additional details and theory.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

To intervene with a value for site $z$, we can write

```python
>>> intervened_model = pyro.poutine.do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing `z = pyro.sample("z", ...)` with `z = torch.tensor(1.)` and introducing a fresh sample site `pyro.sample("z", ...)` whose value is not used elsewhere.

**References**

[1] Single World Intervention Graphs: A Primer, Thomas Richardson, James Robins
Parameters

• fn – a stochastic function (callable containing Pyro primitive calls)
• data – a dict mapping sample site names to interventions

Returns stochastic function decorated with a `DoMessenger`

9.5.6 EnumMessenger
class EnumMessenger (first_available_dim=None)
    Bases: pyro.poutine.messenger.Messenger
    Enumerates in parallel over discrete sample sites marked infer="enumerate": "parallel".
    Parameters first_available_dim (int) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer or None.

enumerate_site(msg)

9.5.7 EscapeMessenger
class EscapeMessenger (escape_fn)
    Bases: pyro.poutine.messenger.Messenger
    Messenger that does a nonlocal exit by raising a util.NonlocalExit exception

9.5.8 IndepMessenger
class CondIndepStackFrame
    Bases: pyro.poutine.indep_messenger.CondIndepStackFrame
    vectorized
class IndepMessenger (name=None, size=None, dim=None, device=None)
    Bases: pyro.poutine.messenger.Messenger
    This messenger keeps track of stack of independence information declared by nested plate contexts. This information is stored in a cond_indep_stack at each sample/observe site for consumption by TraceMessenger.
    Example:

```
x_axis = IndepMessenger('outer', 320, dim=-1)
y_axis = IndepMessenger('inner', 200, dim=-2)
with x_axis:
 x_noise = sample("x_noise", dist.Normal(loc, scale).expand_by([320]))
with y_axis:
 y_noise = sample("y_noise", dist.Normal(loc, scale).expand_by([200, 1]))
with x_axis, y_axis:
 xy_noise = sample("xy_noise", dist.Normal(loc, scale).expand_by([200, 320]))
```

indices
next_context ()
    Increments the counter.
9.5.9 InferConfigMessenger

class InferConfigMessenger(config_fn)
    Bases: pyro.poutine.messenger.Messenger

    Given a callable fn that contains Pyro primitive calls and a callable config_fn taking a trace site and returning a
dictionary, updates the value of the infer kwarg at a sample site to config_fn(site).

    Parameters
    - fn – a stochastic function (callable containing Pyro primitive calls)
    - config_fn – a callable taking a site and returning an infer dict

    Returns stochastic function decorated with InferConfigMessenger

9.5.10 LiftMessenger

class LiftMessenger(prior)
    Bases: pyro.poutine.messenger.Messenger

    Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param
calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.

    Consider the following Pyro program:

        >>> def model(x):
        ...     s = pyro.param("s", torch.tensor(0.5))
        ...     z = pyro.sample("z", dist.Normal(x, s))
        ...     return z ** 2
        >>> lifted_model = pyro.poutine.lift(model, prior={"s": dist.Exponential(0.3)})

    lift makes param statements behave like sample statements using the distributions in prior. In this exam-
ple, site s will now behave as if it was replaced with s = pyro.sample("s", dist.Exponential(0.3)):

        >>> tr = pyro.poutine.trace(lifted_model).get_trace(0.0)
        >>> tr.nodes["s"]["type"] == "sample"
        True
        >>> tr2 = pyro.poutine.trace(lifted_model).get_trace(0.0)
        >>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
        False

    Parameters
    - fn – function whose parameters will be lifted to random values
    - prior – prior function in the form of a Distribution or a dict of stochastic fns

    Returns fn decorated with a LiftMessenger

9.5.11 MarkovMessenger

class MarkovMessenger(history=1, keep=False, dim=None, name=None)
    Bases: pyro.poutine.reentrant_messenger.ReentrantMessenger

    Markov dependency declaration.
    This is a statistical equivalent of a memory management arena.
Parameters

- **history (int)** – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.
- **keep (bool)** – If true, frames are replayable. This is important when branching: if `keep=True`, neighboring branches at the same level can depend on each other; if `keep=False`, neighboring branches are independent (conditioned on their shared ancestors).
- **dim (int)** – An optional dimension to use for this independence index. Interface stub, behavior not yet implemented.
- **name (str)** – An optional unique name to help inference algorithms match `pyro.markov()` sites between models and guides. Interface stub, behavior not yet implemented.

```python
generator (iterable)
```

### 9.5.12 MaskMessenger

**class MaskMessenger (mask)**

```python
Bases: pyro.poutine.messenger.Messenger
```

Given a stochastic function with some batched sample statements and masking tensor, mask out some of the sample statements elementwise.

**Parameters**

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **mask** (`torch.BoolTensor`) – a `{0,1}`-valued masking tensor (1 includes a site, 0 excludes a site)

**Returns** stochastic function decorated with a `MaskMessenger`

### 9.5.13 PlateMessenger

**class PlateMessenger (name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)**

```python
Bases: pyro.poutine.subsample_messenger.SubsampleMessenger
```

Swiss army knife of broadcasting amazingness: combines shape inference, independence annotation, and subsampling

### 9.5.14 ReentrantMessenger

**class ReentrantMessenger**

```python
Bases: pyro.poutine.messenger.Messenger
```

### 9.5.15 ReparamMessenger

**class ReparamMessenger (config)**

```python
Bases: pyro.poutine.messenger.Messenger
```

Reparametrizes each affected sample site into one or more auxiliary sample sites followed by a deterministic transformation [1].
To specify reparameterizers, pass a `config` dict or callable to the constructor. See the `pyro.infer.reparam` module for available reparameterizers.


Parameters `config` *(dict or callable)* – Configuration, either a dict mapping site name to Reparameterizer, or a function mapping site to Reparameterizer or None.

### 9.5.16 ReplayMessenger

**class** `ReplayMessenger` *(trace=None, params=None)*  
**Bases:** `pyro.poutine.messenger.Messenger`

Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

`replay` makes `sample` statements behave as if they had sampled the values at the corresponding sites in the trace:

```python
>>> old_trace = pyro.poutine.trace(model).get_trace(1.0)
>>> replayed_model = pyro.poutine.replay(model, trace=old_trace)
>>> bool(replayed_model(0.0) == old_trace.nodes["RETURN"]['value'])
True
```

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `trace` – a `Trace` data structure to replay against
- `params` – dict of names of param sites and constrained values in `fn` to replay against

**Returns** a stochastic function decorated with a `ReplayMessenger`

### 9.5.17 ScaleMessenger

**class** `ScaleMessenger` *(scale)*  
**Bases:** `pyro.poutine.messenger.Messenger`

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s), obs=1.0)
... return z ** 2
```

`scale` multiplicatively scales the log-probabilities of sample sites:
Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `scale` – a positive scaling factor

Returns stochastic function decorated with a `ScaleMessenger`

9.5.18 SeedMessenger

class SeedMessenger(rng_seed)
Bases: pyro.poutine.messenger.Messenger

Handler to set the random number generator to a pre-defined state by setting its seed. This is the same as calling `pyro.set_rng_seed()` before the call to `fn`. This handler has no additional effect on primitive statements on the standard Pyro backend, but it might intercept `pyro.sample` calls in other backends, e.g. the NumPy backend.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls).
- `rng_seed` (int) – rng seed.

9.5.19 SubsampleMessenger

class SubsampleMessenger(name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)
Bases: pyro.poutine.indep_messenger.IndepMessenger

Extension of IndepMessenger that includes subsampling.

9.5.20 TraceMessenger

class TraceHandler(msngr, fn)
Bases: object

Execution trace poutine.

A TraceHandler records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)

We can also use this for visualization.

get_trace(*args, **kwargs)

Returns data structure

Return type `pyro.poutine.Trace`
Helper method for a very common use case. Calls this poutine and returns its trace instead of the function’s return value.

```
trace
```

class TraceMessenger(graph_type=None, param_only=None)
Bases: pyro.poutine.messenger.Messenger

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

We can record its execution using `trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_˓nodes]
```

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `graph_type` – string that specifies the kind of graph to construct
- `param_only` – if true, only records params and not samples

Returns stochastic function decorated with a `TraceMessenger`

```
get_trace()
```

Returns data structure

Return type `pyro.poutine.Trace`

Helper method for a very common use case. Returns a shallow copy of `self.trace`.

```
identify_dense_edges(trace)
```

Modifies a trace in-place by adding all edges based on the `cond_indep_stack` information stored at each site.

### 9.5.21 UnconditionMessenger

```
class UnconditionMessenger
Bases: pyro.poutine.messenger.Messenger
```

Messenger to force the value of observed nodes to be sampled from their distribution, ignoring observations.
The `pyro.ops` module implements tensor utilities that are mostly independent of the rest of Pyro.

### 10.1 Utilities for HMC

**class** `DualAveraging`(*prox_center=0, t0=10, kappa=0.75, gamma=0.05*)

**Bases:** `object`

Dual Averaging is a scheme to solve convex optimization problems. It belongs to a class of subgradient methods which uses subgradients to update parameters (in primal space) of a model. Under some conditions, the averages of generated parameters during the scheme are guaranteed to converge to an optimal value. However, a counter-intuitive aspect of traditional subgradient methods is “new subgradients enter the model with decreasing weights” (see [1]). Dual Averaging scheme solves that phenomenon by updating parameters using weights equally for subgradients (which lie in a dual space), hence we have the name “dual averaging”.

This class implements a dual averaging scheme which is adapted for Markov chain Monte Carlo (MCMC) algorithms. To be more precise, we will replace subgradients by some statistics calculated during an MCMC trajectory. In addition, introducing some free parameters such as `t0` and `kappa` is helpful and still guarantees the convergence of the scheme.

**References**


**Parameters**

- **prox_center** (*float*) – A “prox-center” parameter introduced in [1] which pulls the primal sequence towards it.

- **t0** (*float*) – A free parameter introduced in [2] that stabilizes the initial steps of the scheme.
• **kappa** *(float)* – A free parameter introduced in [2] that controls the weights of steps of the scheme. For a small \( \kappa \), the scheme will quickly forget states from early steps. This should be a number in \((0.5, 1]\).

• **gamma** *(float)* – A free parameter which controls the speed of the convergence of the scheme.

```
reset()
```

```
step(g)
```

Updates states of the scheme given a new statistic/subgradient \( g \).

Parameters
---

\( g \) *(float)* – A statistic calculated during an MCMC trajectory or subgradient.

```
get_state()
```

Returns the latest \( x_t \) and average of \( \{x_i\}^t_{i=1} \) in primal space.

```
velocity_verlet(z, r, potential_fn, inverse_mass_matrix, step_size, num_steps=1, z_grads=None)
```

Second order symplectic integrator that uses the velocity verlet algorithm.

Parameters
---

• \( z \) *(dict)* – dictionary of sample site names and their current values (type \( \text{Tensor} \)).

• \( r \) *(dict)* – dictionary of sample site names and corresponding momenta (type \( \text{Tensor} \)).

• \( \text{potential_fn} \) *(callable)* – function that returns potential energy given \( z \) for each sample site. The negative gradient of the function with respect to \( z \) determines the rate of change of the corresponding sites’ momenta \( r \).

• \( \text{inverse_mass_matrix} \) *(torch.Tensor)* – a tensor \( M^{-1} \) which is used to calculate kinetic energy: \( E_{\text{kinetic}} = \frac{1}{2} z^T M^{-1} z \). Here \( M \) can be a 1D tensor (diagonal matrix) or a 2D tensor (dense matrix).

• \( \text{step_size} \) *(float)* – step size for each time step iteration.

• \( \text{num_steps} \) *(int)* – number of discrete time steps over which to integrate.

• \( z\_grads \) *(torch.Tensor)* – optional gradients of potential energy at current \( z \).

Return tuple \( (z\_next, r\_next, z\_grads, \text{potential_energy}) \) next position and momenta, together with the potential energy and its gradient w.r.t. \( z\_next \).

```
potential_grad(potential_fn, z)
```

Gradient of \( \text{potential_fn} \) w.r.t. parameters \( z \).

Parameters
---

• \( \text{potential_fn} \) – python callable that takes in a dictionary of parameters and returns the potential energy.

• \( z \) *(dict)* – dictionary of parameter values keyed by site name.

Returns tuple of \( (z\_grads, \text{potential_energy}) \), where \( z\_grads \) is a dictionary with the same keys as \( z \) containing gradients and \( \text{potential_energy} \) is a torch scalar.

```
class WelfordCovariance(diagonal=True)
```

Bases: \texttt{object}

Implements Welford’s online scheme for estimating (co)variance (see [1]). Useful for adapting diagonal and dense mass structures for HMC.

References
---

[1] *The Art of Computer Programming*, Donald E. Knuth
10.2 Newton Optimizers

**newton_step** (*loss, x, trust_radius=None*)

Performs a Newton update step to minimize loss on a batch of variables, optionally constraining to a trust region [1].

This is especially useful because the final solution of newton iteration is differentiable wrt the inputs, even when all but the final $x$ is detached, due to this method’s quadratic convergence [2]. $loss$ must be twice-differentiable as a function of $x$. If $loss$ is $2+d$-times differentiable, then the return value of this function is $d$-times differentiable.

When $loss$ is interpreted as a negative log probability density, then the return values $mode, cov$ of this function can be used to construct a Laplace approximation $\text{MultivariateNormal}(mode, cov)$.

---

**Warning:** Take care to detach the result of this function when used in an optimization loop. If you forget to detach the result of this function during optimization, then backprop will propagate through the entire iteration process, and worse will compute two extra derivatives for each step.

---

Example use inside a loop:

```python
x = torch.zeros(1000, 2) # arbitrary initial value
for step in range(100):
 x = x.detach() # block gradients through previous steps
 x.requires_grad = True # ensure loss is differentiable wrt x
 loss = my_loss_function(x)
 x = newton_step(loss, x, trust_radius=1.0)
the final x is still differentiable
```


**Parameters**

- $loss$ (*torch.Tensor*) – A scalar function of $x$ to be minimized.
- $x$ (*torch.Tensor*) – A dependent variable of shape $(N, D)$ where $N$ is the batch size and $D$ is a small number.
- $trust\_radius$ (*float*) – An optional trust region trust\_radius. The updated value of this function will be within trust\_radius of the input $x$.

**Returns** A pair $(mode, cov)$ where $mode$ is an updated tensor of the same shape as the original value $x$, and $cov$ is an estimate of the covariance $DxD$ matrix with $cov.shape == x.shape[:-1] + (D,D)$.

**Return type** tuple
**newton_step_1d** *(loss, x, trust_radius=None)*

Performs a Newton update step to minimize loss on a batch of 1-dimensional variables, optionally regularizing to constrain to a trust region.

See *newton_step()* for details.

**Parameters**

- **loss** *(torch.Tensor)* – A scalar function of \( x \) to be minimized.
- **x** *(torch.Tensor)* – A dependent variable with rightmost size of 1.
- **trust_radius** *(float)* – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

**Returns** A pair \((\text{mode}, \text{cov})\) where \( \text{mode} \) is an updated tensor of the same shape as the original value \( x \), and \( \text{cov} \) is an estimate of the covariance 1x1 matrix with \( \text{cov.shape} == x. \text{shape}[:-1] + (1,1) \).

**Return type** tuple

**newton_step_2d** *(loss, x, trust_radius=None)*

Performs a Newton update step to minimize loss on a batch of 2-dimensional variables, optionally regularizing to constrain to a trust region.

See *newton_step()* for details.

**Parameters**

- **loss** *(torch.Tensor)* – A scalar function of \( x \) to be minimized.
- **x** *(torch.Tensor)* – A dependent variable with rightmost size of 2.
- **trust_radius** *(float)* – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

**Returns** A pair \((\text{mode}, \text{cov})\) where \( \text{mode} \) is an updated tensor of the same shape as the original value \( x \), and \( \text{cov} \) is an estimate of the covariance 2x2 matrix with \( \text{cov.shape} == x. \text{shape}[:-1] + (2,2) \).

**Return type** tuple

**newton_step_3d** *(loss, x, trust_radius=None)*

Performs a Newton update step to minimize loss on a batch of 3-dimensional variables, optionally regularizing to constrain to a trust region.

See *newton_step()* for details.

**Parameters**

- **loss** *(torch.Tensor)* – A scalar function of \( x \) to be minimized.
- **x** *(torch.Tensor)* – A dependent variable with rightmost size of 2.
- **trust_radius** *(float)* – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

**Returns** A pair \((\text{mode}, \text{cov})\) where \( \text{mode} \) is an updated tensor of the same shape as the original value \( x \), and \( \text{cov} \) is an estimate of the covariance 3x3 matrix with \( \text{cov.shape} == x. \text{shape}[:-1] + (3,3) \).

**Return type** tuple
**10.3 Tensor Utilities**

**block_diag_embed**(mat)
Takes a tensor of shape (..., B, M, N) and returns a block diagonal tensor of shape (..., B x M, B x N).

- **Parameters**
  - mat (torch.Tensor) – an input tensor with 3 or more dimensions
- **Returns** torch.Tensor a block diagonal tensor with dimension m.dim() - 1

**block_diagonal**(mat, block_size)
Takes a block diagonal tensor of shape (..., B x M, B x N) and returns a tensor of shape (..., B, M, N).

- **Parameters**
  - mat (torch.Tensor) – an input tensor with 2 or more dimensions
  - block_size (int) – the number of blocks B.
- **Returns** torch.Tensor a tensor with dimension mat.dim() + 1

**convolve**(signal, kernel, mode='full')
Computes the 1-d convolution of signal by kernel using FFTs. The two arguments should have the same rightmost dim, but may otherwise be arbitrarily broadcastable.

- **Parameters**
  - signal (torch.Tensor) – A signal to convolve.
  - kernel (torch.Tensor) – A convolution kernel.
- **Returns** A tensor with broadcasted shape. Letting m = signal.size(-1) and n = kernel.size(-1), the rightmost size of the result will be: m + n - 1 if mode is ‘full’; max(m, n) - min(m, n) + 1 if mode is ‘valid’; or max(m, n) if mode is ‘same’.

**repeated_matmul**(M, n)
Takes a batch of matrices M as input and returns the stacked result of doing the n-many matrix multiplications M, M², ..., Mⁿ. Parallel cost is logarithmic in n.

- **Parameters**
  - M (torch.Tensor) – A batch of square tensors of shape (..., N, N).
  - n (int) – The order of the largest product Mⁿ
- **Returns** torch.Tensor A batch of square tensors of shape (n, ..., N, N)

**dct**(x)
Discrete cosine transform of type II, scaled to be orthonormal.

This is the inverse of idct_ii(), and is equivalent to scipy.fftpack.dct() with norm="ortho".

- **Parameters** x (Tensor) –
- **Return type** Tensor

**idct**(x)
Inverse discrete cosine transform of type II, scaled to be orthonormal.

This is the inverse of dct_ii(), and is equivalent to scipy.fftpack.idct() with norm="ortho".

- **Parameters** x (Tensor) – The input signal
- **Return type** Tensor
10.4 Tensor Indexing

vindex(tensor, args)

Vectorized advanced indexing with broadcasting semantics.

See also the convenience wrapper Vindex.

This is useful for writing indexing code that is compatible with batching and enumeration, especially for selecting mixture components with discrete random variables.

For example suppose x is a parameter with x.dim() == 3 and we wish to generalize the expression x[i, :, j] from integer i, j to tensors i, j with batch dims and enum dims (but no event dims). Then we can write the generalize version using Vindex:

```python
xij = Vindex(x)[i, :, j]
batch_shape = broadcast_shape(i.shape, j.shape)
event_shape = (x.size(1),)
assert xij.shape == batch_shape + event_shape
```

To handle the case when x may also contain batch dimensions (e.g. if x was sampled in a plated context as when using vectorized particles), vindex() uses the special convention that Ellipsis denotes batch dimensions (hence ... can appear only on the left, never in the middle or in the right). Suppose x has event dim 3. Then we can write:

```python
old_batch_shape = x.shape[:-3]
old_event_shape = x.shape[-3:]
xij = Vindex(x)[..., i, :, j] # The ... denotes unknown batch shape.
new_batch_shape = broadcast_shape(old_batch_shape, i.shape, j.shape)
new_event_shape = (x.size(1),)
assert xij.shape == new_batch_shape + new_event_shape
```

Note that this special handling of Ellipsis differs from the NEP [1].

Formally, this function assumes:

1. Each arg is either Ellipsis, slice (None), an integer, or a batched torch.LongTensor (i.e. with empty event shape). This function does not support Nontrivial slices or torch.BoolTensor masks. Ellipsis can only appear on the left as args[0].

2. If args[0] is not Ellipsis then tensor is not batched, and its event dim is equal to len(args).

3. If args[0] is Ellipsis then tensor is batched and its event dim is equal to len(args[1:])

   Dims of tensor to the left of the event dims are considered batch dims and will be broadcasted with dims of tensor args.

Note that if none of the args is a tensor with .dim() > 0, then this function behaves like standard indexing:

```python
if not any(isinstance(a, torch.Tensor) and a.dim() for a in args):
 assert Vindex(x)[args] == x[args]
```

References

[1] https://www.numpy.org/neps/nep-0021-advanced-indexing.html introduces vindex as a helper for vectorized indexing. The Pyro implementation is similar to the proposed notation x.vindex[] except for slightly different handling of Ellipsis.
Parameters

- `tensor (torch.Tensor)` – A tensor to be indexed.
- `args (tuple)` – An index, as args to `__getitem__`.

Returns A nonstandard interpretation of `tensor[args]`.

Return type `torch.Tensor`

class Vindex (tensor)
Bases: object

Convenience wrapper around `vindex()`.

The following are equivalent:

```python
Vindex(x)[..., i, j, :]
vindex(x, (Ellipsis, i, j, slice(None)))
```

Parameters `tensor (torch.Tensor)` – A tensor to be indexed.

Returns An object with a special `__getitem__()` method.

## 10.5 Tensor Contraction

`contract_expression (equation, *shapes, **kwargs)`
Wrapper around `opt_einsum.contract_expression()` that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

Parameters `cache_path (bool)` – whether to cache the contraction path. Defaults to True.

`contract (equation, *operands, **kwargs)`
Wrapper around `opt_einsum.contract()` that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

Parameters `cache_path (bool)` – whether to cache the contraction path. Defaults to True.

`einsum (equation, *operands, **kwargs)`
Generalized plated sum-product algorithm via tensor variable elimination.

This generalizes `contract()` in two ways:

1. Multiple outputs are allowed, and intermediate results can be shared.
2. Inputs and outputs can be plated along symbols given in `plates`; reductions along `plates` are product reductions.

The best way to understand this function is to try the examples below, which show how `einsum()` calls can be implemented as multiple calls to `contract()` (which is generally more expensive).

To illustrate multiple outputs, note that the following are equivalent:

```python
z1, z2, z3 = einsum('ab,bc->a,b,c', x, y) # multiple outputs
z1 = contract('ab,bc->a', x, y)
z2 = contract('ab,bc->b', x, y)
z3 = contract('ab,bc->c', x, y)
```

To illustrate plated inputs, note that the following are equivalent:
assert len(x) == 3 and len(y) == 3
z = einsum('ab,ai,bi->b', w, x, y, plates='i')
z = contract('ab,a,a,b,b->b', w, *x, *y)

When a sum dimension $a$ always appears with a plate dimension $i$, then $a$ corresponds to a distinct symbol for each slice of $a$. Thus the following are equivalent:

assert len(x) == 3 and len(y) == 3
z = einsum('ai,ai->', x, y, plates='i')
z = contract('a,b,c,a,b,c->', *x, *y)

When such a sum dimension appears in the output, it must be accompanied by all of its plate dimensions, e.g. the following are equivalent:

assert len(x) == 3 and len(y) == 3
z = einsum('abi,abi->bi', x, y, plates='i')
z0 = contract('ab,ac,ad,ab,ac,ad->b', *x, *y)
z1 = contract('ab,ac,ad,ab,ac,ad->c', *x, *y)
z2 = contract('ab,ac,ad,ab,ac,ad->d', *x, *y)
z = torch.stack([z0, z1, z2])

Note that each plate slice through the output is multilinear in all plate slices through all inputs, thus e.g. batch matrix multiply would be implemented without plates, so the following are all equivalent:

xy = einsum('abc,acd->abd', x, y, plates='')
xy = torch.stack([xa.mm(ya) for xa, ya in zip(x, y)])
xy = torch.bmm(x, y)

Among all valid equations, some computations are polynomial in the sizes of the input tensors and other computations are exponential in the sizes of the input tensors. This function raises `NotImplementedError` whenever the computation is exponential.

**Parameters**

- `equation` (*str*) – An einsum equation, optionally with multiple outputs.
- `plates` (*str*) – An optional string of plate symbols.
- `backend` (*str*) – An optional einsum backend, defaults to ‘torch’.
- `cache` (*dict*) – An optional `shared_intermediates()` cache.
- `modulo_total` (*bool*) – Optionally allow einsum to arbitrarily scale each result plate, which can significantly reduce computation. This is safe to set whenever each result plate denotes a nonnormalized probability distribution whose total is not of interest.

**Returns**

a tuple of tensors of requested shape, one entry per output.

**Return type** `tuple`

**Raises**

- `ValueError` – if tensor sizes mismatch or an output requests a plated dim without that dim’s plates.
- `NotImplementedError` – if contraction would have cost exponential in the size of any input tensor.
ubersum(equation, *operands, **kwargs)
    Deprecated, use einsum() instead.

10.6 Gaussian Contraction

class Gaussian(log_normalizer, info_vec, precision)
    Bases: object
    Non-normalized Gaussian distribution.
    This represents an arbitrary semidefinite quadratic function, which can be interpreted as a rank-deficient scaled Gaussian distribution. The precision matrix may have zero eigenvalues, thus it may be impossible to work directly with the covariance matrix.

    Parameters
    • log_normalizer(torch.Tensor) – a normalization constant, which is mainly used to keep track of normalization terms during contractions.
    • info_vec(torch.Tensor) – information vector, which is a scaled version of the mean info_vec = precision @ mean. We use this representation to make gaussian contraction fast and stable.
    • precision(torch.Tensor) – precision matrix of this gaussian.

dim()
batch_shape
expand(batch_shape)
reshape(batch_shape)
__getitem__(index)
    Index into the batch_shape of a Gaussian.
static cat(parts, dim=0)
    Concatenate a list of Gaussians along a given batch dimension.
event_pad(left=0, right=0)
    Pad along event dimension.
event_permute(perm)
    Permute along event dimension.
__add__(other)
    Adds two Gaussians in log-density space.
log_density(value)
    Evaluate the log density of this Gaussian at a point value:
    
    \[-0.5 * value.T @ precision @ value + value.T @ info_vec + log_normalizer\]
    
    This is mainly used for testing.
condition(value)
    Condition this Gaussian on a trailing subset of its state. This should satisfy:
    
    \[g.condition(y).dim() == g.dim() - y.size(-1)\]
Note that since this is a non-normalized Gaussian, we include the density of $y$ in the result. Thus `condition()` is similar to a `functools.partial` binding of arguments:

```python
left = x[..., :n]
right = x[..., n:]
g.log_density(x) == g.condition(right).log_density(left)
```

`marginalize (left=0, right=0)`
Marginalizing out variables on either side of the event dimension:

```python
g.marginalize(left=n).event_logsumexp() = g.logsumexp()
g.marginalize(right=n).event_logsumexp() = g.logsumexp()
```

and for data $x$:

```python
g.condition(x).event_logsumexp() = g.marginalize(left=g.dim() - x.size(-1)).log_density(x)
```

`event_logsumexp()`
Integrates out all latent state (i.e. operating on event dimensions).

class AffineNormal(matrix, loc, scale)
Bases: object
Represents a conditional diagonal normal distribution over a random variable $Y$ whose mean is an affine function of a random variable $X$. The likelihood of $X$ is thus:

```python
AffineNormal(matrix, loc, scale).condition(y).log_density(x)
```

which is equivalent to:

```python
Normal(x @ matrix + loc, scale).to_event(1).log_prob(y)
```

**Parameters**

- `matrix (torch.Tensor)` – A transformation from $X$ to $Y$. Should have rightmost shape $(x\_dim, y\_dim)$.
- `loc (torch.Tensor)` – A constant offset for $Y$’s mean. Should have rightmost shape $(y\_dim,)$.
- `scale (torch.Tensor)` – Standard deviation for $Y$. Should have rightmost shape $(y\_dim,)$.

`condition (value)`
Condition on a $Y$ value.

**Parameters**

- `value (torch.Tensor)` – A value of $Y$.

**Return**

- Gaussian A gaussian likelihood over $X$.

`to_gaussian()`

`__add__ (other)`

`mvn_to_gaussian (mvn)`
Convert a MultivariateNormal distribution to a Gaussian.

**Parameters**

- `mvn (MultivariateNormal)` – A multivariate normal distribution.

**Returns**

- An equivalent Gaussian object.

**Return type**

- Gaussian
**matrix_and_mvn_to_gaussian** *(matrix, mvn)*
Convert a noisy affine function to a Gaussian. The noisy affine function is defined as:

\[ y = x @ \text{matrix} + \text{mvn}.\text{sample}() \]

**Parameters**
- **matrix** *(Tensor)* – A matrix with rightmost shape \((x\_\text{dim}, y\_\text{dim})\).
- **mvn** *(MultivariateNormal)* – A multivariate normal distribution.

**Returns** A Gaussian with broadcasted batch shape and \(.\text{dim}() == x\_\text{dim} + y\_\text{dim}\).

**Return type** *Gaussian*

**gaussian_tensordot** *(x, y, dims=0)*
Computes the integral over two gaussians:

\[ (x @ y)(a,c) = \log(\text{integral}(\exp(x(a,b) + y(b,c)), b)) \]
where \(x\) is a gaussian over variables \((a,b)\), \(y\) is a gaussian over variables \((b,c)\), \((a,b,c)\) can each be sets of zero or more variables, and \(\text{dims}\) is the size of \(b\).

**Parameters**
- **x** – a Gaussian instance
- **y** – a Gaussian instance
- **dims** – number of variables to contract

10.7 Statistical Utilities

**gelman_rubin** *(input, chain_dim=0, sample_dim=1)*
Computes R-hat over chains of samples. It is required that \(\text{input}.\text{size}(\text{sample\_dim}) >= 2\) and \(\text{input}.\text{size}(\text{chain\_dim}) >= 2\).

**Parameters**
- **input** *(torch.Tensor)* – the input tensor.
- **chain_dim** *(int)* – the chain dimension.
- **sample_dim** *(int)* – the sample dimension.

**Returns** torch.Tensor R-hat of input.

**split_gelman_rubin** *(input, chain_dim=0, sample_dim=1)*
Computes R-hat over chains of samples. It is required that \(\text{input}.\text{size}(\text{sample\_dim}) >= 4\).

**Parameters**
- **input** *(torch.Tensor)* – the input tensor.
- **chain_dim** *(int)* – the chain dimension.
- **sample_dim** *(int)* – the sample dimension.

**Returns** torch.Tensor split R-hat of input.

**autocorrelation** *(input, dim=0)*
Computes the autocorrelation of samples at dimension \(\text{dim}\).

Reference: https://en.wikipedia.org/wiki/Autocorrelation#Efficient_computation
Parameters

• `input (torch.Tensor)` – the input tensor.
• `dim (int)` – the dimension to calculate autocorrelation.

Returns `torch.Tensor` autocorrelation of `input`.

`autocovariance (input, dim=0)`

Computes the autocovariance of samples at dimension `dim`.

Parameters

• `input (torch.Tensor)` – the input tensor.
• `dim (int)` – the dimension to calculate autocorrelation.

Returns `torch.Tensor` autocorrelation of `input`.

`effective_sample_size (input, chain_dim=0, sample_dim=1)`

Computes effective sample size of `input`.

Reference:


Parameters

• `input (torch.Tensor)` – the input tensor.
• `chain_dim (int)` – the chain dimension.
• `sample_dim (int)` – the sample dimension.

Returns `torch.Tensor` effective sample size of `input`.

`resample (input, num_samples, dim=0, replacement=False)`

Draws `num_samples` samples from `input` at dimension `dim`.

Parameters

• `input (torch.Tensor)` – the input tensor.
• `num_samples (int)` – the number of samples to draw from `input`.
• `dim (int)` – dimension to draw from `input`.

Returns `torch.Tensor` samples drawn randomly from `input`.

`quantile (input, probs, dim=0)`

Computes quantiles of `input` at `probs`. If `probs` is a scalar, the output will be squeezed at `dim`.

Parameters

• `input (torch.Tensor)` – the input tensor.
• `probs (list)` – quantile positions.
• `dim (int)` – dimension to take quantiles from `input`.

Returns `torch.Tensor` quantiles of `input` at `probs`.

`pi (input, prob, dim=0)`

Computes percentile interval which assigns equal probability mass to each tail of the interval.

Parameters
• **input** *(torch.Tensor)* – the input tensor.
• **prob** *(float)* – the probability mass of samples within the interval.
• **dim** *(int)* – dimension to calculate percentile interval from `input`.

Returns `torch.Tensor` quantiles of `input` at `probs`.

**hpdi** *(input, prob, dim=0)*
Computes “highest posterior density interval” which is the narrowest interval with probability mass `prob`.

Parameters

• **input** *(torch.Tensor)* – the input tensor.
• **prob** *(float)* – the probability mass of samples within the interval.
• **dim** *(int)* – dimension to calculate percentile interval from `input`.

Returns `torch.Tensor` quantiles of `input` at `probs`.

**waic** *(input, log_weights=None, pointwise=False, dim=0)*
Computes “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and its corresponding effective number of parameters.

Reference:
[1] WAIC and cross-validation in Stan, Aki Vehtari, Andrew Gelman

Parameters

• **input** *(torch.Tensor)* – the input tensor, which is log likelihood of a model.
• **log_weights** *(torch.Tensor)* – weights of samples along `dim`.
• **dim** *(int)* – the sample dimension of `input`.

Returns tuple of WAIC and effective number of parameters.

**fit_generalized_pareto** *(X)*
Given a dataset X assumed to be drawn from the Generalized Pareto Distribution, estimate the distributional parameters k, sigma using a variant of the technique described in reference [1], as described in reference [2].


Parameters `torch.Tensor` – the input data X

Returns tuple of floats (k, sigma) corresponding to the fit parameters.

**crps_empirical** *(pred, truth)*
Computes negative Continuous Ranked Probability Score CRPS* [1] between a set of samples `pred` and true data `truth`. This uses an $n \log(n)$ time algorithm to compute a quantity equal that would naively have complexity quadratic in the number of samples n:

\[
\begin{align*}
\text{CRPS}^* &= E|\text{pred} - \text{truth}| - \frac{1}{2} E|\text{pred} - \text{pred}'| \\
&= (\text{pred} - \text{truth}).\text{abs()}.\text{mean(0)} \\
&\quad - (\text{pred} - \text{pred}.\text{unsqueeze(1)}).\text{abs()}.\text{mean([0, 1])} / 2
\end{align*}
\]

Note that for a single sample this reduces to absolute error.


Parameters
• **pred** (*torch.Tensor*) – A set of sample predictions batched on rightmost dim. This should have shape (num_samples,) + truth.shape.

• **truth** (*torch.Tensor*) – A tensor of true observations.

**Returns** A tensor of shape truth.shape.

**Return type** *torch.Tensor*

### 10.8 State Space Model and GP Utilities

**class MaternKernel**

```python
class MaternKernel(nu=1.5, num_gps=1, length_scale_init=None, kernel_scale_init=None):
 Bases: pyro.nn.module.PyroModule

 Provides the building blocks for representing univariate Gaussian Processes (GPs) with Matern kernels as state space models.

 Parameters

 • **nu** (*float*) – The order of the Matern kernel (one of 0.5, 1.5 or 2.5)

 • **num_gps** (*int*) – the number of GPs

 • **length_scale_init** (*torch.Tensor*) – optional num_gps-dimensional vector of initializers for the length scale

 • **kernel_scale_init** (*torch.Tensor*) – optional num_gps-dimensional vector of initializers for the kernel scale

 References

 transition_matrix(*dt*)

 Compute the (exponentiated) transition matrix of the GP latent space. The resulting matrix has layout (num_gps, old_state, new_state), i.e. this matrix multiplies states from the right.

 Parameters

 • **dt** (*float*) – the time interval over which the GP latent space evolves.

 Returns *torch.Tensor* a 3-dimensional tensor of transition matrices of shape (num_gps, state_dim, state_dim).

 stationary_covariance()

 Compute the stationary state covariance. See Eqn. 3.26 in reference [2].

 Returns *torch.Tensor* a 3-dimensional tensor of covariance matrices of shape (num_gps, state_dim, state_dim).

 process_covariance(*A*)

 Given a transition matrix A computed with **transition_matrix** compute the process covariance as described in Eqn. 3.11 in reference [2].

 Returns *torch.Tensor* a batched covariance matrix of shape (num_gps, state_dim, state_dim)

 transition_matrix_and_covariance(*dt*)

 Get the transition matrix and process covariance corresponding to a time interval *dt*.
Parameters `dt (float)` – the time interval over which the GP latent space evolves.

Returns tuple `(transition_matrix, process_covariance)` both 3-dimensional tensors of shape `(num_gps, state_dim, state_dim)`
The `pyro.contrib.autoname` module provides tools for automatically generating unique, semantically meaningful names for sample sites.

```python
scope (fn=None, prefix=None, inner=None)
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **prefix** – a string to prepend to sample names (optional if fn is provided)
- **inner** – switch to determine where duplicate name counters appear

Returns fn decorated with a `ScopeMessenger`

`scope` prepends a prefix followed by a `/` to the name at a Pyro sample site. It works much like TensorFlow's `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

`scope` is very useful for aligning compositional models with guides or data.

Example:

```python
>>> @scope(prefix="a")
... def model():
...     return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:
>>> @scope(prefix="b")
... def model():
... with scope(prefix="a"):
... return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "b/a/x" in poutine.trace(model).get_trace()

When used as a decorator or higher-order function, `scope` will use the name of the input function as the prefix if no user-specified prefix is provided.

Example:

```python
>>> @scope
... def model():
...   return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "model/x" in poutine.trace(model).get_trace()
```

name_count *(fn=None)*

`name_count` is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

Example:

```python
>>> @name_count
... def model():
...   for i in range(3):
...     pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "x" in poutine.trace(model).get_trace()
>>> assert "x__1" in poutine.trace(model).get_trace()
>>> assert "x__2" in poutine.trace(model).get_trace()
```

`name_count` also composes with `scope()` by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
... def model():
...   for i in range(3):
...     with pyro.contrib.autoname.scope(prefix="a"):
...       pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> @name_count
... def model():
...   with pyro.contrib.autoname.scope(prefix="a"):
...     for i in range(3):
...       pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
```
11.1 Named Data Structures

The pyro.contrib.named module is a thin syntactic layer on top of Pyro. It allows Pyro models to be written to look like programs with operating on Python data structures like `latent.x.sample_(...)`, rather than programs with string-labeled statements like `x = pyro.sample("x", ...)`. This module provides three container data structures named.Object, named.List, and named.Dict. These data structures are intended to be nested in each other. Together they track the address of each piece of data in each data structure, so that this address can be used as a Pyro site. For example:

```python
>>> state = named.Object("state")
>>> print(str(state))
state
>>> z = state.x.y.z  # z is just a placeholder.
>>> print(str(z))
state.x.y.z
>>> state.xs = named.List()  # Create a contained list.
>>> x0 = state.xs.add()
>>> print(str(x0))
state.xs[0]
>>> state.ys = named.Dict()
>>> foo = state.ys['foo']
>>> print(str(foo))
state.ys['foo']
```

These addresses can now be used inside sample, observe and param statements. These named data structures even provide in-place methods that alias Pyro statements. For example:

```python
>>> state = named.Object("state")
>>> loc = state.loc.param_(torch.zeros(1, requires_grad=True))
>>> scale = state.scale.param_(torch.ones(1, requires_grad=True))
>>> z = state.z.sample_(dist.Normal(loc, scale))
>>> obs = state.x.sample_(dist.Normal(loc, scale), obs=z)
```

For deeper examples of how these can be used in model code, see the Tree Data and Mixture examples.

Authors: Fritz Obermeyer, Alexander Rush

class Object(name)

 Bases: object

 Object to hold immutable latent state.

 This object can serve either as a container for nested latent state or as a placeholder to be replaced by a tensor via a named.sample, named.observe, or named.param statement. When used as a placeholder, Object objects take the place of strings in normal pyro.sample statements.

 Parameters

 name : str
 The name of the object.

 Example:
state = named.Object("state")
state.x = 0
state.ys = named.List()
state.zs = named.Dict()
state.a.b.c.d.e.f.g = 0 # Creates a chain of named.Objects.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

```python
sample_(fn, *args, **kwargs)
```

Calls the stochastic function `fn` with additional side-effects depending on `name` and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

Parameters
- `name` – name of sample
- `fn` – distribution class or function
- `obs` – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
- `infer (dict)` – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

```python
param_(*args, **kwargs)
```

Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

Parameters
- `name (str)` – name of parameter
- `init_tensor (torch.Tensor or callable)` – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
- `constraint (torch.distributions.constraints.Constraint)` – torch constraint, defaults to constraints.real.
- `event_dim (int)` – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

Returns parameter

Return type torch.Tensor

```python
class List(name=None)
```

Bases: list

List-like object to hold immutable latent state.

This must either be given a name when constructed:
latent = named.List("root")

or must be immediately stored in a named.Object:

latent = named.Object("root")
latent.xs = named.List() # Must be bound to a Object before use.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

```python
add()
Append one new named.Object.

Returns a new latent object at the end

Return type: named.Object
```

```python
class Dict(name=None)
Bases: dict

Dict-like object to hold immutable latent state.

This must either be given a name when constructed:

latent = named.Dict("root")

or must be immediately stored in a named.Object:

latent = named.Object("root")
latent.xs = named.Dict()  # Must be bound to a Object before use.

**Warning:** This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.
```

11.2 Scoping


```python
class NameCountMessenger
Base: pyro.poutine.messenger.Messenger

NameCountMessenger is the implementation of pyro.contrib.autoname.name_count()

class ScopeMessenger(prefix=None, inner=None)
Base: pyro.poutine.messenger.Messenger

ScopeMessenger is the implementation of pyro.contrib.autoname.scope()

scope(fn=None, prefix=None, inner=None)

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
```

11.2. Scoping
- **prefix** – a string to prepend to sample names (optional if `fn` is provided)
- **inner** – switch to determine where duplicate name counters appear

Returns `fn` decorated with a `ScopeMessenger`

`scope` prepends a prefix followed by a `/` to the name at a Pyro sample site. It works much like TensorFlow's `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

`scope` is very useful for aligning compositional models with guides or data.

Example:

```python
>>> @scope(prefix="a")
...     def model():
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:

```python
>>> @scope(prefix="b")
...     def model():
...         with scope(prefix="a"):
...             return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "b/a/x" in poutine.trace(model).get_trace()
```

When used as a decorator or higher-order function, `scope` will use the name of the input function as the prefix if no user-specified prefix is provided.

Example:

```python
>>> @scope
...     def model():
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "model/x" in poutine.trace(model).get_trace()
```

name_count (`fn=None`)
`name_count` is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

Example:

```python
>>> @name_count
...     def model():
...         for i in range(3):
...             pyro.sample("x", dist.Bernoulli(0.5))
...```
name_count also composes with scope() by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
... def model():
... for i in range(3):
... with pyro.contrib.autoname.scope(prefix="a"):
... pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> @name_count
... def model():
... for i in range(3):
... pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```
CHAPTER 12

Bayesian Neural Networks

12.1 HiddenLayer

class HiddenLayer (X=None, A_mean=None, A_scale=None, non_linearity=<function relu>, KL_factor=1.0, A_prior_scale=1.0, include_hidden_bias=True, weight_space_sampling=False)

This distribution is a basic building block in a Bayesian neural network. It represents a single hidden layer, i.e. an affine transformation applied to a set of inputs X followed by a non-linearity. The uncertainty in the weights is encoded in a Normal variational distribution specified by the parameters A_scale and A_mean. The so-called ‘local reparameterization trick’ is used to reduce variance (see reference below). In effect, this means the weights are never sampled directly; instead one samples in pre-activation space (i.e. before the non-linearity is applied). Since the weights are never directly sampled, when this distribution is used within the context of variational inference, care must be taken to correctly scale the KL divergence term that corresponds to the weight matrix. This term is folded into the log_prob method of this distributions.

In effect, this distribution encodes the following generative process:

A ~ Normal(A_mean, A_scale) output ~ non_linearity(AX)

Parameters

- X (torch.Tensor) – B x D dimensional mini-batch of inputs
- A_mean (torch.Tensor) – D x H dimensional specifying weight mean
- A_scale (torch.Tensor) – D x H dimensional (diagonal covariance matrix) specifying weight uncertainty
- non_linearity (callable) – a callable that specifies the non-linearity used. defaults to ReLU.
- KL_factor (float) – scaling factor for the KL divergence. prototypically this is equal to the size of the mini-batch divided by the size of the whole dataset. defaults to 1.0.
- A_prior (float or torch.Tensor) – the prior over the weights is assumed to be normal with mean zero and scale factor A_prior. default value is 1.0.
• **include_hidden_bias** (*bool*) – controls whether the activations should be augmented with a 1, which can be used to incorporate bias terms. defaults to *True*.

• **weight_space_sampling** (*bool*) – controls whether the local reparameterization trick is used. this is only intended to be used for internal testing. defaults to *False*.

Reference:

This module implements the Causal Effect Variational Autoencoder [1], which demonstrates a number of innovations including:

• a generative model for causal effect inference with hidden confounders;
• a model and guide with twin neural nets to allow imbalanced treatment; and
• a custom training loss that includes both ELBO terms and extra terms needed to train the guide to be able to answer counterfactual queries.

The main interface is the `CEVAE` class, but users may customize by using components `Model`, `Guide`, `TraceCausalEffect_ELBO` and utilities.

**References**

https://github.com/AMLab-Amsterdam/CEVAE

### 13.1 CEVAE Class

def CEVAE(feature_dim, outcome_dist='bernoulli', latent_dim=20, hidden_dim=200, num_layers=3, num_samples=100)
    Bases: torch.nn.modules.module.Module

    Main class implementing a Causal Effect VAE [1]. This assumes a graphical model
where \( t \) is a binary treatment variable, \( y \) is an outcome, \( Z \) is an unobserved confounder, and \( X \) is a noisy function of the hidden confounder \( Z \).

Example:

```python
cevae = CEVAE(feature_dim=5)
cevae.fit(x_train, t_train, y_train)
ite = cevae.ite(x_test) # individual treatment effect
ate = ite.mean() # average treatment effect
```

Variables

- **model (Model)** – Generative model.
- **guide (Guide)** – Inference model.

Parameters

- **feature_dim (int)** – Dimension of the feature space \( x \).
- **latent_dim (int)** – Dimension of the latent variable \( z \). Defaults to 20.  
- **num_layers (int)** – Number of hidden layers in fully connected networks.  
- **num_samples (int)** – Default number of samples for the `ite()` method. Defaults to 100.

`fit(x, t, y, num_epochs=100, batch_size=100, learning_rate=0.001, learning_rate_decay=0.1, weight_decay=0.0001)`  
Train using SVI with the `TraceCausalEffect_ELBO` loss.
Parameters

- \( x (\text{Tensor}) \) – Number of training epochs. Defaults to 100.
- \( t (\text{Tensor}) \) – Batch size. Defaults to 100.
- \( y (\text{Tensor}) \) – Learning rate. Defaults to 1e-3.
- \( \text{learning_rate} (\text{float}) \) – Learning rate decay over all epochs; the per-step decay rate will depend on batch size and number of epochs such that the initial learning rate will be \( \text{learning_rate} \) and the final learning rate will be \( \text{learning_rate} \times \text{learning_rate_decay} \). Defaults to 0.1.
- \( \text{weight_decay} (\text{float}) \) – Weight decay. Defaults to 1e-4.

Returns list of epoch losses

\[
\text{ITE}(x, \text{num_samples}=\text{None}, \text{batch_size}=\text{None})
\]

Computes Individual Treatment Effect for a batch of data \( x \).

\[
\text{ITE}(x) = \mathbb{E}[y \mid X = x, do(t = 1)] - \mathbb{E}[y \mid X = x, do(t = 0)]
\]

This has complexity \( O(\text{len}(x) \times \text{num_samples}^2) \).

Parameters

- \( x (\text{Tensor}) \) – A batch of data.
- \( \text{num_samples} (\text{int}) \) – The number of monte carlo samples. Defaults to self.num_samples which defaults to 100.
- \( \text{batch_size} (\text{int}) \) – Batch size. Defaults to len(x).

Returns A len(x)-sized tensor of estimated effects.

Return type Tensor

\[
\text{to_script_module}()
\]

Compile this module using \texttt{torch.jit.trace_module()} , assuming self has already been fit to data.

Returns A traced version of self with an \texttt{ite()} method.

Return type torch.jit.ScriptModule

### 13.2 CEVAE Components

**class Model**(*config*)

Bases: \texttt{pyro.nn.module.PyroModule}

Generative model for a causal model with latent confounder \( z \) and binary treatment \( t \):

\[
\begin{align*}
z & \sim p(z) \quad \# \text{latent confounder} \\
x & \sim p(x \mid z) \quad \# \text{partial noisy observation of } z \\
t & \sim p(t \mid z) \quad \# \text{treatment, whose application is biased by } z \\
y & \sim p(y \mid t, z) \quad \# \text{outcome}
\end{align*}
\]
Each of these distributions is defined by a neural network. The $y$ distribution is defined by a disjoint pair of neural networks defining $p(y|t=0,z)$ and $p(y|t=1,z)$; this allows highly imbalanced treatment.

**Parameters**

$\text{config}(\text{dict})$ – A dict specifying $\text{feature_dim}$, $\text{latent_dim}$, $\text{hidden_dim}$, $\text{num_layers}$, and $\text{outcome_dist}$.

**forward**($x, t=\text{None}, y=\text{None}, size=\text{None}$)

$\text{y_mean}(x, t=\text{None})$

$\text{z_dist}()$

$\text{x_dist}(z)$

$\text{y_dist}(t, z)$

$\text{t_dist}(z)$

**class Guide**($\text{config}$)

**Bases:** $\text{pyro.nn.module.PyroModule}$

Inference model for causal effect estimation with latent confounder $z$ and binary treatment $t$:

$t \sim p(t|x)$  
$y \sim p(y|t,x)$  
$z \sim p(z|y,t,x)$

| Each of these distributions is defined by a neural network. The $y$ and $z$ distributions are defined by disjoint pairs of neural networks defining $p(\cdot|t=0,\ldots)$ and $p(\cdot|t=1,\ldots)$; this allows highly imbalanced treatment. |
| --- |
| **Parameters** $\text{config}(\text{dict})$ – A dict specifying $\text{feature_dim}$, $\text{latent_dim}$, $\text{hidden_dim}$, $\text{num_layers}$, and $\text{outcome_dist}$. |
| **forward**($x, t=\text{None}, y=\text{None}, size=\text{None}$) |
| $\text{y_mean}(x, t=\text{None})$ |
| $\text{z_dist}()$ |
| $\text{x_dist}(z)$ |
| $\text{y_dist}(t, z)$ |
| $\text{t_dist}(z)$ |

**class TraceCausalEffect_ELBO**($\text{num_particles}=1, \text{max_plate_nesting}=\text{inf}, \text{max_iarange_nesting}=-\text{None}, \text{vectorize_particles}=False, \text{strict_enumeration_warning}=True, \text{ignore_jit_warnings}=False, \text{jit_options}=-\text{None}, \text{retain_graph}=-\text{None}, \text{tail_adaptive_beta}=-1.0$)

**Bases:** $\text{pyro.infer.trace_elbo.Trace_ELBO}$

Loss function for training a CVAE. From [1], the CEVAE objective (to maximize) is:

$-\text{loss} = \text{ELBO} + \log q(t|x) + \log q(y|t,x)$

**loss**(model, guide, *args, **kwargs)

**13.3 Utilities**

**class FullyConnected**($\text{sizes, final_activation}=-\text{None}$)

**Bases:** $\text{torch.nn.modules.container.Sequential}$

Fully connected multi-layer network with ELU activations.

**append**(layer)
class DistributionNet
    Bases: torch.nn.modules.module.Module
    Base class for distribution nets.

    static get_class(dtype)
        Get a subclass by a prefix of its name, e.g.:
        
        assert DistributionNet.get_class("bernoulli") is BernoulliNet

class BernoulliNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet
    FullyConnected network outputting a single logits value.

    This is used to represent a conditional probability distribution of a single Bernoulli random variable conditioned on a sizes[0]-sized real value, for example:

    net = BernoulliNet([3, 4])
z = torch.randn(3)
logits, = net(z)
t = net.make_dist(logits).sample()

    forward(x)

    static make_dist(logits)

class ExponentialNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet
    FullyConnected network outputting a constrained rate.

    This is used to represent a conditional probability distribution of a single Normal random variable conditioned on a sizes[0]-size real value, for example:

    net = ExponentialNet([3, 4])
x = torch.randn(3)
rate, = net(x)
y = net.make_dist(rate).sample()

    forward(x)

    static make_dist(rate)

class LaplaceNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet
    FullyConnected network outputting a constrained loc, scale pair.

    This is used to represent a conditional probability distribution of a single Laplace random variable conditioned on a sizes[0]-size real value, for example:

    net = LaplaceNet([3, 4])
x = torch.randn(3)
loc, scale = net(x)
y = net.make_dist(loc, scale).sample()

    forward(x)

    static make_dist(loc, scale)

class NormalNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet

13.3. Utilities
**FullyConnected** network outputting a constrained \(\text{loc}, \text{scale}\) pair.

This is used to represent a conditional probability distribution of a single Normal random variable conditioned on a \(\text{sizes}[0]\)-size real value, for example:

```python
net = NormalNet([3, 4])
x = torch.randn(3)
loc, scale = net(x)
y = net.make_dist(loc, scale).sample()
```

```
forward(x)

static make_dist(loc, scale)
```

**class** `StudentTNet` *(sizes)*

**Bases:** `pyro.contrib.cevae.DistributionNet`  

**FullyConnected** network outputting a constrained \(\text{df}, \text{loc}, \text{scale}\) triple, with shared \(\text{df} > 1\).

This is used to represent a conditional probability distribution of a single Student’s t random variable conditioned on a \(\text{sizes}[0]\)-size real value, for example:

```python
net = StudentTNet([3, 4])
x = torch.randn(3)
df, loc, scale = net(x)
y = net.make_dist(df, loc, scale).sample()
```

```
forward(x)

static make_dist(df, loc, scale)
```

**class** `DiagNormalNet` *(sizes)*

**Bases:** `torch.nn.modules.module.Module`  

**FullyConnected** network outputting a constrained \(\text{loc}, \text{scale}\) pair.

This is used to represent a conditional probability distribution of a \(\text{sizes}[0]\)-sized diagonal Normal random variable conditioned on a \(\text{sizes}[0]\)-size real value, for example:

```python
net = DiagNormalNet([3, 4, 5])
z = torch.randn(3)
loc, scale = net(z)
x = dist.Normal(loc, scale).sample()
```

This is intended for the latent \(z\) distribution and the prewhitened \(x\) features, and conservatively clips \(\text{loc}\) and \(\text{scale}\) values.

```
forward(x)
```
14.1 EasyGuide

class EasyGuide (model)
    Bases: pyro.nn.module.PyroModule

    Base class for “easy guides”, which are more flexible than AutoGuide s, but are easier to write than raw Pyro
    guides.

    Derived classes should define a guide() method. This guide() method can combine ordinary guide state-
    ments (e.g. pyro.sample and pyro.param) with the following special statements:

    • group = self.group(...) selects multiple pyro.sample sites in the model. See Group for
      subsequent methods.
    • with self.plate(...): ... should be used instead of pyro.plate.
    • self.map_estimate(...) uses a Delta guide for a single site.

    Derived classes may also override the init() method to provide custom initialization for models sites.

    Parameters

    model (callable) – A Pyro model.

    model

    guide(*args, **kargs)
        Guide implementation, to be overridden by user.

    init(site)
        Model initialization method, may be overridden by user.

        This should input a site and output a valid sample from that site. The default behavior is to draw a random
        sample:

        return site["fn"]()

    For other possible initialization functions see http://docs.pyro.ai/en/stable/infer.autoguide.html#
    module-pyro.infer.autoguide.initialization
Pyro Documentation

forward(*args, **kwargs)
Runs the guide. This is typically used by inference algorithms.

plate(name, size=None, subsample_size=None, subsample=None, *args, **kwargs)
A wrapper around pyro.plate to allow EasyGuide to automatically construct plates. You should use this rather than pyro.plate inside your guide() implementation.

group(match='.*')
Select a Group of model sites for joint guidance.

Parameters
match (str) – A regex string matching names of model sample sites.

Returns
A group of model sites.

Return type
Group

map_estimate(name)
Construct a maximum a posteriori (MAP) guide using Delta distributions.

Parameters
name (str) – The name of a model sample site.

Returns
A sampled value.

Return type
torch.Tensor

14.2 easy_guide

easy_guide(model)
Convenience decorator to create an EasyGuide. The following are equivalent:

```python
Version 1. Decorate a function.
@easy_guide(model)
def guide(self, foo, bar):
 return my_guide(foo, bar)

Version 2. Create and instantiate a subclass of EasyGuide.
class Guide(EasyGuide):
 def guide(self, foo, bar):
 return my_guide(foo, bar)
guide = Guide(model)
```

Note @easy_guide wrappers cannot be pickled; to build a guide that can be pickled, instead subclass from EasyGuide.

Parameters
model (callable) – a Pyro model.

14.3 Group

class Group(guide, sites)
Bases: object
An autoguide helper to match a group of model sites.

Variables

- event_shape (torch.Size) – The total flattened concatenated shape of all matching sample sites in the model.
• **prototype_sites** (*list*) – A list of all matching sample sites in a prototype trace of the model.

**Parameters**

• **guide** (*EasyGuide*) – An easyguide instance.
• **sites** (*list*) – A list of model sites.

```python
guide
sample(guide_name, fn, infer=None)
```

Wrapper around `pyro.sample()` to create a single auxiliary sample site and then unpack to multiple sample sites for model replay.

**Parameters**

• **guide_name** (*str*) – The name of the auxiliary guide site.
• **fn** (*callable*) – A distribution with shape `self.event_shape`.
• **infer** (*dict*) – Optional inference configuration dict.

**Returns** A pair `(guide_z, model_zs)` where `guide_z` is the single concatenated blob and `model_zs` is a dict mapping site name to constrained model sample.

**Return type** `tuple`

```python
map_estimate()
```

Construct a maximum a posteriori (MAP) guide using Delta distributions.

**Returns** A dict mapping model site name to sampled value.

**Return type** `dict`
15.1 Datasets

15.1.1 Multi MNIST

This script generates a dataset similar to the Multi-MNIST dataset described in [1].


```python
imresize(arr, size)
sample_one(canvas_size, mnist)
sample_multi(num_digits, canvas_size, mnist)
mk_dataset(n, mnist, max_digits, canvas_size)
load_mnist(root_path)
load(root_path)
```

15.1.2 BART Ridership

```python
load_bart_od()
```

Load a dataset of hourly origin-destination ridership counts for every pair of BART stations during the years 2011-2018.

**Source** https://www.bart.gov/about/reports/ridership

This downloads and preprocesses the dataset the first time it is called, requiring about 300MB of file transfer and storing a few GB of temp files. On subsequent calls this reads from a cached `.pkl.bz2`.

**Returns**

- a dataset is a dictionary with fields:
• "stations": a list of strings of station names
• "start_date": a `datetime.datetime` for the first observation
• "counts": a `torch.FloatTensor` of ridership counts, with shape `(num_hours, len(stations), len(stations))`.

```python
load_fake_od()
```
Create a tiny synthetic dataset for smoke testing.

## 15.2 Utilities

```python
def get_data_loader(dataset_name, data_dir, batch_size=1, dataset_transforms=None, is_training_set=True, shuffle=True):
 pass

def print_and_log(logger, msg):
 pass

def get_data_directory(filepath=None):
 pass
```
See the Gaussian Processes tutorial for an introduction.

```python
class Parameterized:
 Bases: pyro.nn.module.PyroModule

 A wrapper of PyroModule whose parameters can be set constraints, set priors.

 By default, when we set a prior to a parameter, an auto Delta guide will be created. We can use the method
 autoguide() to setup other auto guides.

 Example:

 >>> class Linear(Parameterized):
 ... def __init__(self, a, b):
 ... super(Linear, self).__init__()
 ... self.a = Parameter(a)
 ... self.b = Parameter(b)
 ... def forward(self, x):
 ... return self.a * x + self.b
 >>> linear = Linear(torch.tensor(1.), torch.tensor(0.))
 >>> linear.a = PyroParam(torch.tensor(1.), constraints.positive)
 >>> linear.b = PyroSample(dist.Normal(0, 1))
 >>> linear.autoguide("b", dist.Normal)
 >>> assert "a_unconstrained" in dict(linear.named_parameters())
 >>> assert "b_loc" in dict(linear.named_parameters())
 >>> assert "b_scale_unconstrained" in dict(linear.named_parameters())
```

Note that by default, data of a parameter is a float torch.Tensor (unless we use torch.
set_default_tensor_type() to change default tensor type). To cast these parameters to a correct data
type or GPU device, we can call methods such as double() or cuda(). See torch.nn.Module for more
information.

```
set_prior(name, prior)
```

Sets prior for a parameter.
Parameters
- `name (str)` – Name of the parameter.
- `prior (Distribution)` – A Pyro prior distribution.

`autoguide (name, dist_constructor)`
Sets an autoguide for an existing parameter with name `name` (mimic the behavior of module `pyro.infer.autoguide`).

Note: `dist_constructor` should be one of `Delta`, `Normal`, and `MultivariateNormal`. More distribution constructor will be supported in the future if needed.

Parameters
- `name (str)` – Name of the parameter.
- `dist_constructor` – A `Distribution` constructor.

`set_mode (mode)`
Sets `mode` of this object to be able to use its parameters in stochastic functions. If `mode="model"`, a parameter will get its value from its prior. If `mode="guide"`, the value will be drawn from its guide.

Note: This method automatically sets `mode` for submodules which belong to `Parameterized` class.

Parameters `mode (str)` – Either “model” or “guide”.

```python
16.1 Models
```

16.1.1 GPModel
class GPModel (X, y, kernel, mean_function=None, jitter=1e-06)
Bases: `pyro.contrib gp parameterized Parameterized`
Base class for Gaussian Process models.
The core of a Gaussian Process is a covariance function $k$ which governs the similarity between input points. Given $k$, we can establish a distribution over functions $f$ by a multivariate normal distribution

$$ p(f(X)) = \mathcal{N}(0, k(X, X)), $$

where $X$ is any set of input points and $k(X, X)$ is a covariance matrix whose entries are outputs $k(x, z)$ of $k$ over input pairs $(x, z)$. This distribution is usually denoted by

$$ f \sim \mathcal{GP}(0, k). $$

Note: Generally, beside a covariance matrix $k$, a Gaussian Process can also be specified by a mean function $m$ (which is a zero-value function by default). In that case, its distribution will be

$$ p(f(X)) = \mathcal{N}(m(X), k(X, X)). $$
Gaussian Process models are **Parameterized** subclasses. So its parameters can be learned, set priors, or fixed by using corresponding methods from **Parameterized**. A typical way to define a Gaussian Process model is

```python
>>> X = torch.tensor([[1., 5, 3], [4, 3, 7]])
>>> y = torch.tensor([2., 1])
>>> kernel = gp.kernels.RBF(input_dim=3)
>>> kernel.variance = pyro.nn.PyroSample(dist.Uniform(torch.tensor(0.5), torch.tensor(1.5)))
>>> kernel.lengthscale = pyro.nn.PyroSample(dist.Uniform(torch.tensor(1.0), torch.tensor(3.0)))
>>> gpr = gp.models.GPRegression(X, y, kernel)
```

There are two ways to train a Gaussian Process model:

- **Using an MCMC algorithm** (in module `pyro.infer.mcmc`) on `model()` to get posterior samples for the Gaussian Process’s parameters. For example:

  ```python
 >>> hmc_kernel = HMC(gpr.model)
 >>> mcmc = MCMC(hmc_kernel, num_samples=10)
 >>> mcmc.run()
 >>> ls_name = "kernel.lengthscale"
 >>> posterior_ls = mcmc.get_samples()[ls_name]
  ```

- **Using a variational inference** on the pair `model()`, `guide()`:

  ```python
 >>> optimizer = torch.optim.Adam(gpr.parameters(), lr=0.01)
 >>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
 >>> for i in range(1000):
 ... svi.step() # doctest: +SKIP
 ... optimizer.zero_grad()
 ... loss = loss_fn(gpr.model, gpr.guide) # doctest: +SKIP
 ... loss.backward() # doctest: +SKIP
 ... optimizer.step()
  ```

To give a prediction on new dataset, simply use `forward()` like any PyTorch `torch.nn.Module`:

```python
>>> Xnew = torch.tensor([[2., 3, 1]])
>>> f_loc, f_cov = gpr(Xnew, full_cov=True)
```

Reference:


**Parameters**

- `X (torch.Tensor)` – A input data for training. Its first dimension is the number of data points.
- `y (torch.Tensor)` – An output data for training. Its last dimension is the number of data points.
- `kernel (Kernel)` – A Pyro kernel object, which is the covariance function $k$.
- `mean_function (callable)` – An optional mean function $m$ of this Gaussian process. By default, we use zero mean.
• **jitter** (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

**model()**
A “model” stochastic function. If `self.y` is `None`, this method returns mean and variance of the Gaussian Process prior.

**guide()**
A “guide” stochastic function to be used in variational inference methods. It also gives posterior information to the method `forward()` for prediction.

**forward** (*Xnew, full_cov=False*)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data $X_{new}$:

$$p(f^* | X_{new}, X, y, k; \theta),$$

where $\theta$ are parameters of this model.

**Note:** Model’s parameters $\theta$ together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

**Parameters**
- **Xnew** (*torch.Tensor*) – A input data for testing. Note that `Xnew.shape[1:]` must be the same as `X.shape[1:]`.
- **full_cov** (*bool*) – A flag to decide if we want to predict full covariance matrix or just variance.

**Returns**  loc and covariance matrix (or variance) of $p(f^*(X_{new}))$

**Return type**  tuple(torch.Tensor, torch.Tensor)

**set_data** (*X, y=None*)
Sets data for Gaussian Process models.

Some examples to utilize this method are:

- Batch training on a sparse variational model:

  ```python
 >>> Xu = torch.tensor([[1., 0, 2]]) # inducing input
 >>> likelihood = gp.likelihoods.Gaussian()
 >>> vsgp = gp.models.VariationalSparseGP(X, y, kernel, Xu, likelihood)
 >>> optimizer = torch.optim.Adam(vsgp.parameters(), lr=0.01)
 >>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
 >>> batched_X, batched_y = X.split(split_size=10), y.split(split_size=10)
 >>> for Xi, yi in zip(batched_X, batched_y):
 ... optimizer.zero_grad()
 ... vsgp.set_data(Xi, yi)
 ... svi.step() # doctest: +SKIP
 ... loss = loss_fn(vsgp.model, vsgp.guide) # doctest: +SKIP
 ... loss.backward() # doctest: +SKIP
 ... optimizer.step()
  ```

- Making a two-layer Gaussian Process stochastic function:
```python
gpr1 = gp.models.GPRegression(X, None, kernel)
>>> Z, _ = gpr1.model()
>>> gpr2 = gp.models.GPRegression(Z, y, kernel)
>>> def two_layer_model():
... Z, _ = gpr1.model()
... gpr2.set_data(Z, y)
... return gpr2.model()
```

References:


### Parameters

- **X** *(torch.Tensor)* – A input data for training. Its first dimension is the number of data points.
- **y** *(torch.Tensor)* – An output data for training. Its last dimension is the number of data points.

### 16.1.2 GPRegression

**class GPRegression** *(X, y, kernel, noise=None, mean_function=None, jitter=1e-06)*

Bases: *pyro.contrib.gp.models.model.GPModel*

Gaussian Process Regression model.

The core of a Gaussian Process is a covariance function \( k \) which governs the similarity between input points. Given \( k \), we can establish a distribution over functions \( f \) by a multivarite normal distribution

\[
p(f(X)) = N(0, k(X, X)),
\]

where \( X \) is any set of input points and \( k(X, X) \) is a covariance matrix whose entries are outputs \( k(x, z) \) of \( k \) over input pairs \( (x, z) \). This distribution is usually denoted by

\[
f \sim GP(0, k).
\]

**Note:** Generally, beside a covariance matrix \( k \), a Gaussian Process can also be specified by a mean function \( m \) (which is a zero-value function by default). In that case, its distribution will be

\[
p(f(X)) = N(m(X), k(X, X)).
\]

Given inputs \( X \) and their noisy observations \( y \), the Gaussian Process Regression model takes the form

\[
f \sim GP(0, k(X, X)),
y \sim f + \epsilon,
\]

where \( \epsilon \) is Gaussian noise.

**Note:** This model has \( O(N^3) \) complexity for training, \( O(N^3) \) complexity for testing. Here, \( N \) is the number of train inputs.
Parameters

- \(X\) (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
- \(y\) (torch.Tensor) – An output data for training. Its last dimension is the number of data points.
- kernel (Kernel) – A Pyro kernel object, which is the covariance function \(k\).
- noise (torch.Tensor) – Variance of Gaussian noise of this model.
- mean_function (callable) – An optional mean function \(m\) of this Gaussian process. By default, we use zero mean.
- jitter (float) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

model()
guide()
forward(Xnew, full_cov=False, noiseless=True)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{new}\):

\[
p(f^* \mid X_{new}, X, y, k, \epsilon) = \mathcal{N}(\text{loc}, \text{cov}).
\]

Note: The noise parameter noise(\(\epsilon\)) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- \(X_{new}\) (torch.Tensor) – A input data for testing. Note that \(X_{new}\.shape[1:]\) must be the same as self.X.shape[1:].
- full_cov (bool) – A flag to decide if we want to predict full covariance matrix or just variance.
- noiseless (bool) – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new}))\)

Return type tuple(torch.Tensor, torch.Tensor)

iter_sample(noiseless=True)
Iteratively constructs a sample from the Gaussian Process posterior.
Recall that at test input points \(X_{new}\), the posterior is multivariate Gaussian distributed with mean and covariance matrix given by forward().

This method samples lazily from this multivariate Gaussian. The advantage of this approach is that later query points can depend upon earlier ones. Particularly useful when the querying is to be done by an optimisation routine.
Note: The noise parameter \(\text{noise}(\epsilon)\) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters **noisless** (bool) – A flag to decide if we want to add sampling noise to the samples beyond the noise inherent in the GP posterior.

Returns sampler

Return type function

16.1.3 SparseGPRegression

class **SparseGPRegression** (X, y, kernel, Xu, noise=None, mean_function=None, approx=None, jitter=1e-06)

Bases: `pyro.contrib.gp.models.model.GPModel`

Sparse Gaussian Process Regression model.

In GPRegression model, when the number of input data \(X\) is large, the covariance matrix \(k(X, X)\) will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). By introducing an additional inducing-input parameter \(X_u\), we can reduce computational cost by approximate \(k(X, X)\) by a low-rank Nyström approximation \(Q\) (see reference [1]), where

\[
Q = k(X, X_u)k(X, X)^{-1}k(X_u, X).
\]

Given inputs \(X\), their noisy observations \(y\), and the inducing-input parameters \(X_u\), the model takes the form:

\[
\begin{align*}
u & \sim \mathcal{GP}(0, k(X_u, X_u)), \\
f & \sim q(f \mid X, X_u) = \mathbb{E}_{p(u)}q(f \mid X, X_u, u), \\
y & \sim f + \epsilon,
\end{align*}
\]

where \(\epsilon\) is Gaussian noise and the conditional distribution \(q(f \mid X, X_u, u)\) is an approximation of

\[
p(f \mid X, X_u, u) = \mathcal{N}(m, k(X, X) - Q),
\]

whose terms \(m\) and \(k(X, X) - Q\) is derived from the joint multivariate normal distribution:

\[
[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])).
\]

This class implements three approximation methods:

- Deterministic Training Conditional (DTC):

\[
q(f \mid X, X_u, u) = \mathcal{N}(m, 0),
\]

which in turns will imply

\[
f \sim \mathcal{N}(0, Q).
\]

- Fully Independent Training Conditional (FITC):
which in turns will correct the diagonal part of the approximation in DTC:

\[ f \sim \mathcal{N}(0, Q + \text{diag}(k(X, X) - Q)). \]

- Variational Free Energy (VFE), which is similar to DTC but has an additional \textit{trace_term} in the model’s log likelihood. This additional term makes “VFE” equivalent to the variational approach in \texttt{SparseVariationalGP} (see reference [2]).

\textbf{Note:} This model has \( \mathcal{O}(NM^2) \) complexity for training, \( \mathcal{O}(NM^2) \) complexity for testing. Here, \( N \) is the number of train inputs, \( M \) is the number of inducing inputs.

\begin{itemize}
  \item \texttt{X} (\texttt{torch.Tensor}) – A input data for training. Its first dimension is the number of data points.
  \item \texttt{y} (\texttt{torch.Tensor}) – An output data for training. Its last dimension is the number of data points.
  \item \texttt{kernel} (\texttt{Kernel}) – A Pyro kernel object, which is the covariance function \( k \).
  \item \texttt{Xu} (\texttt{torch.Tensor}) – Initial values for inducing points, which are parameters of our model.
  \item \texttt{noise} (\texttt{torch.Tensor}) – Variance of Gaussian noise of this model.
  \item \texttt{mean_function} (\texttt{callable}) – An optional mean function \( m \) of this Gaussian process. By default, we use zero mean.
  \item \texttt{approx} (\texttt{str}) – One of approximation methods: “DTC”, “FITC”, and “VFE” (default).
  \item \texttt{jitter} (\texttt{float}) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
  \item \texttt{name} (\texttt{str}) – Name of this model.
\end{itemize}

\texttt{model()}

\texttt{guide()}

\texttt{forward(Xnew, full_cov=\texttt{False}, noiseless=\texttt{True})}

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \( X_{\text{new}} \):

\[ p(f^* \mid X_{\text{new}}, X, y, k, Xu, \epsilon) = \mathcal{N}(\text{loc}, \text{cov}). \]
Note: The noise parameter `noise` (\( \epsilon \)), the inducing-point parameter \( X_u \), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- `Xnew` (torch.Tensor) – A input data for testing. Note that `Xnew.shape[1:]` must be the same as `self.X.shape[1:]`.
- `full_cov` (bool) – A flag to decide if we want to predict full covariance matrix or just variance.
- `noiseless` (bool) – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \( p(f^*(X_{new})) \)

Return type `tuple(torch.Tensor, torch.Tensor)`

16.1.4 VariationalGP

class VariationalGP(X, y, kernel, likelihood, mean_function=None, latent_shape=None, whiten=False, jitter=1e-06)

Bases: `pyro.contrib.gp.models.model.GPModel`

Variational Gaussian Process model.

This model deals with both Gaussian and non-Gaussian likelihoods. Given inputs `X` and their noisy observations `y`, the model takes the form

\[
\begin{align*}
  f & \sim \mathcal{GP}(0, k(X, X)), \\
  y & \sim p(y) = p(y \mid f)p(f),
\end{align*}
\]

where \( p(y \mid f) \) is the likelihood.

We will use a variational approach in this model by approximating \( q(f) \) to the posterior \( p(f \mid y) \). Precisely, \( q(f) \) will be a multivariate normal distribution with two parameters `f_loc` and `f_scale_tril`, which will be learned during a variational inference process.

Note: This model can be seen as a special version of SparseVariationalGP model with \( X_u = X \).

Note: This model has \( \mathcal{O}(N^3) \) complexity for training, \( \mathcal{O}(N^3) \) complexity for testing. Here, \( N \) is the number of train inputs. Size of variational parameters is \( \mathcal{O}(N^2) \).

Parameters

- `X` (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
- `y` (torch.Tensor) – An output data for training. Its last dimension is the number of data points.
- `kernel` (Kernel) – A Pyro kernel object, which is the covariance function \( k \).
- `Likelihood` `likelihood` (likelihood) – A likelihood object.
• **mean_function** (*callable*) – An optional mean function \(m\) of this Gaussian process. By default, we use zero mean.

• **latent_shape** (*torch.Size*) – Shape for latent processes (\(\text{batch_shape}\) of \(q(f)\)). By default, it equals to output batch shape \(y.\text{shape}[:-1]\). For the multi-class classification problems, \(\text{latent\_shape}[-1]\) should correspond to the number of classes.

• **whiten** (*bool*) – A flag to tell if variational parameters \(f_{\text{loc}}\) and \(f_{\text{scale\_tril}}\) are transformed by the inverse of \(L_{ff}\), where \(L_{ff}\) is the lower triangular decomposition of \(k(X, X)\). Enable this flag will help optimization.

• **jitter** (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

```python
model()
guide()
forward(Xnew, full_cov=False)
```

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}}\):

\[
p(f^* \mid X_{\text{new}}, X, y, k, f_{\text{loc}}, f_{\text{scale\_tril}}) = \mathcal{N}(\text{loc, cov}).
\]

**Note:** Variational parameters \(f_{\text{loc}}, f_{\text{scale\_tril}}\), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

**Parameters**

- **Xnew** (*torch.Tensor*) – A input data for testing. Note that \(X_{\text{new}}.\text{shape}[1:]\) must be the same as \(\text{self.X.\text{shape}[1]}\).

- **full_cov** (*bool*) – A flag to decide if we want to predict full covariance matrix or just variance.

**Returns** loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}}))\)

**Return type** tuple(torch.Tensor, torch.Tensor)

16.1.5 VariationalSparseGP

class VariationalSparseGP (X, y, kernel, Xu, likelihood, mean_function=None, latent_shape=None, num_data=None, whiten=False, jitter=1e-06)

Bases: *pyro.contrib.gp.models.model.GPModel*

Variational Sparse Gaussian Process model.

In VariationalGP model, when the number of input data \(X\) is large, the covariance matrix \(k(X, X)\) will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). This model introduces an additional inducing-input parameter \(X_u\) to solve that problem. Given inputs \(X\), their noisy observations \(y\), and the inducing-input parameters \(X_u\), the model takes the form:

\[
[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])), \quad y \sim p(y) = p(y \mid f)p(f),
\]

where \(p(y \mid f)\) is the likelihood.
We will use a variational approach in this model by approximating $q(f, u)$ to the posterior $p(f, u \mid y)$. Precisely, $q(f) = p(f \mid u)q(u)$, where $q(u)$ is a multivariate normal distribution with two parameters $u_{\text{loc}}$ and $u_{\text{scale\_tril}}$, which will be learned during a variational inference process.

**Note:** This model can be learned using MCMC method as in reference [2]. See also GPModel.

**Note:** This model has $\mathcal{O}(NM^2)$ complexity for training, $\mathcal{O}(M^3)$ complexity for testing. Here, $N$ is the number of train inputs, $M$ is the number of inducing inputs. Size of variational parameters is $\mathcal{O}(M^2)$.

References:


**Parameters**

- $X$ (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
- $y$ (*torch.Tensor*) – An output data for training. Its last dimension is the number of data points.
- $\text{kernel}$ (*Kernel*) – A Pyro kernel object, which is the covariance function $k$.
- $X_u$ (*torch.Tensor*) – Initial values for inducing points, which are parameters of our model.
- $\text{Likelihood likelihood}$ (*likelihood*) – A likelihood object.
- $\text{mean\_function}$ (*callable*) – An optional mean function $m$ of this Gaussian process. By default, we use zero mean.
- $\text{latent\_shape}$ (*torch.Size*) – Shape for latent processes (batch_shape of $q(u)$). By default, it equals to output batch shape $y$.$\text{shape}[:-1]$. For the multi-class classification problems, $\text{latent\_shape}[:-1]$ should correspond to the number of classes.
- $\text{num\_data}$ (*int*) – The size of full training dataset. It is useful for training this model with mini-batch.
- $\text{whiten}$ (*bool*) – A flag to tell if variational parameters $u_{\text{loc}}$ and $u_{\text{scale\_tril}}$ are transformed by the inverse of $\text{Luu}$, where $\text{Luu}$ is the lower triangular decomposition of $\text{kernel}(X_u, X_u)$. Enable this flag will help optimization.
- $\text{jitter}$ (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

**model ()**

**guide ()**

**forward ($X_{\text{new}}, \text{full\_cov}=\text{False}$)**

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data $X_{\text{new}}$:

$$p(f^* \mid X_{\text{new}}, X, y, k, X_u, u_{\text{loc}}, u_{\text{scale\_tril}}) = \mathcal{N}(\text{loc}, \text{cov}).$$
Note: Variational parameters \( u_{\text{loc}}, u_{\text{scale\_tril}} \), the inducing-point parameter \( X_{\text{u}} \), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- \( X_{\text{new}} (\text{torch.Tensor}) \) – A input data for testing. Note that \( X_{\text{new}}.\text{shape}[1:] \) must be the same as \( \text{self}.X.\text{shape}[1:] \).
- \( \text{full\_cov} (\text{bool}) \) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of \( p(f^*(X_{\text{new}})) \)

Return type tuple(torch.Tensor, torch.Tensor)

16.1.6 GPLVM

class GPLVM\( (\text{base\_model}) \)  
Bases: pyro.contrib.gp.parameterized.Parameterized

Gaussian Process Latent Variable Model (GPLVM) model.

GPLVM is a Gaussian Process model with its train input data is a latent variable. This model is useful for dimensional reduction of high dimensional data. Assume the mapping from low dimensional latent variable to is a Gaussian Process instance. Then the high dimensional data will play the role of train output \( y \) and our target is to learn latent inputs which best explain \( y \). For the purpose of dimensional reduction, latent inputs should have lower dimensions than \( y \).

We follows reference [1] to put a unit Gaussian prior to the input and approximate its posterior by a multivariate normal distribution with two variational parameters: \( X_{\text{loc}} \) and \( X_{\text{scale\_tril}} \).

For example, we can do dimensional reduction on Iris dataset as follows:

```python
>>> # With \(y \) as the 2D Iris data of shape 150x4 and we want to reduce its dimension
>>> # to a tensor \(X \) of shape 150x2, we will use GPLVM.

>>> # First, define the initial values for \(X \) parameter:
>>> X_init = torch.zeros(150, 2)
>>> # Then, define a Gaussian Process model with input \(X_{\text{init}} \) and output \(y \):
>>> kernel = gp.kernels.RBF(input_dim=2, lengthscale=torch.ones(2))
>>> Xu = torch.zeros(20, 2) # initial inducing inputs of sparse model
>>> gpmodule = gp.models.SparseGPRegression(X_init, y, kernel, Xu)
>>> # Finally, wrap gpmodule by GPLVM, optimize, and get the "learned" mean of \(X \):
>>> gplvm = gp.models.GPLVM(gpmodule)
>>> gp.util.train(gplvm) # doctest: +SKIP
>>> X = gplvm.X
```

Reference:


Parameters base_model \( (\text{GPModel}) \) – A Pyro Gaussian Process model object. Note that base_model.X will be the initial value for the variational parameter \( X_{\text{loc}} \).
guide()

forward(**kwargs)
    Forward method has the same signal as its base_model. Note that the train input data of base_model is sampled from GPLVM.

16.2 Kernels

16.2.1 Kernel

class Kernel(input_dim, active_dims=None)
    Bases: pyro.contrib.gp.parameterized.Parameterized

    Base class for kernels used in this Gaussian Process module.
    Every inherited class should implement a forward() pass which takes inputs X, Z and returns their covariance matrix.
    To construct a new kernel from the old ones, we can use methods add(), mul(), exp(), warp(), vertical_scale().
    References:

    Parameters
    • input_dim (int) – Number of feature dimensions of inputs.
    • variance (torch.Tensor) – Variance parameter of this kernel.
    • active_dims (list) – List of feature dimensions of the input which the kernel acts on.

    forward(X, Z=None, diag=False)
    Calculates covariance matrix of inputs on active dimensionals.

    Parameters
    • X (torch.Tensor) – A 2D tensor with shape N x input_dim.
    • Z (torch.Tensor) – An (optional) 2D tensor with shape M x input_dim.
    • diag (bool) – A flag to decide if we want to return full covariance matrix or just its diagonal part.

    Returns covariance matrix of X and Z with shape N x M

    Return type torch.Tensor

16.2.2 Brownian

class Brownian(input_dim, variance=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel

    This kernel correponds to a two-sided Brownian motion (Wiener process):

    \[
    k(x, z) = \begin{cases} 
                \sigma^2 \min(|x|, |z|), & \text{if } x \cdot z \geq 0 \\
                0, & \text{otherwise.}
            \end{cases}
    \]

16.2. Kernels
Note that the input dimension of this kernel must be 1.

Reference:

\( \text{forward}(X, Z=\text{None}, \text{diag}=\text{False}) \)

### 16.2.3 Combination

class Combination(kern0, kern1)
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels derived from a combination of kernels.

Parameters
- \( \text{kern0} \) (Kernel) – First kernel to combine.
- \( \text{kern1} \) (Kernel or numbers.Number) – Second kernel to combine.

### 16.2.4 Constant

class Constant(input_dim, variance=\text{None}, active_dims=\text{None})
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Implementation of Constant kernel:

\[ k(x, z) = \sigma^2. \]

\( \text{forward}(X, Z=\text{None}, \text{diag}=\text{False}) \)

### 16.2.5 Coregionalize

class Coregionalize(input_dim, rank=\text{None}, components=\text{None}, diagonal=\text{None}, active_dims=\text{None})
Bases: pyro.contrib.gp.kernels.kernel.Kernel

A kernel for the linear model of coregionalization \( k(x, z) = x^T(WW^T + D)z \) where \( W \) is an input_dim-by-rank matrix and typically \( \text{rank} < \text{input\_dim} \), and \( D \) is a diagonal matrix.

This generalizes the Linear kernel to multiple features with a low-rank-plus-diagonal weight matrix. The typical use case is for modeling correlations among outputs of a multi-output GP, where outputs are coded as distinct data points with one-hot coded features denoting which output each datapoint represents.

If only \( \text{rank} \) is specified, the kernel \( (W \ W^T + D) \) will be randomly initialized to a matrix with expected value the identity matrix.

References:

Parameters
- \( \text{input\_dim} \) (int) – Number of feature dimensions of inputs.
- \( \text{rank} \) (int) – Optional rank. This is only used if \( \text{components} \) is unspecified. If neither \( \text{rank} \) nor \( \text{components} \) is specified, then \( \text{rank} \) defaults to \( \text{input\_dim} \).
• **components** (*torch.Tensor*) – An optional \((\text{input\_dim}, \text{rank})\) shaped matrix that maps features to \text{rank}-many components. If unspecified, this will be randomly initialized.

• **diagonal** (*torch.Tensor*) – An optional vector of length \text{input\_dim}. If unspecified, this will be set to constant 0.5.

• **active_dims** (*list*) – List of feature dimensions of the input which the kernel acts on.

• **name** (*str*) – Name of the kernel.

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]

### 16.2.6 Cosine

class **Cosine** (*input\_dim*, \text{variance}=\text{None}, \text{lengthscale}=\text{None}, \text{active\_dims}=\text{None})

Bases: `pyro.contrib.gp.kernels.isotropic.Isotropy`

Implementation of Cosine kernel:
\[
k(x, z) = \sigma^2 \cos \left( \frac{|x-z|}{\ell} \right).
\]

Parameters **lengthscale** (*torch.Tensor*) – Length-scale parameter of this kernel.

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]

### 16.2.7 DotProduct

class **DotProduct** (*input\_dim*, \text{variance}=\text{None}, \text{active\_dims}=\text{None})

Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

Base class for kernels which are functions of \(x \cdot z\).

### 16.2.8 Exponent

class **Exponent** (*kern*)

Bases: `pyro.contrib.gp.kernels.kernel.Transforming`

Creates a new kernel according to
\[
k_{\text{new}}(x, z) = \exp(k(x, z)).
\]

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]

### 16.2.9 Exponential

class **Exponential** (*input\_dim*, \text{variance}=\text{None}, \text{lengthscale}=\text{None}, \text{active\_dims}=\text{None})

Bases: `pyro.contrib.gp.kernels.isotropic.Isotropy`

Implementation of Exponential kernel:
\[
k(x, z) = \sigma^2 \exp \left( -\frac{|x-z|}{\ell} \right).
\]

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]
16.2.10 Isotropy

class Isotropy (input_dim=None, variance=None, lengthscale=None, active_dims=None)
bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for a family of isotropic covariance kernels which are functions of the distance \( |x - z|/l \), where \( l \) is the length-scale parameter.

By default, the parameter lengthscale has size 1. To use the isotropic version (different lengthscale for each dimension), make sure that lengthscale has size equal to input_dim.

Parameters lengthscale (torch.Tensor) – Length-scale parameter of this kernel.

16.2.11 Linear

class Linear (input_dim=None, variance=None, active_dims=None)
bases: pyro.contrib.gp.kernels.dot_product.DotProduct

Implementation of Linear kernel:
\[
k(x, z) = \sigma^2 x \cdot z.
\]

Doing Gaussian Process regression with linear kernel is equivalent to doing a linear regression.

Note: Here we implement the homogeneous version. To use the inhomogeneous version, consider using Polynomial kernel with degree=1 or making a Sum with a Constant kernel.

forward (X, Z=None, diag=False)

16.2.12 Matern32

class Matern32 (input_dim=None, variance=None, lengthscale=None, active_dims=None)
bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern32 kernel:
\[
k(x, z) = \sigma^2 \left( 1 + \sqrt{3} \times \frac{|x-z|}{l} \right) \exp \left( -\sqrt{3} \times \frac{|x-z|}{l} \right).
\]

forward (X, Z=None, diag=False)

16.2.13 Matern52

class Matern52 (input_dim=None, variance=None, lengthscale=None, active_dims=None)
bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern52 kernel:
\[
k(x, z) = \sigma^2 \left( 1 + \sqrt{5} \times \frac{|x-z|}{l} + \frac{5}{3} \times \frac{|x-z|^2}{l^2} \right) \exp \left( -\sqrt{5} \times \frac{|x-z|}{l} \right).
\]

forward (X, Z=None, diag=False)
16.2.14 Periodic

class Periodic(input_dim, variance=None, lengthscale=None, period=None, active_dims=None)
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Implementation of Periodic kernel:
\[ k(x, z) = \sigma^2 \exp \left( -2 \times \frac{\sin^2(\pi(x-z)/p)}{l^2} \right), \]
where \( p \) is the period parameter.

References:
[1] Introduction to Gaussian processes, David J.C. MacKay

Parameters
- lengthscale (torch.Tensor) – Length scale parameter of this kernel.
- period (torch.Tensor) – Period parameter of this kernel.

forward (X, Z=None, diag=False)

16.2.15 Polynomial

class Polynomial(input_dim, variance=None, bias=None, degree=1, active_dims=None)
Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

Implementation of Polynomial kernel:
\[ k(x, z) = \sigma^2 (bias + x \cdot z)^d. \]

Parameters
- bias (torch.Tensor) – Bias parameter of this kernel. Should be positive.
- degree (int) – Degree \( d \) of the polynomial.

forward (X, Z=None, diag=False)

16.2.16 Product

class Product(kern0, kern1)
Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a product/tensor product of two kernels. The second kernel can be a constant.

forward (X, Z=None, diag=False)

16.2.17 RBF

class RBF(input_dim, variance=None, lengthscale=None, active_dims=None)
Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Radial Basis Function kernel:
\[ k(x, z) = \sigma^2 \exp \left( -0.5 \times \frac{|x-z|^2}{l^2} \right). \]
16.2.18 RationalQuadratic

class RationalQuadratic(input_dim, variance=None, lengthscale=None, scale_mixture=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of RationalQuadratic kernel:
\[ k(x, z) = \sigma^2 \left( 1 + 0.5 \times \frac{|x-z|^2}{\alpha l^2} \right)^{-\frac{1}{\alpha}}. \]

Parameters scale_mixture (torch.Tensor) – Scale mixture (\(\alpha\)) parameter of this kernel.
Should have size 1.

forward (X, Z=None, diag=False)

16.2.19 Sum

class Sum(kern0, kern1)

Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a sum/direct sum of two kernels. The second kernel can be a constant.

forward (X, Z=None, diag=False)

16.2.20 Transforming

class Transforming(kern)

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels derived from a kernel by some transforms such as warping, exponent, vertical scaling.

Parameters kern (Kernel) – The original kernel.

16.2.21 VerticalScaling

class VerticalScaling(kern, vscaling_fn)

Bases: pyro.contrib.gp.kernels.kernel.Transforming

Creates a new kernel according to
\[ k_{new}(x, z) = f(x)k(x, z)f(z), \]

where \(f\) is a function.

Parameters vscaling_fn (callable) – A vertical scaling function \(f\).

forward (X, Z=None, diag=False)
16.2.22 Warping

```python
class Warping(kern, iwarping_fn=None, owarping_coef=None):
 Bases: pyro.contrib.gp.kernels.kernel.Transforming

 Creates a new kernel according to
 \[k_{\text{new}}(x, z) = q(k(f(x), f(z))) , \]
 where \(f \) is an function and \(q \) is a polynomial with non-negative coefficients \(owarping_coef \).

 We can take advantage of \(f \) to combine a Gaussian Process kernel with a deep learning architecture. For example:
    ```python
    >>> linear = torch.nn.Linear(10, 3)
    >>> # register its parameters to Pyro's ParamStore and wrap it by lambda
    >>> # to call the primitive pyro.module each time we use the linear function
    >>> pyro_linear_fn = lambda x: pyro.module("linear", linear)(x)
    >>> kernel = gp.kernels.Matern52(input_dim=3, lengthscale=torch.ones(3))
    >>> warped_kernel = gp.kernels.Warping(kernel, pyro_linear_fn)
    ```

 Reference:
 [1] Deep Kernel Learning, Andrew G. Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. Xing

 Parameters
 - `iwarping_fn (callable)` – An input warping function \(f \).
 - `owarping_coef (list)` – A list of coefficients of the output warping polynomial. These
 coefficients must be non-negative.

 `forward(X, Z=None, diag=False)`
```

16.2.23 WhiteNoise

```python
class WhiteNoise(input_dim, variance=None, active_dims=None):
 Bases: pyro.contrib.gp.kernels.kernel.Kernel

 Implementation of WhiteNoise kernel:
 \[k(x, z) = \sigma^2 \delta(x, z) , \]
 where \(\delta \) is a Dirac delta function.

 `forward(X, Z=None, diag=False)`
```

16.3 Likelihoods

16.3.1 Likelihood

```python
class Likelihood:
 Bases: pyro.contrib.gp.parameterized.Parameterized

 Base class for likelihoods used in Gaussian Process.

 Every inherited class should implement a forward pass which takes an input \(f \) and returns a sample \(y \).

 `forward(f_loc, f_var, y=None)`
 Samples \(y \) given \(f_{\text{loc}}, f_{\text{var}} \).```
Parameters

- \textbf{f_loc (torch.Tensor)} – Mean of latent function output.
- \textbf{f_var (torch.Tensor)} – Variance of latent function output.
- \textbf{y (torch.Tensor)} – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

16.3.2 Binary

class \textbf{Binary (response_function=None)}

Bases: pyro.contrib gp.likelihoods.likelihood.Likelihood

Implementation of Binary likelihood, which is used for binary classification problems.

Binary likelihood uses \textit{Bernoulli} distribution, so the output of \textit{response_function} should be in range \((0, 1)\). By default, we use \textit{sigmoid} function.

\begin{itemize}
 \item \textbf{Parameters response_function (callable)} – A mapping to correct domain for Binary likelihood.
\end{itemize}

\textbf{forward (f_loc, f_var, y=None)}

Samples \(y\) given \(f_{\text{loc}}, f_{\text{var}}\) according to

\[
\begin{align*}
 f & \sim \mathcal{N}(f_{\text{loc}}, f_{\text{var}}), \\
 y & \sim \mathcal{B}(f).
\end{align*}
\]

\textbf{Note:} The log likelihood is estimated using Monte Carlo with 1 sample of \(f\).

Parameters

- \textbf{f_loc (torch.Tensor)} – Mean of latent function output.
- \textbf{f_var (torch.Tensor)} – Variance of latent function output.
- \textbf{y (torch.Tensor)} – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

16.3.3 Gaussian

class \textbf{Gaussian (variance=None)}

Bases: pyro.contrib gp.likelihoods.likelihood.Likelihood

Implementation of Gaussian likelihood, which is used for regression problems.

Gaussian likelihood uses \textit{Normal} distribution.

\begin{itemize}
 \item \textbf{Parameters variance (torch.Tensor)} – A variance parameter, which plays the role of noise in regression problems.
\end{itemize}
forward (*f_loc, f_var, y=None*)

Samples y given f_{loc}, f_{var} according to

$$y \sim \mathcal{N}(\epsilon + f_{loc}, f_{var})$$

where ϵ is the variance parameter of this likelihood.

Parameters

- **f_loc** (*torch.Tensor*) – Mean of latent function output.
- **f_var** (*torch.Tensor*) – Variance of latent function output.
- **y** (*torch.Tensor*) – Training output tensor.

Returns a tensor sampled from likelihood

Return type *torch.Tensor*

16.3.4 MultiClass

class MultiClass(num_classes, response_function=None)

Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of MultiClass likelihood, which is used for multi-class classification problems.

MultiClass likelihood uses **Categorical** distribution, so *response_function* should normalize its input’s rightmost axis. By default, we use **softmax** function.

Parameters

- **num_classes** (*int*) – Number of classes for prediction.
- **response_function** (*callable*) – A mapping to correct domain for MultiClass likelihood.

forward (*f_loc, f_var, y=None*)

Samples y given f_{loc}, f_{var} according to

$$f \sim \mathcal{N}(\epsilon + f_{loc}, f_{var}),$$

$$y \sim \mathcal{C}(f).$$

Note: The log likelihood is estimated using Monte Carlo with 1 sample of f.

Parameters

- **f_loc** (*torch.Tensor*) – Mean of latent function output.
- **f_var** (*torch.Tensor*) – Variance of latent function output.
- **y** (*torch.Tensor*) – Training output tensor.

Returns a tensor sampled from likelihood

Return type *torch.Tensor*
16.3.5 Poisson

class Poisson(response_function=None)
 Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of Poisson likelihood, which is used for count data.

Poisson likelihood uses the Poisson distribution, so the output of response_function should be positive. By default, we use torch.exp() as response function, corresponding to a log-Gaussian Cox process.

Parameters
 response_function(callable) – A mapping to positive real numbers.

forward(f_loc, f_var, y=None)

Samples y given f_loc, f_var according to

\[f \sim \mathcal{N}(f_{\text{loc}}, f_{\text{var}}), \]
\[y \sim \mathcal{P}(\exp(f)). \]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of f.

Parameters
 • f_loc(torch.Tensor) – Mean of latent function output.
 • f_var(torch.Tensor) – Variance of latent function output.
 • y(torch.Tensor) – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

16.4 Parameterized

class Parameterized
 Bases: pyro.nn.module.PyroModule

A wrapper of PyroModule whose parameters can be set constraints, set priors.

By default, when we set a prior to a parameter, an auto Delta guide will be created. We can use the method autoguide() to setup other auto guides.

Example:

```python
>>> class Linear(Parameterized):
...    def __init__(self, a, b):
...        super(Linear, self).__init__()
...        self.a = Parameter(a)
...        self.b = Parameter(b)
...    def forward(self, x):
...        return self.a * x + self.b

>>> linear = Linear(torch.tensor(1.), torch.tensor(0.))
>>> linear.a = PyroParam(torch.tensor(1.), constraints.positive)
>>> linear.b = PyroSample(dist.Normal(0, 1))
```

(continues on next page)
>>> linear.autoguide("b", dist.Normal)
>>> assert "a_unconstrained" in dict(linear.named_parameters())
>>> assert "b_loc" in dict(linear.named_parameters())
>>> assert "b_scale_unconstrained" in dict(linear.named_parameters())

Note that by default, data of a parameter is a float `torch.Tensor` (unless we use `torch.set_default_tensor_type()` to change default tensor type). To cast these parameters to a correct data type or GPU device, we can call methods such as `double()` or `cuda()`. See `torch.nn.Module` for more information.

set_prior *(name, prior)*

Sets prior for a parameter.

Parameters

- **name** *(str)* – Name of the parameter.
- **prior** *(Distribution)* – A Pyro prior distribution.

auto_guide *(name, dist_constructor)*

Sets an autoguide for an existing parameter with name `name` (mimic the behavior of module `pyro.infer.autoguide`).

Note: `dist_constructor` should be one of `Delta, Normal, and MultivariateNormal`. More distribution constructor will be supported in the future if needed.

Parameters

- **name** *(str)* – Name of the parameter.
- **dist_constructor** – A Distribution constructor.

set_mode *(mode)*

Sets `mode` of this object to be able to use its parameters in stochastic functions. If `mode="model"`, a parameter will get its value from its prior. If `mode="guide"`, the value will be drawn from its guide.

Note: This method automatically sets `mode` for submodules which belong to `Parameterized` class.

Parameters

- **mode** *(str)* – Either “model” or “guide”.

16.5 Util

conditional *(Xnew, X, kernel, f_loc, f_scale_tril=None, Lff=None, full_cov=False, whiten=False, jitter=1e-06)*

Given `Xnew`, predicts loc and covariance matrix of the conditional multivariate normal distribution

\[p(f^*(X_{new}) \mid X, k, f_{loc}, f_{scale_tril}). \]

Here `f_loc` and `f_scale_tril` are variation parameters of the variational distribution

\[q(f \mid f_{loc}, f_{scale_tril}) \sim p(f \mid X, y), \]
where \(f \) is the function value of the Gaussian Process given input \(X \)

\[
p(f(X)) \sim \mathcal{N}(0, k(X, X))
\]

and \(y \) is computed from \(f \) by some likelihood function \(p(y|f) \).

In case \(f_\text{scale_tril}=\text{None} \), we consider \(f = f_{\text{loc}} \) and computes

\[
p(f^*(X_{\text{new}}) | X, k, f).
\]

In case \(f_\text{scale_tril} \) is not \(\text{None} \), we follow the derivation from reference [1]. For the case \(f_\text{scale_tril}=\text{None} \), we follow the popular reference [2].

References:

[1] Sparse GPs: approximate the posterior, not the model

Parameters

- \(\text{Xnew} (\text{torch.Tensor}) \) – A new input data.
- \(\text{X} (\text{torch.Tensor}) \) – An input data to be conditioned on.
- \(\text{kernel} (\text{Kernel}) \) – A Pyro kernel object.
- \(\text{f_loc} (\text{torch.Tensor}) \) – Mean of \(q(f) \). In case \(f_\text{scale_tril}=\text{None} \), \(f_{\text{loc}} = f \).
- \(\text{f_scale_tril} (\text{torch.Tensor}) \) – Lower triangular decomposition of covariance matrix of \(q(f) \)’s.
- \(\text{Lff} (\text{torch.Tensor}) \) – Lower triangular decomposition of \(k(X, X) \) (optional).
- \(\text{full_cov} (\text{bool}) \) – A flag to decide if we want to return full covariance matrix or just variance.
- \(\text{whiten} (\text{bool}) \) – A flag to tell if \(f_{\text{loc}} \) and \(f_\text{scale_tril} \) are already transformed by the inverse of \(\text{Lff} \).
- \(\text{jitter} (\text{float}) \) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

Return type tuple(\text{torch.Tensor}, \text{torch.Tensor})

\text{train} (\text{gpmodule}, \text{optimizer}=\text{None}, \text{loss_fn}=\text{None}, \text{retain_graph}=\text{None}, \text{num_steps}=1000)

A helper to optimize parameters for a GP module.

Parameters

- \(\text{gpmodule} (\text{GPM} \text{odel}) \) – A GP module.
- \(\text{optimizer} (\text{Optimizer}) \) – A PyTorch optimizer instance. By default, we use Adam with \(lr=0.01 \).
- \(\text{loss_fn} (\text{callable}) \) – A loss function which takes inputs are \(\text{gpmodule} \). \text{model}, \text{gpmodule}.\text{guide}, \text{and returns ELBO loss}. By default, \(\text{loss_fn}=\text{TraceMeanField_ELBO()_differentiable_loss} \).
- \(\text{retain_graph} (\text{bool}) \) – An optional flag of \text{torch.autograd.backward}.
- \(\text{num_steps} (\text{int}) \) – An number of steps to run SVI.

Returns a list of losses during the training procedure

Return type list
This file contains a minimal implementation of the Pyro Probabilistic Programming Language. The API (method signatures, etc.) match that of the full implementation as closely as possible. This file is independent of the rest of Pyro, with the exception of the `pyro.distributions` module.

An accompanying example that makes use of this implementation can be found at examples/minipyro.py.

class Adam(optim_args)
 Bases: object
 __call__(params)

class JitTrace_ELBO(**kwargs)
 Bases: object
 __call__(model, guide, *args)

class Messenger(fn=None)
 Bases: object
 __call__(*args, **kwargs)
 postprocess_message(msg)
 process_message(msg)

class PlateMessenger(fn, size, dim)
 Bases: pyro.contrib.minipyro.Messenger
 process_message(msg)

class SVI(model, guide, optim, loss)
 Bases: object
 step(*args, **kwargs)
 Trace_ELBO(**kwargs)
 apply_stack(msg)
class block (fn=None, hide_fn=<function block.<lambda>>)
Bases: pyro.contrib.minipyro.Messenger

process_message (msg)
elbo (model, guide, *args, **kwargs)
get_param_store ()

param (name, init_value=None, constraint=Real(), event_dim=None)
plate (name, size, dim=None)

class replay (fn, guide_trace)
Bases: pyro.contrib.minipyro.Messenger

process_message (msg)
sample (name, fn, *args, **kwargs)

class seed (fn=None, rng_seed=None)
Bases: pyro.contrib.minipyro.Messenger

class trace (fn=None)
Bases: pyro.contrib.minipyro.Messenger

get_trace (*args, **kwargs)
postprocess_message (msg)
CHAPTER 18

Optimal Experiment Design

Tasks such as choosing the next question to ask in a psychology study, designing an election polling strategy, and deciding which compounds to synthesize and test in biological sciences are all fundamentally asking the same question: how do we design an experiment to maximize the information gathered? Pyro is designed to support automated optimal experiment design: specifying a model and guide is enough to obtain optimal designs for many different kinds of experiment scenarios. Check out our experimental design tutorials that use Pyro to [design an adaptive psychology study](https://pyro.ai/examples/working_memory.html) that uses past data to select the next question, and [design an election polling strategy](https://pyro.ai/examples/elections.html) that aims to give the strongest prediction about the eventual winner of the election.

Bayesian optimal experimental design (BOED) is a powerful methodology for tackling experimental design problems and is the framework adopted by Pyro. In the BOED framework, we begin with a Bayesian model with a likelihood $p(y|\theta, d)$ and a prior $p(\theta)$ on the target latent variables. In Pyro, any fully Bayesian model can be used in the BOED framework. The sample sites corresponding to experimental outcomes are the observation sites, those corresponding to latent variables of interest are the target sites. The design d is the argument to the model, and is not a random variable.

In the BOED framework, we choose the design that optimizes the expected information gain (EIG) on the targets θ from running the experiment

$$\text{EIG}(d) = \mathbb{E}_{p(y|d)}[H[p(\theta)]H[p(\theta|y, d)]] ,$$

where $H[]$ represents the entropy and $p(\theta|y, d) \propto p(\theta)p(y|\theta, d)$ is the posterior we get from running the experiment with design d and observing y. In other words, the optimal design is the one that, in expectation over possible future observations, most reduces posterior entropy over the target latent variables. If the predictive model is correct, this forms a design strategy that is (one-step) optimal from an information-theoretic viewpoint. For further details, see [1, 2].

The `pyro.contrib.oed` module provides tools to create optimal experimental designs for Pyro models. In particular, it provides estimators for the expected information gain (EIG).

To estimate the EIG for a particular design, we first set up our Pyro model. For example:

```python
def model(design):
    # This line allows batching of designs, treating all batch dimensions as independent.
```
with pyro.plate_stack("plate_stack", design.shape):
 # We use a Normal prior for theta
 theta = pyro.sample("theta", dist.Normal(torch.tensor(0.0), torch.tensor(1.0)))
 # We use a simple logistic regression model for the likelihood
 logit_p = theta - design
 y = pyro.sample("y", dist.Bernoulli(logits=logit_p))
 return y

We then select an appropriate EIG estimator, such as:

eig = nmc_eig(model, design, observation_labels=["y"], target_labels=["theta"], N=2500, M=50)

It is possible to estimate the EIG across a grid of designs:

designs = torch.stack([design1, design2], dim=0)

to find the best design from a number of options.

18.1 Expected Information Gain

laplace_eig(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=None, eig=True, **prior_entropy_kwargs)

Estimates the expected information gain (EIG) by making repeated Laplace approximations to the posterior.

Parameters

- **model** (function) – Pyro stochastic function taking design as only argument.
- **design** (torch.Tensor) – Tensor of possible designs.
- **observation_labels** (list) – labels of sample sites to be regarded as observables.
- **target_labels** (list) – labels of sample sites to be regarded as latent variables of interest, i.e. the sites that we wish to gain information about.
- **guide** (function) – Pyro stochastic function corresponding to model.
- **loss** – a Pyro loss such as pyro.infer.Trace_ELBO().differentiable_loss.
- **optim** – optimizer for the loss
- **num_steps** (int) – Number of gradient steps to take per sampled pseudo-observation.
- **final_num_samples** (int) – Number of y samples (pseudo-observations) to take.
- **y_dist** – Distribution to sample y from- if None we use the Bayesian marginal distribution.
• **eig** (*bool*) – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(EIG = prior\ entropy - APE \). If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the model. If False the APE is returned.

• **prior_entropy_kwargs** (*dict*) – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history

Return type `torch.Tensor`

`vi_eig(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None, eig=True, **prior_entropy_kwargs)`

Deprecated since version 0.4.1: Use `posterior_eig` instead.

Estimates the expected information gain (EIG) using variational inference (VI).

The APE is defined as

\[
APE(d) = \mathbb{E}_{Y \sim p(y|\theta,d)}[H(p(\theta|Y,d))]
\]

where \(H[p(x)] \) is the differential entropy. The APE is related to expected information gain (EIG) by the equation

\[
EIG(d) = H[p(\theta)] - APE(d)
\]

in particular, minimising the APE is equivalent to maximising EIG.

Parameters

• **model** (*function*) – A pyro model accepting `design` as only argument.

• **design** (*torch.Tensor*) – Tensor representation of design

• **observation_labels** (*list*) – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.

• **vi_parameters** (*dict*) – Variational inference parameters which should include: `optim`: an instance of `pyro.Optim`, `guide`: a guide function compatible with `model`, `num_steps`: the number of VI steps to make, and `loss`: the loss function to use for VI

• **is_parameters** (*dict*) – Importance sampling parameters for the marginal distribution of \(Y \). May include `num_samples`: the number of samples to draw from the marginal.

• **y_dist** (*pyro.distributions.Distribution*) – (optional) the distribution assumed for the response variable \(Y \)

• **eig** (*bool*) – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(EIG = prior\ entropy - APE \). If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the model. If False the APE is returned.

• **prior_entropy_kwargs** (*dict*) – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history

Return type `torch.Tensor`
nmc_eig(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None, independent_priors=False)

Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects,

$$\frac{1}{N} \sum_{n=1}^{N} \log p(y_n|\theta_n, d) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, d) \right)$$

where $\theta_n, y_n \sim p(\theta, y|d)$ and $\theta_m \sim p(\theta)$. The estimate in the presence of random effects is

$$\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M'} \sum_{m=1}^{M'} p(y_n|\theta_n, \bar{\theta}_n, d) \right) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, \bar{\theta}_m, d) \right)$$

where $\bar{\theta}$ are the random effects with $\bar{\theta}_{nm} \sim p(\bar{\theta}|\theta = \theta_n)$ and $\theta_m, \bar{\theta}_m \sim p(\theta, \bar{\theta})$. The latter form is used when $M_prime \neq None$.

Parameters

- **model (function)** – A pyro model accepting `design` as only argument.
- **design (torch.Tensor)** – Tensor representation of design
- **observation_labels (list)** – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels (list)** – A subset of the sample sites over which the posterior entropy is to be measured.
- **N (int)** – Number of outer expectation samples.
- **M (int)** – Number of inner expectation samples for $p(y|d)$.
- **M_prime (int)** – Number of samples for $p(y | \theta_n, \bar{\theta}_n, d)$ if required.
- **independent_priors (bool)** – Only used when M_prime is not `None`. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables.

Returns EIG estimate, optionally includes full optimization history

Return type **torch.Tensor**

donsker_varadhan_eig(model, design, observation_labels, target_labels, num_samples, num_steps, T, optim, return_history=False, final_design=None, final_num_samples=None)

Donsker-Varadhan estimate of the expected information gain (EIG).

The Donsker-Varadhan representation of EIG is

$$\sup_{T} E_{p(y, \theta|d)[T(y, \theta)]} - \log E_{p(y|d)p(\theta)}[\exp(T(y, \bar{\theta}))]$$

where T is any (measurable) function.

This method optimises the loss function over a pre-specified class of functions T.

Parameters

- **model (function)** – A pyro model accepting `design` as only argument.
- **design (torch.Tensor)** – Tensor representation of design
• **observation_labels** (*list*) – A subset of the sample sites present in *model*. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.

• **num_samples** (*int*) – Number of samples per iteration.

• **num_steps** (*int*) – Number of optimization steps.

• **or torch.nn.Module T** (*function*) – Optimisable function *T* for use in the Donsker-Varadhan loss function.

• **optim** (**pyro.optim.Optim**) – Optimiser to use.

• **return_history** (*bool*) – If True, also returns a tensor giving the loss function at each step of the optimization.

• **final_design** (**torch.Tensor**) – The final design tensor to evaluate at. If None, uses *design*.

• **final_num_samples** (*int*) – The number of samples to use at the final evaluation, If None, uses ‘num_samples’.

Returns EIG estimate, optionally includes full optimization history

Return type *torch.Tensor* or *tuple*

def posterior_eig(*model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None, eig=True, prior_entropy_kwargs={}, *args, **kwargs*)

Posterior estimate of expected information gain (EIG) computed from the average posterior entropy (APE) using $EIG(d) = H[p(\theta)] - APE(d)$. See [1] for full details.

The posterior representation of APE is

$$\sup_{q} E_{p(y,\theta|d)}[\log q(\theta|y, d)]$$

where q is any distribution on θ.

This method optimises the loss over a given *guide* family representing q.

Parameters

• **model** (*function*) – A pyro model accepting *design* as only argument.

• **design** (**torch.Tensor**) – Tensor representation of design

• **observation_labels** (*list*) – A subset of the sample sites present in *model*. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.

• **num_samples** (*int*) – Number of samples per iteration.

• **num_steps** (*int*) – Number of optimization steps.

• **guide** (*function*) – guide family for use in the (implicit) posterior estimation. The parameters of *guide* are optimised to maximise the posterior objective.

• **optim** (**pyro.optim.Optim**) – Optimiser to use.
• **return_history** *(bool)* – If True, also returns a tensor giving the loss function at each step of the optimization.

• **final_design** *(torch.Tensor)* – The final design tensor to evaluate at. If None, uses design.

• **final_num_samples** *(int)* – The number of samples to use at the final evaluation. If None, uses `num_samples`.

• **eig** *(bool)* – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(\text{EIG} = \text{prior entropy} - \text{APE} \). If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the model. If False the APE is returned.

• **prior_entropy_kwargs** *(dict)* – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history

Return type torch.Tensor or tuple

marginal_eig

Estimate EIG by estimating the marginal entropy \(p(y|d) \). See [1] for full details.

The marginal representation of EIG is

\[
\inf_q \ E_{p(y,\theta|d)} \left[\log \frac{p(y|\theta,d)}{q(y|d)} \right]
\]

where \(q \) is any distribution on \(y \). A variational family for \(q \) is specified in the *guide*.

Warning: This method does not estimate the correct quantity in the presence of random effects.

Parameters

- **model** *(function)* – A pyro model accepting `design` as only argument.

- **design** *(torch.Tensor)* – Tensor representation of design

- **observation_labels** *(list)* – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

- **target_labels** *(list)* – A subset of the sample sites over which the posterior entropy is to be measured.

- **num_samples** *(int)* – Number of samples per iteration.

- **num_steps** *(int)* – Number of optimization steps.

- **guide** *(function)* – guide family for use in the marginal estimation. The parameters of `guide` are optimised to maximise the log-likelihood objective.

- **optim** *(pyro.optim.Optim)* – Optimiser to use.

- **return_history** *(bool)* – If True, also returns a tensor giving the loss function at each step of the optimization.

- **final_design** *(torch.Tensor)* – The final design tensor to evaluate at. If None, uses design.
• `final_num_samples` *(int)* – The number of samples to use at the final evaluation. If `None`, uses `num_samples`.

Returns EIG estimate, optionally includes full optimization history

Return type `torch.Tensor` or tuple

`lfire_eig(model, design, observation_labels, target_labels, num_y_samples, num_theta_samples, num_steps, classifier, optim, return_history=False, final_design=None, final_num_samples=None)`

Estimates the EIG using the method of Likelihood-Free Inference by Ratio Estimation (LFIRE) as in [1]. LFIRE is run separately for several samples of θ.

Parameters

• `model` *(function)* – A pyro model accepting `design` as only argument.

• `design` *(torch.Tensor)* – Tensor representation of design

• `observation_labels` *(list)* – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• `target_labels` *(list)* – A subset of the sample sites over which the posterior entropy is to be measured.

• `num_y_samples` *(int)* – Number of samples to take in y for each θ.

• `num_steps` *(int)* – Number of optimization steps.

• `classifier` *(function)* – A Pytorch or Pyro classifier used to distinguish between samples of y under $p(y|d)$ and samples under $p(y|\theta, d)$ for some θ.

• `optim` *(pyro.optim.Optim)* – Optimiser to use.

• `return_history` *(bool)* – If `True`, also returns a tensor giving the loss function at each step of the optimization.

• `final_design` *(torch.Tensor)* – The final design tensor to evaluate at. If `None`, uses `design`.

• `final_num_samples` *(int)* – The number of samples to use at the final evaluation. If `None`, uses `num_samples`.

vnmc_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None)

Estimates the EIG using Variational Nested Monte Carlo (VNMC). The VNMC estimate [1] is

$$
\frac{1}{N} \sum_{n=1}^{N} \left[\log p(y_n|\theta_n, d) - \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\theta_{mn})p(y_n|\theta_{mn}, d)}{q(\theta_{mn}|y_n)} \right) \right]
$$

where $q(\theta|y)$ is the learned variational posterior approximation and $\theta_n, y_n \sim p(\theta, y|d), \theta_{mn} \sim q(\theta|y = y_n)$. As $N \to \infty$ this is an upper bound on EIG. We minimise this upper bound by stochastic gradient descent.
Warning: This method cannot be used in the presence of random effects.

Parameters

- **model (function)** – A pyro model accepting `design` as only argument.
- **design (torch.Tensor)** – Tensor representation of design
- **observation_labels (list)** – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels (list)** – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples (tuple)** – Number of \((N, M)\) samples per iteration.
- **num_steps (int)** – Number of optimization steps.
- **guide (function)** – guide family for use in the posterior estimation. The parameters of `guide` are optimised to minimise the VNMC upper bound.
- **optim (pyro.optim.Optim)** – Optimiser to use.
- **return_history (bool)** – If `True`, also returns a tensor giving the loss function at each step of the optimization.
- **final_design (torch.Tensor)** – The final design tensor to evaluate at. If `None`, uses `design`.
- **final_num_samples (tuple)** – The number of \((N, M)\) samples to use at the final evaluation. If `None`, uses `num_samples`.

Returns EIG estimate, optionally includes full optimization history

Return type torch.Tensor or tuple

18.2 Generalised Linear Mixed Models

Warning: This module will eventually be deprecated in favor of **brmp**

The **pyro.contrib.oed.glmm** module provides models and guides for generalised linear mixed models (GLMM). It also includes the Normal-inverse-gamma family.

To create a classical Bayesian linear model, use:

```python
from pyro.contrib.oed.glmm import known_covariance_linear_model

# Note: coef is a p-vector, observation_sd is a scalar
# Here, p=1 (one feature)
model = known_covariance_linear_model(coef_mean=torch.tensor([0.]),
                                       coef_sd=torch.tensor([10.]),
                                       observation_sd=torch.tensor(2.))
```

(continues on next page)
A non-linear link function may be introduced, for instance:

```python
from pyro.contrib.oed.glmm import logistic_regression_model

# No observation_sd is needed for logistic models
model = logistic_regression_model(coef_mean=torch.tensor([0.]),
                                   coef_sd=torch.tensor([10.]))
```

Random effects may be incorporated as regular Bayesian regression coefficients. For random effects with a shared covariance matrix, see `pyro.contrib.oed.glmm.lmer_model()`.
See the GP example for example usage.

19.1 Abstract Models

class TimeSeriesModel (name="")
 Bases: pyro.nn.module.PyroModule

Base class for univariate and multivariate time series models.

log_prob (targets)
 Log probability function.

Parameters

- **targets** (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs}_\text{dim}) \), where \(T \) is the length of the time series and \(\text{obs}_\text{dim} \) is the dimension of the real-valued targets at each time step.

Returns torch.Tensor A 0-dimensional log probability for the case of properly multivariate time series models in which the output dimensions are correlated; otherwise returns a 1-dimensional tensor of log probabilities for batched univariate time series models.

forecast (targets, dts)

Parameters

- **targets** (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs}_\text{dim}) \), where \(T \) is the length of the time series and \(\text{obs}_\text{dim} \) is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.

- **dts** (torch.Tensor) – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target \(\text{targets}[\text{-}1] \).

Returns torch.distributions.Distribution Returns a predictive distribution with batch shape \((S,) \) and event shape \((\text{obs}_\text{dim},) \), where \(S \) is the size of \(\text{dts} \). That is, the resulting predictive distributions do not encode correlations between distinct times in \(\text{dts} \).
19.2 Gaussian Processes

class IndependentMaternGP (\(nu=1.5\), \(dt=1.0\), \(obs_dim=1\), \(length_scale_init=None\), \(kernel_scale_init=None\), \(obs_noise_scale_init=None\))

A time series model in which each output dimension is modeled independently with a univariate Gaussian Process with a Matern kernel. The targets are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series \(T\).

Parameters

- \(nu\) (float) – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.
- \(dt\) (float) – The time spacing between neighboring observations of the time series.
- \(obs_dim\) (int) – The dimension of the targets at each time step.
- \(length_scale_init\) (torch.Tensor) – optional initial values for the kernel length scale given as a \(obs_dim\)-dimensional tensor
- \(kernel_scale_init\) (torch.Tensor) – optional initial values for the kernel scale given as a \(obs_dim\)-dimensional tensor
- \(obs_noise_scale_init\) (torch.Tensor) – optional initial values for the observation noise scale given as a \(obs_dim\)-dimensional tensor

log_prob (\(targets\))

Parameters \(targets\) (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, obs_dim)\), where \(T\) is the length of the time series and \(obs_dim\) is the dimension of the real-valued targets at each time step

Returns torch.Tensor A 1-dimensional tensor of log probabilities of shape \((obs_dim,)\)

forecast (\(targets, dts\))

Parameters

- \(targets\) (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, obs_dim)\), where \(T\) is the length of the time series and \(obs_dim\) is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- \(dts\) (torch.Tensor) – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target \(targets[-1]\).

Returns torch.distributions.Normal Returns a predictive Normal distribution with batch shape \((S,)\) and event shape \((obs_dim,)\), where \(S\) is the size of \(dts\).

class LinearlyCoupledMaternGP (\(nu=1.5\), \(dt=1.0\), \(obs_dim=2\), \(num_gps=1\), \(length_scale_init=None\), \(kernel_scale_init=None\), \(obs_noise_scale_init=None\))

A time series model in which each output dimension is modeled as a linear combination of shared univariate Gaussian Processes with Matern kernels.

In more detail, the generative process is:

\[y_i(t) = \sum_j A_{ij} f_j(t) + \epsilon_i(t) \]

The targets \(y_i\) are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series \(T\).
Parameters

- **nu** *(float)* – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.
- **dt** *(float)* – The time spacing between neighboring observations of the time series.
- **obs_dim** *(int)* – The dimension of the targets at each time step.
- **num_gps** *(int)* – The number of independent GPs that are mixed to model the time series. Typical values might be $gp \in \left[\frac{obs}{2}, obs\right]$.
- **length_scale_init** *(torch.Tensor)* – optional initial values for the kernel length scale given as a num_gps-dimensional tensor.
- **kernel_scale_init** *(torch.Tensor)* – optional initial values for the kernel scale given as a num_gps-dimensional tensor.
- **obs_noise_scale_init** *(torch.Tensor)* – optional initial values for the observation noise scale given as a obs_dim-dimensional tensor.

log_prob(targets)

Parameters **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step.

Returns **torch.Tensor** a (scalar) log probability.

forecast(targets, dts)

Parameters

- **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- **dts** *(torch.Tensor)* – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target targets[-1].

Returns **torch.distributions.MultivariateNormal** Returns a predictive MultivariateNormal distribution with batch shape (S,) and event shape (obs_dim,), where S is the size of dts.

class DependentMaternGP(nu=1.5, dt=1.0, obs_dim=1, linearly_coupled=False, length_scale_init=None, obs_noise_scale_init=None)

Bases: pyro.contrib.timeseries.base.TimeSeriesModel

A time series model in which each output dimension is modeled as a univariate Gaussian Process with a Matern kernel. The different output dimensions become correlated because the Gaussian Processes are driven by a correlated Wiener process; see reference [1] for details. If, in addition, linearly_coupled is True, additional correlation is achieved through linear mixing as in LinearlyCoupledMaternGP. The targets are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series T.

Parameters

- **nu** *(float)* – The order of the Matern kernel; must be 1.5.
- **dt** *(float)* – The time spacing between neighboring observations of the time series.
- **obs_dim** *(int)* – The dimension of the targets at each time step.
- **linearly_coupled** *(bool)* – Whether to linearly mix the various gaussian processes in the likelihood. Defaults to False.
• **length_scale_init** *(torch.Tensor)* – optional initial values for the kernel length scale given as a `obs_dim`-dimensional tensor

• **obs_noise_scale_init** *(torch.Tensor)* – optional initial values for the observation noise scale given as a `obs_dim`-dimensional tensor


```python
log_prob(targets)
```

Parameters

targets *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape *(T, obs_dim)*, where *T* is the length of the time series and *obs_dim* is the dimension of the real-valued *targets* at each time step

Returns torch.Tensor A (scalar) log probability

```python
forecast(targets, dts)
```

Parameters

• **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape *(T, obs_dim)*, where *T* is the length of the time series and *obs_dim* is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.

• **dts** *(torch.Tensor)* – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target *targets*[-1].

Returns torch.distributions.MultivariateNormal Returns a predictive MultivariateNormal distribution with batch shape *(S,)* and event shape *obs_dim,*, where *S* is the size of *dts*.

19.3 Linear Gaussian State Space Models

```python
class GenericLGSSM(obs_dim=1, state_dim=2, obs_noise_scale_init=None, learnable_observation_loc=False)
```

Bases: pyro.contrib.timeseries.base.TimeSeriesModel

A generic Linear Gaussian State Space Model parameterized with arbitrary time invariant transition and observation dynamics. The targets are (implicitly) assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series *T*.

Parameters

• **obs_dim** *(int)* – The dimension of the targets at each time step.

• **state_dim** *(int)* – The dimension of latent state at each time step.

• **learnable_observation_loc** *(bool)* – whether the mean of the observation model should be learned or not; defaults to False.

```python
log_prob(targets)
```

Parameters

targets *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape *(T, obs_dim)*, where *T* is the length of the time series and *obs_dim* is the dimension of the real-valued *targets* at each time step

Returns torch.Tensor A (scalar) log probability.

```python
forecast(targets, N_timesteps)
```
Parameters

- **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs}_{\text{dim}})\), where \(T\) is the length of the time series and \(\text{obs}_{\text{dim}}\) is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.

- **\(N_{\text{timesteps}}\)** *(int)* – The number of timesteps to forecast into the future from the final target \(\text{targets}[-1]\).

Returns `torch.distributions.MultivariateNormal` Returns a predictive `MultivariateNormal` distribution with batch shape \((\text{N}_{\text{timesteps}},)\) and event shape \((\text{obs}_{\text{dim}},)\).

class GenericLGSSMWithGPNoiseModel

A generic Linear Gaussian State Space Model parameterized with arbitrary time invariant transition and observation dynamics together with separate Gaussian Process noise models for each output dimension. In more detail, the generative process is:

\[
y_i(t) = \sum_j A_{ij} z_j(t) + f_i(t) + \epsilon_i(t)
\]

where the latent variables \(z(t)\) follow generic time invariant Linear Gaussian dynamics and the \(f_i(t)\) are Gaussian Processes with Matern kernels.

The targets are (implicitly) assumed to be evenly spaced in time. In particular a timestep of \(dt = 1.0\) for the continuous-time GP dynamics corresponds to a single discrete step of the \(z\)-space dynamics. Training and inference are logarithmic in the length of the time series \(T\).

Parameters

- **\(\text{obs}_{\text{dim}}\)** *(int)* – The dimension of the targets at each time step.

- **\(\text{state}_{\text{dim}}\)** *(int)* – The dimension of the \(z\) latent state at each time step.

- **\(\text{nu}\)** *(float)* – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.

- **length_scale_init** *(torch.Tensor)* – optional initial values for the kernel length scale given as a \(\text{obs}_{\text{dim}}\)-dimensional tensor

- **kernel_scale_init** *(torch.Tensor)* – optional initial values for the kernel scale given as a \(\text{obs}_{\text{dim}}\)-dimensional tensor

- **obs_noise_scale_init** *(torch.Tensor)* – optional initial values for the observation noise scale given as a \(\text{obs}_{\text{dim}}\)-dimensional tensor

- **learnable_observation_loc** *(bool)* – whether the mean of the observation model should be learned or not; defaults to False.

log_prob *(targets)*

Parameters **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs}_{\text{dim}})\), where \(T\) is the length of the time series and \(\text{obs}_{\text{dim}}\) is the dimension of the real-valued targets at each time step

Returns `torch.Tensor` A (scalar) log probability.

forecast *(targets, \(N_{\text{timesteps}}\))*

Parameters

- **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs}_{\text{dim}})\), where \(T\) is the length of the time series and \(\text{obs}_{\text{dim}}\) is the dimension
of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.

- **N_timesteps (int)** – The number of timesteps to forecast into the future from the final target \texttt{targets[-1]}.

Returns torch.distributions.MultivariateNormal Returns a predictive MultivariateNormal distribution with batch shape \((N_timesteps,)\) and event shape \((\text{obs_dim},)\)
20.1 Data Association

class MarginalAssignment (exists_logits, assign_logits, bp_iters=None)
 Computes marginal data associations between objects and detections.
 This assumes that each detection corresponds to zero or one object, and each object corresponds to zero or more
detections. Specifically this does not assume detections have been partitioned into frames of mutual exclusion
as is common in 2-D assignment problems.

Parameters

 • exists_logits (torch.Tensor) – a tensor of shape [num_objects] representing
 per-object factors for existence of each potential object.

 • assign_logits (torch.Tensor) – a tensor of shape [num_detections, num_objects] representing per-edge factors of assignment probability, where each edge
denotes that a given detection associates with a single object.

 • bp_iters (int) – optional number of belief propagation iterations. If unspecified or
 None an expensive exact algorithm will be used.

Variables

 • num_detections (int) – the number of detections

 • num_objects (int) – the number of (potentially existing) objects

 • exists_dist (pyro.distributions.Bernoulli) – a mean field posterior distri-
 bution over object existence.

 • assign_dist (pyro.distributions.Categorical) – a mean field posterior
 distribution over the object (or None) to which each detection associates. This has
 event_shape == (num_objects + 1,) where the final element denotes spurious
detection, and .batch_shape == (num_frames, num_detections).
class MarginalAssignmentSparse(num_objects, num_detections, edges, exists_logits, assign_logits,
bp_iters)
A cheap sparse version of MarginalAssignment.

Parameters

• num_detections (int) – the number of detections

• num_objects (int) – the number of (potentially existing) objects

• edges (torch.LongTensor) – a [2, num_edges]-shaped tensor of (detection, ob-
object) index pairs specifying feasible associations.

• exists_logits (torch.Tensor) – a tensor of shape [num_objects] representing
per-object factors for existence of each potential object.

• assign_logits (torch.Tensor) – a tensor of shape [num_edges] representing
per-edge factors of assignment probability, where each edge denotes that a given detection
associates with a single object.

• bp_iters (int) – optional number of belief propagation iterations. If unspecified or
None an expensive exact algorithm will be used.

Variables

• num_detections (int) – the number of detections

• num_objects (int) – the number of (potentially existing) objects

• exists_dist (pyro.distributions.Bernoulli) – a mean field posterior distri-
bution over object existence.

• assign_dist (pyro.distributions.Categorical) – a mean field posterior
distribution over the object (or None) to which each detection associates. This has .
event_shape == (num_objects + 1,) where the final element denotes spurious
detection, and .batch_shape == (num_frames, num_detections).

class MarginalAssignmentPersistent(exists_logits, assign_logits,
bp_iters=None,
bp_momentum=0.5)
This computes marginal distributions of a multi-frame multi-object data association problem with an unknown
number of persistent objects.

The inputs are factors in a factor graph (existence probabilites for each potential object and assignment probabil-
ities for each object-detection pair), and the outputs are marginal distributions of posterior existence probability
of each potential object and posterior assignment probabilities of each object-detection pair.

This assumes a shared (maximum) number of detections per frame; to handle variable number of detections,
simply set corresponding elements of assign_logits to -float('inf').

Parameters

• exists_logits (torch.Tensor) – a tensor of shape [num_objects] representing
per-object factors for existence of each potential object.

• assign_logits (torch.Tensor) – a tensor of shape [num_frames,
num_detections, num_objects] representing per-edge factors of assignment
probability, where each edge denotes that at a given time frame a given detection associates
with a single object.

• bp_iters (int) – optional number of belief propagation iterations. If unspecified or
None an expensive exact algorithm will be used.

• bp_momentum (float) – optional momentum to use for belief propagation. Should be
in the interval [0,1).
Variables

- **num_frames** (`int`) – the number of time frames
- **num_detections** (`int`) – the (maximum) number of detections per frame
- **num_objects** (`int`) – the number of (potentially existing) objects
- **exists_dist** (`pyro.distributions.Bernoulli`) – a mean field posterior distribution over object existence.
- **assign_dist** (`pyro.distributions.Categorical`) – a mean field posterior distribution over the object (or None) to which each detection associates. This has `event_shape == (num_objects + 1,)` where the final element denotes spurious detection, and `batch_shape == (num_frames, num_detections)`.

compute_marginals (`exists_logits, assign_logits)
This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See `MarginalAssignment` for args and problem description.

compute_marginals_bp (`exists_logits, assign_logits, bp_iters)`
This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See `MarginalAssignment` for args and problem description.

compute_marginals_sparse_bp (`num_objects, num_detections, edges, exists_logits, assign_logits, bp_iters)`
This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See `MarginalAssignmentSparse` for args and problem description.

compute_marginals_persistent (`exists_logits, assign_logits)`
This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See `MarginalAssignmentPersistent` for args and problem description.

compute_marginals_persistent_bp (`exists_logits, assign_logits, bp_iters, bp_momentum=0.5)`
This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1], [2].

See `MarginalAssignmentPersistent` for args and problem description.

20.2 Distributions

class EKFDistribution(x0, P0, dynamic_model, measurement_cov, time_steps=1, dt=1.0, validate_args=None)

Distribution over EKF states. See EKFState. Currently only supports log_prob.

Parameters

• x0 (torch.Tensor) – PV tensor (mean)
• P0 (torch.Tensor) – covariance
• dynamic_model – DynamicModel object
• measurement_cov (torch.Tensor) – measurement covariance
• time_steps (int) – number time step
• dt (torch.Tensor) – time step

filter_states(value)
Returns the ekf states given measurements

Parameters value (torch.Tensor) – measurement means of shape (time_steps, event_shape)

log_prob(value)
Returns the joint log probability of the innovations of a tensor of measurements

Parameters value (torch.Tensor) – measurement means of shape (time_steps, event_shape)

20.3 Dynamic Models

class DynamicModel(dimension, dimension_pv, num_process_noise_parameters=None)

Dynamic model interface.

Parameters

• dimension – native state dimension.
• dimension_pv – PV state dimension.
• num_process_noise_parameters – process noise parameter space dimension. This for UKF applications. Can be left as None for EKF and most other filters.

dimension
Native state dimension access.
dimension_pv
PV state dimension access.
num_process_noise_parameters
Process noise parameters space dimension access.

forward(x, dt, do_normalization=True)
Integrate native state x over time interval dt.

Parameters

• x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of x being augmented with process noise parameters.
• \(\text{dt} \) – time interval to integrate over.

• \texttt{do_normalization} – whether to perform normalization on output, e.g., mod’ing angles into an interval.

Returns Native state \(x \) integrated \(\text{dt} \) into the future.

\textbf{geodesic_difference} \((x_1, x_0)\)

Compute and return the geodesic difference between 2 native states. This is a generalization of the Euclidean operation \(x_1 - x_0 \).

Parameters

• \(x_1 \) – native state.

• \(x_0 \) – native state.

Returns Geodesic difference between native states \(x_1 \) and \(x_2 \).

\textbf{mean2pv} \((x)\)

Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters \(x \) – native state estimate mean.

Returns PV state estimate mean.

\textbf{cov2pv} \((P)\)

Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters \(P \) – native state estimate covariance.

Returns PV state estimate covariance.

\textbf{process_noise_cov} \((dt=0.0)\)

Compute and return process noise covariance (Q).

Parameters \(dt \) – time interval to integrate over.

Returns Read-only covariance (Q). For a DifferentiableDynamicModel, this is the covariance of the native state \(x \) resulting from stochastic integration (for use with EKF). Otherwise, it is the covariance directly of the process noise parameters (for use with UKF).

\textbf{process_noise_dist} \((dt=0.0)\)

Return a distribution object of state displacement from the process noise distribution over a time interval.

Parameters \(dt \) – time interval that process noise accumulates over.

Returns MultivariateNormal.

\textbf{class DifferentiableDynamicModel} \((\text{dimension, dimension_pv, num_process_noise_parameters=None})\)

DynamicModel for which state transition Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

\textbf{jacobian} \((dt)\)

Compute and return native state transition Jacobian (F) over time interval \(dt \).

Parameters \(dt \) – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

\textbf{class Ncp} \((\text{dimension, sv2})\)

NCP (Nearly-Constant Position) dynamic model. May be subclassed, e.g., with CWNV (Continuous White Noise Velocity) or DWNV (Discrete White Noise Velocity).
Parameters

• **dimension** – native state dimension.

• **sv2** – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

```python
forward(x, dt, do_normalization=True)
```
Integrate native state `x` over time interval `dt`.

Parameters

• `x` – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of `x` being augmented with process noise parameters.

• `dt` – time interval to integrate over. `do_normalization`: whether to perform normalization on output, e.g., mod'ing angles into an interval. Has no effect for this subclass.

Returns Native state `x` integrated `dt` into the future.

```python
mean2pv(x)
```
Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters `x` – native state estimate mean.

Returns PV state estimate mean.

```python
cov2pv(P)
```
Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters `P` – native state estimate covariance.

Returns PV state estimate covariance.

```python
jacobian(dt)
```
Compute and return cached native state transition Jacobian (F) over time interval `dt`.

Parameters `dt` – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

```python
process_noise_cov(dt=0.0)
```
Compute and return cached process noise covariance (Q).

Parameters `dt` – time interval to integrate over.

Returns Read-only covariance (Q) of the native state `x` resulting from stochastic integration (for use with EKF).

```python
class Ncv(dimension, sa2)
```
NCV (Nearly-Constant Velocity) dynamic model. May be subclassed, e.g., with CWNA (Continuous White Noise Acceleration) or DWNA (Discrete White Noise Acceleration).

Parameters

• **dimension** – native state dimension.

• **sa2** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

```python
forward(x, dt, do_normalization=True)
```
Integrate native state `x` over time interval `dt`.

Parameters
• x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of x being augmented with process noise parameters.
• dt – time interval to integrate over.
• do_normalization – whether to perform normalization on output, e.g., mod’ing angles into an interval. Has no effect for this subclass.

Returns Native state x integrated dt into the future.

`mean2pv(x)`
Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters x – native state estimate mean.

Returns PV state estimate mean.

`cov2pv(P)`
Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters P – native state estimate covariance.

Returns PV state estimate covariance.

`jacobian(dt)`
Compute and return cached native state transition Jacobian (F) over time interval dt.

Parameters dt – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

`process_noise_cov(dt=0.0)`
Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcpContinuous(dimension, sv2)
NCP (Nearly-Constant Position) dynamic model with CWNV (Continuous White Noise Velocity).

References: “Estimation with Applications to Tracking and Navigation” by Y. Bar-Shalom et al, 2001, p.269.

Parameters
• dimension – native state dimension.
• sv2 – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

`process_noise_cov(dt=0.0)`
Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcvContinuous(dimension, sa2)
NCV (Nearly-Constant Velocity) dynamic model with CWNA (Continuous White Noise Acceleration).

References: “Estimation with Applications to Tracking and Navigation” by Y. Bar-Shalom et al, 2001, p.269.
Parameters

• **dimension** – native state dimension.
• **sa2** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

```python
process_noise_cov(dt=0.0)
```
Compute and return cached process noise covariance (Q).

Parameters

- **dt** – time interval to integrate over.

Returns

Read-only covariance (Q) of the native state \(x \) resulting from stochastic integration (for use with EKF).

class NcpDiscrete(dimension, sv2)
NCP (Nearly-Constant Position) dynamic model with DWNV (Discrete White Noise Velocity).

Parameters

• **dimension** – native state dimension.
• **sv2** – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.


```python
process_noise_cov(dt=0.0)
```
Compute and return cached process noise covariance (Q).

Parameters

- **dt** – time interval to integrate over.

Returns

Read-only covariance (Q) of the native state \(x \) resulting from stochastic integration (for use with EKF).

class NcvDiscrete(dimension, sa2)
NCV (Nearly-Constant Velocity) dynamic model with DWNV (Discrete White Noise Velocity).

Parameters

• **dimension** – native state dimension.
• **sa2** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.


```python
process_noise_cov(dt=0.0)
```
Compute and return cached process noise covariance (Q).

Parameters

- **dt** – time interval to integrate over.

Returns

Read-only covariance (Q) of the native state \(x \) resulting from stochastic integration (for use with EKF). (Note that this Q, modulo numerical error, has rank \(\text{dimension}/2 \). So, it is only positive semi-definite.)

20.4 Extended Kalman Filter

class EKFState(dynamic_model, mean, cov, time=None, frame_num=None)
State-Centric EKF (Extended Kalman Filter) for use with either an NCP (Nearly-Constant Position) or NCV
(Nearly-Constant Velocity) target dynamic model. Stores a target dynamic model, state estimate, and state time. Incoming Measurement provide sensor information for updates.

Warning: For efficiency, the dynamic model is only shallow-copied. Make a deep copy outside as necessary to protect against unexpected changes.

Parameters

- **dynamic_model** – target dynamic model.
- **mean** – mean of target state estimate.
- **cov** – covariance of target state estimate.
- **time** – time of state estimate.

dynamic_model

Dynamic model access.

dimension

Native state dimension access.

mean

Native state estimate mean access.

cov

Native state estimate covariance access.

dimension_pv

PV state dimension access.

mean_pv

Compute and return cached PV state estimate mean.

cov_pv

Compute and return cached PV state estimate covariance.

time

Continuous State time access.

frame_num

Discrete State time access.

predict *(dt=None, destination_time=None, destination_frame_num=None)*

Use dynamic model to predict (aka propagate aka integrate) state estimate in-place.

Parameters

- **dt** – time to integrate over. The state time will be automatically incremented this amount unless you provide destination_time. Using destination_time may be preferable for prevention of roundoff error accumulation.
- **destination_time** – optional value to set continuous state time to after integration. If this is not provided, then destination_frame_num must be.
- **destination_frame_num** – optional value to set discrete state time to after integration. If this is not provided, then destination_frame_num must be.

innovation *(measurement)*

Compute and return the innovation that a measurement would induce if it were used for an update, but
don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for computing Chi^2 stats and likelihoods.

Parameters measurement – measurement

Returns Innovation mean and covariance of hypothetical update.

Return type tuple(torch.Tensor, torch.Tensor)

`log_likelihood_of_update(measurement)`
Compute and return the likelihood of a potential update, but don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for gating and calculating costs in assignment problems for data association.

Param measurement.

Returns Likelihood of hypothetical update.

`update(measurement)`
Use measurement to update state estimate in-place and return innovation. The innovation is useful, e.g., for evaluating filter consistency or updating model likelihoods when the EKFState is part of an IMMFState.

Param measurement.

Returns EKF State, Innovation mean and covariance.

20.5 Hashing

class LSH(radius)
Implements locality-sensitive hashing for low-dimensional euclidean space.

Allow to efficiently find neighbours of a point. Provides 2 guarantees:

- Difference between coordinates of points not returned by `nearby()` and input point is larger than `radius`.
- Difference between coordinates of points returned by `nearby()` and input point is smaller than `2 * radius`.

Example:

```python
>>> radius = 1
>>> lsh = LSH(radius)
>>> a = torch.tensor([-0.51, -0.51])  # hash(a)=(-1,-1)
>>> b = torch.tensor([-0.49, -0.49])  # hash(a)=(0,0)
>>> c = torch.tensor([1.0, 1.0])      # hash(b)=(1,1)
>>> lsh.add('a', a)
>>> lsh.add('b', b)
>>> lsh.add('c', c)
>>> # even though c is within 2 * radius of a
>>> lsh.nearby('a')                      # doctest: +SKIP
{'b'}
>>> lsh.nearby('b')                      # doctest: +SKIP
{'a', 'c'}
>>> lsh.remove('b')
>>> lsh.nearby('a')                      # doctest: +SKIP
set()
```
Parameters `radius` *(float)* – Scaling parameter used in hash function. Determines the size of the neighbourhood.

`add(key, point)`

Adds `(key, point)` pair to the hash.

Parameters

- `key` – Key used identify point.
- `point` *(torch.Tensor)* – data, should be detached and on cpu.

`remove(key)`

Removes `key` and corresponding point from the hash.

Raises `KeyError` if key is not in hash.

Parameters

- `key` – key used to identify point.

`nearby(key)`

Returns a set of keys which are neighbours of the point identified by `key`.

Two points are nearby if difference of each element of their hashes is smaller than 2. In euclidean space, this corresponds to all points `p` where `|p_k - (p_key)_k| < r`, and some points (all points not guaranteed) where `|p_k - (p_key)_k| < 2r`.

Parameters

- `key` – key used to identify input point.

Returns a set of keys identifying neighbours of the input point.

Return type `set`

```python
class ApproxSet(radius)
Queries low-dimensional euclidean space for approximate occupancy.

Parameters `radius` *(float)* – scaling parameter used in hash function. Determines the size of the bin. See LSH for details.

`try_add(point)`

Attempts to add point to set. Only adds there are no points in the point’s bin.

**Parameters**

- `point` *(torch.Tensor)* – Point to be queried, should be detached and on cpu.

**Returns** True if point is successfully added, False if there is already a point in point’s bin.

**Return type** `bool`

`merge_points(points, radius)`

Greedily merge points that are closer than given radius.

This uses LSH to achieve complexity that is linear in the number of merged clusters and quadratic in the size of the largest merged cluster.

**Parameters**

- `points` *(torch.Tensor)* – A tensor of shape `(K, D)` where K is the number of points and D is the number of dimensions.
- `radius` *(float)* – The minimum distance nearer than which points will be merged.

**Returns** A tuple `(merged_points, groups)` where merged_points is a tensor of shape `(J, D)` where J <= K, and groups is a list of tuples of indices mapping merged points to original points. Note that `len(groups) == J` and `sum(len(group) for group in groups) == K`.

**Return type** `tuple`
20.6 Measurements

class Measurement (mean, cov, time=None, frame_num=None)
Gaussian measurement interface.

Parameters

• mean – mean of measurement distribution.
• cov – covariance of measurement distribution.
• time – continuous time of measurement. If this is not provided, frame_num must be.
• frame_num – discrete time of measurement. If this is not provided, time must be.

dimension
Measurement space dimension access.

mean
Measurement mean (\(z\) in most Kalman Filtering literature).

cov
Noise covariance (\(R\) in most Kalman Filtering literature).

time
Continuous time of measurement.

frame_num
Discrete time of measurement.

geodesic_difference (z1, z0)
Compute and return the geodesic difference between 2 measurements. This is a generalization of the Euclidean operation \(z1 - z0\).

Parameters

• z1 – measurement.
• z0 – measurement.

Returns
Geodesic difference between \(z1\) and \(z2\).

class DifferentiableMeasurement (mean, cov, time=None, frame_num=None)
Interface for Gaussian measurement for which Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

jacobian (x=None)
Compute and return Jacobian (H) of measurement map \(h\) at target PV state \(x\).

Parameters

• x – PV state. Use default argument None when the Jacobian is not state-dependent.

Returns
Read-only Jacobian (H) of measurement map \(h\).

class PositionMeasurement (mean, cov, time=None, frame_num=None)
Full-rank Gaussian position measurement in Euclidean space.

Parameters

• mean – mean of measurement distribution.
• cov – covariance of measurement distribution.
• time – time of measurement.

jacobian (x=None)
Compute and return Jacobian (H) of measurement map \(h\) at target PV state \(x\).
Parameters $x$ – PV state. The default argument None may be used in this subclass since the Jacobian is not state-dependent.

Returns Read-only Jacobian $(H)$ of measurement map $(h)$. 
CHAPTER 21

Indices and tables

- genindex
- search
Python Module Index

p

pyro.contrib.autoname, 149
pyro.contrib.autoname.named, 151
pyro.contrib.bnn, 157
pyro.contrib.bnn.hidden_layer, 157
pyro.contrib.cevae, 159
pyro.contrib.easyguide, 165
pyro.contrib.examples.bart, 169
pyro.contrib.examples.multi_mnist, 169
pyro.contrib.examples.util, 170
pyro.contrib.gp, 171
pyro.contrib.gp.kernels, 183
pyro.contrib.gp.likelihoods, 189
pyro.contrib.gp.models.gplvm, 182
pyro.contrib.gp.models.gpr, 175
pyro.contrib.gp.models.model, 172
pyro.contrib.gp.models.sgp, 177
pyro.contrib.gp.models.vgp, 179
pyro.contrib.gp.models.vsgp, 180
pyro.contrib.gp.parameterized, 192
pyro.contrib.gp.util, 193
pyro.contrib.minipyro, 194
pyro.contrib.oed, 197
pyro.contrib.oed.eig, 198
pyro.contrib.oed.glmm, 204
pyro.contrib.timeseries.base, 207
pyro.contrib.timeseries.gp, 208
pyro.contrib.timeseries.lgssm, 210
pyro.contrib.timeseries.lgssmgp, 211
pyro.contrib.tracking, 213
pyro.contrib.tracking.assignment, 213
pyro.contrib.tracking.distributions, 216
pyro.contrib.tracking.dynamic_models, 216
pyro.contrib.tracking.extended_kalman_filter, 220
pyro.contrib.tracking.hashing, 222
pyro.contrib.tracking.measurements, 224
pyro.distributions.torch, 47
pyro.infer.abstract_infer, 27
pyro.infer.autoguide, 35
pyro.infer.autoguide.initialization, 42
pyro.infer.discrete, 25
pyro.infer.elbo, 12
pyro.infer.energy_distance, 24
pyro.infer.importance, 19
pyro.infer.predictive, 26
pyro.infer.renyi_elbo, 17
pyro.infer.reparam, 42
pyro.infer.reparam.discrete_cosine, 43
pyro.infer.reparam.hmm, 45
pyro.infer.reparam.loc_scale, 42
pyro.infer.reparam.neutra, 45
pyro.infer.reparam.reparam, 42
pyro.infer.reparam.stable, 44
pyro.infer.reparam.studentt, 43
pyro.infer.reparam.transform, 43
pyro.infer.rws, 20
pyro.infer.smcfilter, 22
pyro.infer.svi, 11
pyro.infer.trace_elbo, 13
pyro.infer.trace_mean_field_elbo, 16
pyro.infer.trace_tall_adaptive_elbo, 17
pyro.infer.traceenum_elbo, 14
pyro.infer.tracegraph_elbo, 14
pyro.infer.tracetmc_elbo, 18
pyro.nn.module, 99
pyro.ops.dual_averaging, 133
pyro.ops.einsum, 139
pyro.ops.gaussian, 141
pyro.ops.indexing, 138
pyro.ops.integrator, 134
pyro.ops.newton, 135
pyro.ops.ssm_gp, 146
pyro.ops.stats, 143
pyro.ops.tensor_utils, 137
pyro.ops.welford, 134
pyro.optim.adagrad_rmsprop, 106
pyro.optim.clipped_adam, 107
pyro.optim.lr_scheduler, 106
pyro.optim.multi, 108
pyro.optim.optim, 105
pyro.optim.pytorch_optimizers, 107
pyro.params.param_store, 95
pyro.poutine.block_messenger, 124
pyro.poutine.broadcast_messenger, 125
pyro.poutine.condition_messenger, 126
pyro.poutine.do_messenger, 126
pyro.poutine.enum_messenger, 127
pyro.poutine.escape_messenger, 127
pyro.poutine.handlers, 111
pyro.poutine.indep_messenger, 127
pyro.poutine.infer_config_messenger, 128
pyro.poutine.lift_messenger, 128
pyro.poutine.markov_messenger, 128
pyro.poutine.mask_messenger, 129
pyro.poutine.messenger, 123
pyro.poutine.plate_messenger, 129
pyro.poutine.reentrant_messenger, 129
pyro.poutine.reparam_messenger, 129
pyro.poutine.replay_messenger, 130
pyro.poutine.runtime, 121
pyro.poutine.scale_messenger, 130
pyro.poutine.seed_messenger, 131
pyro.poutine.subsample_messenger, 131
pyro.poutine.trace_messenger, 131
pyro.poutine.uncondition_messenger, 132
pyro.poutine.util, 122
Symbols

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong>()</td>
<td>(AffineNormal method)</td>
<td>142</td>
</tr>
<tr>
<td><strong>add</strong>()</td>
<td>(Gaussian method)</td>
<td>141</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(Adam method)</td>
<td>195</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(DiscreteCosineReparam method)</td>
<td>43</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(Distribution method)</td>
<td>51</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(EnergyDistance method)</td>
<td>25</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(JitTrace_ELBO method)</td>
<td>195</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(LatentStableReparam method)</td>
<td>44</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(LinearHMMReparam method)</td>
<td>45</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(LocScaleReparam method)</td>
<td>43</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(Messenger method)</td>
<td>195</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(NeuTraReparam method)</td>
<td>46</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(PyroLRScheduler method)</td>
<td>106</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(Reparam method)</td>
<td>42</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(StableReparam method)</td>
<td>44</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(StudentTReparam method)</td>
<td>44</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(TorchDistributionMixin method)</td>
<td>52</td>
</tr>
<tr>
<td><strong>call</strong>()</td>
<td>(TransformReparam method)</td>
<td>43</td>
</tr>
<tr>
<td><strong>getitem</strong>()</td>
<td>(Gaussian method)</td>
<td>141</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adedelta()</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Adagrad()</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>AdagradRMSProp()</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>add()</td>
<td>(AutoGuideList method)</td>
<td>36</td>
</tr>
<tr>
<td>add()</td>
<td>(List method)</td>
<td>153</td>
</tr>
<tr>
<td>add()</td>
<td>(LSH method)</td>
<td>223</td>
</tr>
<tr>
<td>add_edge()</td>
<td>(Trace method)</td>
<td>120</td>
</tr>
<tr>
<td>add_module()</td>
<td>(PyroModule method)</td>
<td>101</td>
</tr>
<tr>
<td>add_node()</td>
<td>(Trace method)</td>
<td>120</td>
</tr>
<tr>
<td>affine_autoregressive()</td>
<td>(in module pyro.distributions.transforms)</td>
<td>91</td>
</tr>
<tr>
<td>affine_couple()</td>
<td>(in module pyro.distributions.transforms)</td>
<td>91</td>
</tr>
<tr>
<td>AffineAutoregressive</td>
<td>(class in pyro.distributions.transforms)</td>
<td>80</td>
</tr>
<tr>
<td>AffineCoupling</td>
<td>(class in pyro.distributions.transforms)</td>
<td>81</td>
</tr>
<tr>
<td>AffineNormal</td>
<td>(class in pyro.ops.gaussian)</td>
<td>142</td>
</tr>
<tr>
<td>all_escape()</td>
<td>(in module pyro.poutine.util)</td>
<td>122</td>
</tr>
<tr>
<td>am_i_wrapped()</td>
<td>(in module pyro.poutine.runtime)</td>
<td>121</td>
</tr>
<tr>
<td>append()</td>
<td>(AutoGuideList method)</td>
<td>36</td>
</tr>
<tr>
<td>append()</td>
<td>(FullyConnected method)</td>
<td>162</td>
</tr>
<tr>
<td>apply_stack()</td>
<td>(in module pyro.contrib.minipyro)</td>
<td>195</td>
</tr>
<tr>
<td>apply_stack()</td>
<td>(in module pyro.poutine.runtime)</td>
<td>121</td>
</tr>
<tr>
<td>ApproxSet</td>
<td>(class in pyro.contrib.tracking.hashing)</td>
<td>223</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(AVFMultivariateNormal attribute)</td>
<td>56</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(BetaBinomial attribute)</td>
<td>56</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(Delta attribute)</td>
<td>57</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(DirichletMultinomial attribute)</td>
<td>58</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(DiscreteHMM attribute)</td>
<td>59</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(Empirical attribute)</td>
<td>59</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(GammaGaussianHMM attribute)</td>
<td>61</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(GammaPoisson attribute)</td>
<td>62</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(GaussianHMM attribute)</td>
<td>63</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(GaussianMRF attribute)</td>
<td>64</td>
</tr>
<tr>
<td>arg_constraints</td>
<td>(GaussianScaleMixture attribute)</td>
<td>65</td>
</tr>
</tbody>
</table>
arg_constraints (InverseGamma attribute), 66
arg_constraints (LinearHMM attribute), 67
arg_constraints (LKJCovCholesky attribute), 67
arg_constraints (MaskedMixture attribute), 68
arg_constraints (MixtureOfDiagNormals attribute), 69
arg_constraints (MixtureOfDiagNormalsSharedCovariance attribute), 70
arg_constraints (MultivariateStudentT attribute), 70
arg_constraints (OMTMultivariateNormal attribute), 71
arg_constraints (SpanningTree attribute), 73
arg_constraints (Stable attribute), 74
arg_constraints (Unit attribute), 74
arg_constraints (VonMises attribute), 75
arg_constraints (VonMises3D attribute), 76
arg_constraints (ZeroInflatedDistribution attribute), 76
ASGD () (in module pyro.optim.pytorch_optimizers), 108
atanh () (TanhTransform static method), 79
AutoCallable (class in pyro.infer.autoguide), 36
AutoContinuous (class in pyro.infer.autoguide), 38
autocorrelation () (in module pyro.ops.stats), 143
autocovariance () (in module pyro.ops.stats), 144
AutoDelta (class in pyro.infer.autoguide), 37
AutoDiagonalNormal (class in pyro.infer.autoguide), 39
AutoDiscreteParallel (class in pyro.infer.autoguide), 39
AutoGuide (class in pyro.infer.autoguide), 35
autoguide () (Parameterized method), 172, 193
AutoGuideList (class in pyro.infer.autoguide), 36
AutoAFNormal (class in pyro.infer.autoguide), 40
AutoLaplaceApproximation (class in pyro.infer.autoguide), 41
AutoLowRankMultivariateNormal (class in pyro.infer.autoguide), 40
AutoMultivariateNormal (class in pyro.infer.autoguide), 39
autoregressive (AffineAutoregressive attribute), 81
autoregressive (BlockAutoregressive attribute), 84
autoregressive (Polynomial attribute), 89
AutoRegressiveNN (class in pyro.nn.auto_reg_nn), 103
AVFMultivariateNormal (class in pyro.distributions), 55
BatchNorm (class in pyro.distributions.transforms), 82
batchnorm () (in module pyro.distributions.transforms), 92
Bernoulli (class in pyro.distributions), 47
BernoulliNet (class in pyro.contrib.cevae), 163
Beta (class in pyro.distributions), 47
BetaBinomial (class in pyro.distributions), 56
bijective (AffineAutoregressive attribute), 81
bijective (AffineCoupling attribute), 82
bijective (BatchNorm attribute), 83
bijective (BlockAutoregressive attribute), 84
bijective (ConditionalPlanar attribute), 85
bijective (CorrLCholeskyTransform attribute), 77
bijective (DiscreteCosineTransform attribute), 79
bijective (ELUTransform attribute), 77
bijective (Householder attribute), 86
bijective (LeakyReLUTransform attribute), 78
bijective (LowerCholeskyAffine attribute), 78
bijective (NeuralAutoregressive attribute), 87
bijective (Permute attribute), 79
bijective (Planar attribute), 88
bijective (Polynomial attribute), 89
bijective (Radial attribute), 89
bijective (Sylvester attribute), 90
bijective (TanhTransform attribute), 79
Binary (class in pyro.contrib.gp.likelihoods), 190
Binomial (class in pyro.distributions), 47
block (class in pyro.contrib.minipyro), 195
block () (in module pyro.poutine.handlers), 112
block_autoregressive () (in module pyro.distributions.transforms), 92
block_diag_embed () (in module pyro.ops.tensor_util), 137
block_diagonal () (in module pyro.ops.tensor_util), 137
BlockAutoregressive (class in pyro.distributions.transforms), 83
BlockMessenger (class in pyro.poutine.block_messenger), 124
broadcast () (in module pyro.poutine.handlers), 113
BroadcastMessenger (class in pyro.poutine.broadcast_messenger), 125
Brownian (class in pyro.contrib.gp.kernels), 183
C
call () (AutoGuide method), 35
call () (Predictive method), 27
cat () (Gaussian static method), 141
Categorical (class in pyro.distributions), 47
Cauchy (class in pyro.distributions), 48
CEVAE (class in pyro.contrib.cevae), 159
Chi2 (class in pyro.distributions), 48
cleanup () (HMC method), 32
clear () (in module pyro.nn.module), 102
clear() (ParamStoreDict method), 95
clear_cache() (HMC method), 32
clear_param_store() (in module pyro), 8
ClippedAdam (class in pyro.optim.clipped_adam), 107
ClippedAdam (in module pyro.optim.optim), 106
codomain (AffineAutoregressive attribute), 81
codomain (AffineCoupling attribute), 82
codomain (BatchNorm attribute), 83
codomain (BlockAutoregressive attribute), 84
codomain (ConditionalPlanar attribute), 85
codomain (CorrLCholeskyTransform attribute), 77
codomain (DiscreteCosineTransform attribute), 79
codomain (ELUTransform attribute), 77
codomain (Householder attribute), 86
codomain (LeakyReLUTransform attribute), 78
codomain (LowerCholeskyAffine attribute), 78
codomain (NeuralAutoregressive attribute), 87
codomain (Permute attribute), 79
codomain (Planar attribute), 88
codomain (Polynomial attribute), 89
codomain (Radial attribute), 89
codomain (Sylvester attribute), 90
codomain (TanhTransform attribute), 79
Combination (class in pyro.contrib.sp.kernel), 184
compute_log_prob() (Trace method), 120
compute_marginals() (in module pyro.contrib.tracking.assignment), 215
compute_marginals() (TraceEnum_ELBO method), 15
compute_marginals_bp() (in module pyro.contrib.tracking.assignment), 215
compute_marginals_persistent() (in module pyro.contrib.tracking.assignment), 215
compute_marginals_persistent_bp() (in module pyro.contrib.tracking.assignment), 215
compute_marginals_sparse_bp() (in module pyro.contrib.tracking.assignment), 215
compute_score_parts() (Trace method), 120
concentration (DirichletMultinomial attribute), 58
concentration (GammaPoisson attribute), 62
concentration (InverseGamma attribute), 66
concentration0 (BetaBinomial attribute), 56
concentration1 (BetaBinomial attribute), 56
CondIndepStackFrame (class in pyro.poutine.indep_messenger), 127
condition() (AffineNormal method), 142
condition() (ConditionalDistribution method), 56
condition() (ConditionalPlanar method), 85
condition() (ConditionalTransform method), 77
condition() (ConditionalTransformedDistribution method), 57
condition() (Gaussian method), 141
condition() (in module pyro.poutine.handlers), 113
conditional() (in module pyro.contrib.gp.util), 193
conditional_planar() (in module pyro.distributions.transforms), 92
ConditionalAutoRegressiveNN (class in pyro.nn.auto_reg.nn), 103
ConditionalDistribution (class in pyro.distributions), 56
ConditionalPlanar (class in pyro.distributions.transforms), 84
ConditionalTransform (class in pyro.distributions), 77
ConditionalTransformedDistribution (class in pyro.distributions), 57
ConditionalTransformModule (class in pyro.distributions), 85
ConditionMessenger (class in pyro.poutine.condition_messenger), 126
config enumerate() (in module pyro.infer.enumer), 118
Constant (class in pyro.contrib.gp.kernels), 184
constrained_gamma (BatchNorm attribute), 83
constraint (PyroParam attribute), 99
contract() (in module pyro.ops.einsum), 139
contract_expression() (in module pyro.ops.einsum), 139
convolve() (in module pyro.ops.tensor_utils), 137
copy() (Trace method), 120
Coregionalize (class in pyro.contrib.gp.kernels), 184
CorrLCholeskyTransform (class in pyro.distributions.transforms), 77
Cosine (class in pyro.contrib.gp.kernels), 185
CosineAnnealingLR() (in module pyro.optim.pytorch_optimizers), 108
CosineAnnealingWarmRestarts() (in module pyro.optim.pytorch_optimizers), 108
cov (EKFState attribute), 221
cov (Measurement attribute), 224
cov2pv() (DynamicModel method), 217
cov2pv() (Ncp method), 218
cov2pv() (Ncv method), 219
cov_p (EKFState attribute), 221
covariance_matrix (MultivariateStudentT attribute), 70
crps empirical() (in module pyro.ops.stats), 145
CyclicLR() (in module pyro.optim.pytorch_optimizers), 108
D
dct() (in module pyro.ops.tensor_utils), 137
default_process_message() (in module pyro.poutine.runtime), 122
Delta (class in pyro.distributions), 57
DependentMaternGP (class in pyro.contrib.timeseries.gp), 209
Pyro Documentation

detach_() (Trace method), 120
deterministic() (in module pyro), 6
DiagNormalNet (class in pyro.contrib.cevae), 164
diagnostics() (HMC method), 32
diagnostics() (in module pyro.infer.mcmc.util), 35
diagnostics() (MCMC method), 30
Dict (class in pyro.contrib.autoname.named), 153
differentiable_loss() (JitTrace_ELBO method), 14
differentiable_loss() (JitTraceEnum_ELBO method), 16
differentiable_loss() (JitTraceMeanField_ELBO method), 17
differentiable_loss() (Trace_ELBO method), 13
differentiable_loss() (TraceEnum_ELBO method), 15
differentiable_loss() (TraceTMC_ELBO method), 18
DifferentiableDynamicModel (class in pyro.contrib.tracking.dynamic_models), 217
DifferentiableMeasurement (class in pyro.contrib.tracking.measurements), 224
dim() (Gaussian method), 141
dimension (DynamicModel attribute), 216
dimension (EKFState attribute), 221
dimension (Measurement attribute), 224
dimension_pv (DynamicModel attribute), 216
dimension_pv (EKFState attribute), 221
Dirichlet (class in pyro.distributions), 48
DirichletMultinomial (class in pyro.distributions), 57
discrete_escape() (in module pyro.poutine.util), 122
DiscreteCosineReparam (class in pyro.infer.reparam.discrete_cosine), 43
DiscreteCosineTransform (class in pyro.distributions.transforms), 79
DiscreteHMM (class in pyro.distributions), 58
Distribution (class in pyro.distributions), 51
DistributionNet (class in pyro.contrib.cevae), 162
do() (in module pyro.poutine.handlers), 114
domain (AffineAutoregressive attribute), 81
domain (AffineCoupling attribute), 82
domain (BatchNorm attribute), 83
domain (BlockAutoregressive attribute), 84
domain (ConditionalPlanar attribute), 85
domain (CorrLCholeskyTransform attribute), 77
domain (DiscreteCosineTransform attribute), 79
domain (ELUTransform attribute), 77
domain (Householder attribute), 86
domain (LeakyReLUTransform attribute), 78
domain (NeuralAutoregressive attribute), 87
domain (Planar attribute), 88
domain (Polynomial attribute), 89
domain (Radial attribute), 89
domain (Sylvester attribute), 90
domain (TanhTransform attribute), 79
DoMessenger (class in pyro.poutine.do_messenger), 126
donsker_varadhan_eig() (in module pyro.contrib.oed.eig), 200
DotProduct (class in pyro.contrib.minipyro), 185
dtanh_dx() (Sylvester method), 90
DualAveraging (class in pyro.ops.dual_averaging), 133
dynamic_model (EKFState attribute), 221
DynamicModel (class in pyro.contrib.tracking.dynamic_models), 216

E
easy_guide() (in module pyro.contrib.easyguide), 166
EasyGuide (class in pyro.contrib.easyguide), 165
edges (Trace attribute), 120
effectful() (in module pyro.poutine.runtime), 122
effective_sample_size() (in module pyro.ops.stats), 144
einsum() (in module pyro.ops.contract), 139
EKFDistribution (class in pyro.contrib.tracking.distributions), 216
EKFState (class in pyro.contrib.tracking.extended_kalman_filter), 220
ELBO (class in pyro.infer.elbo), 12
elbo() (in module pyro.contrib.minipyro), 196
elu() (in module pyro.distributions.transforms), 93
ELUTransform (class in pyro.distributions.transforms), 77
Empirical (class in pyro.distributions), 59
empirical (Marginals attribute), 28
EmpiricalMarginal (class in pyro.poutine.abstract_infer), 27
enable_validation() (in module pyro), 8
enable_validation() (in module pyro.poutine.util), 122
EnergyDistance (class in pyro.infer.energy_distance), 24
enum() (in module pyro.poutine.handlers), 114
enum_extend() (in module pyro.poutine.util), 122
enumerate_site() (in module pyro.poutine.enumerate_support), 127
enumerate_support() (BetaBinomial method), 56
enumerate_support() (Distribution method), 51
enumerate_support() (Empirical method), 59
enumerate_support() (SpanningTree method), 73
EnumMessenger (class in pyro.poutine.enumerate_support), 127
escape() (in module pyro.poutine.handlers), 114
Pyro Documentation

EscapeMessenger (class in pyro.poutine.escape_messenger), 127
evaluate_loss() (SVI method), 11
event_dim (AffineAutoregressive attribute), 81
event_dim (AffineCoupling attribute), 82
event_dim (BatchNorm attribute), 83
event_dim (BlockAutoregressive attribute), 84
event_dim (ConditionalPlanar attribute), 85
event_dim (CorrLCholeskyTransform attribute), 77
event_dim (Householder attribute), 86
event_dim (LowerCholeskyAffine attribute), 78
event_dim (NeuralAutoregressive attribute), 87
event_dim (Permute attribute), 79
event_dim (Planar attribute), 88
event_dim (Polynomial attribute), 89
event_dim (PyroParam attribute), 99
event_dim (Radial attribute), 90
event_dim (Sylvester attribute), 90
event_dim (TorchDistributionMixin attribute), 53
event_logsumexp() (Gaussian method), 142
event_pad() (Gaussian method), 141
event_permute() (Gaussian method), 141
event_shape (Empirical attribute), 60
expand() (BetaBinomial method), 56
expand() (Delta method), 57
expand() (DirichletMultinomial method), 58
expand() (DiscreteHMM method), 59
expand() (FoldedDistribution method), 60
expand() (GammaGaussianHMM method), 61
expand() (GammaPoisson method), 62
expand() (Gaussian method), 141
expand() (GaussianHMM method), 63
expand() (GaussianMRF method), 65
expand() (InverseGamma method), 66
expand() (LinearHMM method), 67
expand() (LKJCorrCholesky method), 67
expand() (MaskedMixture method), 68
expand() (MixtureOfDiagNormals method), 69
expand() (MixtureOfDiagNormalsSharedCovariance method), 70
expand() (MultivariateStudentT method), 70
expand() (Stable method), 74
expand() (TorchDistribution method), 55
expand() (TorchDistributionMixin method), 53
expand() (Unit method), 75
expand() (VonMises method), 75
expand() (VonMises3D method), 76
expand() (ZeroInflatedDistribution method), 76
expand_by() (TorchDistributionMixin method), 53
Exponent (class in pyro.contrib.gp.kernels), 185
Exponential (class in pyro.contrib.gp.kernels), 185
Exponential (class in pyro.distributions), 48
ExponentialFamily (class in pyro.distributions), 48
ExponentialLR() (in module pyro.optim.pytorch_optimizers), 108
ExponentialNet (class in pyro.contrib.cevae), 163

F
factor() (in module pyro), 6
filter() (DiscreteHMM method), 59
filter() (GammaGaussianHMM method), 62
filter() (GaussianHMM method), 63
filter_states() (EKFDistribution method), 216
FisherSnedecor (class in pyro.distributions), 48
fit() (CEVAE method), 160
fit_generalized_pareto() (in module pyro.ops.stats), 145
FoldedDistribution (class in pyro.distributions), 60
forecast() (DependentMaternGP method), 210
forecast() (GenericLGSSM method), 210
forecast() (GenericLGSSMWithGPNoiseModel method), 211
forecast() (IndependentMaternGP method), 208
forecast() (LinearlyCoupledMaternGP method), 209
forecast() (TimeSeriesModel method), 207
format_shapes() (Trace method), 120
forward() (AutoCallable method), 37
forward() (AutoContinuous method), 38
forward() (AutoDelta method), 37
forward() (AutoDiscreteParallel method), 41
forward() (AutoGuideList method), 36
forward() (AutoRegressiveNN method), 103
forward() (BernoulliNet method), 163
forward() (Binary method), 190
forward() (Brownian method), 184
forward() (ConditionalAutoRegressiveNN method), 104
forward() (Constant method), 184
forward() (Coregionalize method), 185
forward() (Cosine method), 185
forward() (DiagNormalNet method), 164
forward() (DynamicModel method), 216
forward() (EasyGuide method), 165
forward() (Exponent method), 185
forward() (Exponential method), 185
forward() (ExponentialNet method), 163
forward() (Gaussian method), 190
forward() (GPLVM method), 183
forward() (GPModel method), 174
forward() (GPRegression method), 176
forward() (Guide method), 162
forward() (Kernel method), 183
forward() (LaplaceNet method), 163
forward() (Likelihood method), 189
forward() (Linear method), 186

Index 235
forward() (Matern32 method), 186
forward() (Matern52 method), 186
forward() (Model method), 162
forward() (MultiClass method), 191
forward() (Ncp method), 218
forward() (Ncv method), 218
forward() (NormalNet method), 164
forward() (Periodic method), 187
forward() (Poisson method), 192
forward() (Polynomial method), 187
forward() (Predictive method), 27
forward() (Product method), 187
forward() (RationalQuadratic method), 188
forward() (SparseGPRegression method), 178
forward() (StudentTNet method), 164
forward() (Sum method), 188
forward() (VariationalGP method), 180
forward() (VariationalSparseGP method), 181
forward() (VerticalScaling method), 188
forward() (Warping method), 189
forward() (WhiteNoise method), 189
frame_num (EKFState attribute), 221
frame_num (Measurement attribute), 224
FullyConnected (class in pyro.contrib.cevae), 162

G
Gamma (class in pyro.distributions), 48
GammaGaussianHMM (class in pyro.distributions), 60
GammaPoisson (class in pyro.distributions), 62
Gaussian (class in pyro.contrib.gp.likelihoods), 190
Gaussian (class in pyro.ops.gaussian), 141
gaussian_tensordot() (in module pyro.ops.gaussian), 143
GaussianHMM (class in pyro.distributions), 62
GaussianMRF (class in pyro.distributions), 64
GaussianScaleMixture (class in pyro.distributions), 65
gelman_rubin() (in module pyro.ops.stats), 143
generator() (MarkovMessenger method), 129
GenericLGGSM (class in pyro.contrib.timeseries.lgssm), 210
GenericLGGSMWithGPNoiseModel (class in pyro.contrib.timeseries.lgssmp), 211
godesic_difference() (DynamicModel method), 217
godesic_difference() (Measurement method), 224
Geometric (class in pyro.distributions), 48
get_all_param_names() (ParamStoreDict method), 96
get_class() (DistributionNet static method), 163
get_covariance() (WelfordCovariance method), 135
get_data_directory() (in module pyro.contrib.examples.util), 170
get_data_loader() (in module pyro.contrib.examples.util), 170
get_empirical() (SMCFilter method), 22
get_ESS() (Importance method), 19
get_log_normalizer() (Importance method), 19
get_named_particles() (SVGD method), 24
get_normalized_weights() (Importance method), 19
get_param() (ParamStoreDict method), 96
get_param_store() (in module pyro), 8
get_param_store() (in module pyro.contrib.minipyro), 196
get_permutation() (ConditionalAutoRegressiveNN method), 104
generate() (AutoContinuous method), 38
get_posterior() (AutoDiagonalNormal method), 40
gen_posterior() (AutoIAFNormal method), 41
generate() (AutoLaplaceApproximation method), 41
gen_posterior() (AutoLowRankMultivariateNormal method), 40
gen_posterior() (AutoMultivariateNormal method), 39
generate() (MCMC method), 30
get_samples() (Predictive method), 27
get_state() (DualAveraging method), 134
get_state() (ParamStoreDict method), 97
get_state() (PyroOptim method), 105
get_step() (MixedMultiOptimizer method), 109
get_step() (MultiOptimizer method), 109
get_step() (Newton method), 110
get_trace() (trace method), 196
get_trace() (TraceHandler method), 131
gen_trace() (TraceMessage method), 132
get_vectorized_trace() (Predictive method), 27
GPLVM (class in pyro.contrib.gp.models.gplvm), 182
GPMmodel (class in pyro.contrib.gp.models.gpm), 172
GPRegression (class in pyro.contrib.gp.models.gpr), 175
Group (class in pyro.contrib.easylearn.easylearn), 166
group() (EasyGuide method), 166
Guide (class in pyro.contrib.cevae), 162
guide (Group attribute), 167
guide() (EasyGuide method), 165
guide() (GPLVM method), 182
guide() (GPMmodel method), 174
guide() (GPRegression method), 176
guide() (SparseGPRegression method), 178
guide() (VariationalGP method), 180
guide() (VariationalSparseGP method), 181
Gumbel (class in pyro.distributions), 48
**H**

HalfCauchy (class in pyro.distributions), 49
HalfNormal (class in pyro.distributions), 49
has_enumerate_support (BetaBinomial attribute), 56
has_enumerate_support (Distribution attribute), 52
has_enumerate_support (Empirical attribute), 60
has_enumerate_support (SpanningTree attribute), 73
has_rsample (Delta attribute), 57
has_rsample (Distribution attribute), 52
has_rsample (GaussianScaleMixture attribute), 65
has_rsample (InverseGamma attribute), 66
has_rsample (LinearHMM attribute), 67
has_rsample (LKJCorrCholesky attribute), 67
has_rsample (MaskedMixture attribute), 68
has_rsample (MixtureOfDiagNormals attribute), 69
has_rsample (MixtureOfDiagNormalsSharedCovariance attribute), 70
has_rsample (MultivariateStudentT attribute), 70
has_rsample (Rejector attribute), 72
has_rsample (Stable attribute), 74
has_rsample (VonMises attribute), 75
HiddenLayer (class in pyro.contrib.bnn.hidden_layer), 157
HMC (class in pyro.infer.mcmc), 31
Householder (class in pyro.distributions.transforms), 85
householder() (in module pyro.distributions.transforms), 93
hpdi() (in module pyro.ops.stats), 145

**I**

idct() (in module pyro.ops.tensor_utils), 137
identify_dense_edges() (in module pyro.poutine.trace_messenger), 132
Importance (class in pyro.infer.importance), 19
IMQSteinKernel (class in pyro.infer.svgd), 22
imresize() (in module pyro.contrib.examples.multi_mnist), 169
Independent (class in pyro.distributions), 49
independent() (in module pyro.distributions.transforms), 54
IndependentMaternGP (class in pyro.contrib.timeseries.gp), 208
IndepMessenger (class in pyro.poutine.indep_messenger), 127
indices (IndepMessenger attribute), 127
infer_config() (in module pyro.poutine.handlers), 114
infer_discrete() (in module pyro.infer.discrete), 25
InferConfigMessenger (class in pyro.poutine.infer_config_messenger), 128
information_criterion() (TracePosterior method), 28
init() (EasyGuide method), 165
init() (SMCFilter method), 22
init_to_feasible() (in module pyro.infer.autoguide.initialization), 42
init_to_mean() (in module pyro.infer.autoguide.initialization), 42
init_to_median() (in module pyro.infer.autoguide.initialization), 42
init_to_sample() (in module pyro.infer.autoguide.initialization), 42
init_value (PyroParam attribute), 99
initial_params (HMC attribute), 32
initialize_model() (in module pyro.infer.mcmc.util), 34
InitMessenger (class in pyro.infer.autoguide.initialization), 42
innovation() (EKFFilter method), 221
inv_permutation (Permute attribute), 79
inverse_mass_matrix (HMC attribute), 32
InverseGamma (class in pyro.distributions), 65
is_validation_enabled() (in module pyro.poutine.util), 123
Isotropy (class in pyro.contrib.gp.kernels), 186
ite() (CEVAE method), 161
items() (ParamStoreDict method), 95
iter_sample() (GPRegression method), 176
iter_stochastic_nodes() (Trace method), 120

**J**

jacobian() (DifferentiableDynamicModel method), 217
jacobian() (DifferentiableMeasurementModel method), 224
jacobian() (Ncp method), 218
jacobian() (Ncv method), 219
jacobian() (PositionMeasurement method), 224
JitTrace_ELBO (class in pyro.contrib.minipyro), 195
JitTrace_ELBO (class in pyro.infer.trace_elbo), 13
JitTraceEnum_ELBO (class in pyro.infer.autoguide.initialization), 42
JitTraceGraph_ELBO (class in pyro.infer.tracegraph_elbo), 14
JitTraceMeanField_ELBO (class in pyro.infer.trace_mean_field_elbo), 16

**K**

Kernel (class in pyro.contrib.gp.kernels), 183
keys() (ParamStoreDict method), 96

**L**

LambdaLR() (in module pyro.optim.pytorch_optimizers), 108
Laplace (class in pyro.distributions), 49
laplace_approximation() (AutoLaplaceApproximation method), 41
laplace_eig() (in module pyro.contrib.oed.eig), 198
LaplaceNet (class in pyro.contrib.cevae), 163
LatentStableReparam (class in pyro.infer.reparam.stable), 44
leaky_relu() (in module pyro.distributions.transforms), 93
LeakyReLUTransform (class in pyro.distributions.transforms), 78
lift() (in module pyro.poutine.handlers), 115
LiftMessenger (class in pyro.poutine.lift_messenger), 128
Likelihood (class in pyro.contrib.gp.likelihoods), 189
Linear (class in pyro.contrib.gp.kernels), 186
LinearHMM (class in pyro.distributions), 66
LinearHMMReparam (class in pyro.infer.reparam.hmm), 45
LinearlyCoupledMaternGP (class in pyro.contrib.timeseries gp), 208
List (class in pyro.contrib.autoname.named), 152
lkj_constant() (LKJCorrCholesky method), 68
LKJCorrCholesky (class in pyro.distributions), 67
load() (in module pyro.contrib.examples.multi_mnist), 169
load() (ParamStoreDict method), 97
load() (PyroOptim method), 106
load_bart_od() (in module pyro.contrib.examples.bart), 169
load_fake_od() (in module pyro.contrib.examples.bart), 169
load_mnist() (in module pyro.contrib.examples.multi_mnist), 169
LocScaleReparam (class in pyro.infer.reparam.loc_scale), 42
log_abs_det_jacobian() (AffineAutoregressive method), 81
log_abs_det_jacobian() (AffineCoupling method), 82
log_abs_det_jacobian() (BatchNorm method), 83
log_abs_det_jacobian() (BlockAutoregressive method), 84
log_abs_det_jacobian() (CovLCholeskyTransform method), 77
log_abs_det_jacobian() (DiscreteCosineTransform method), 80
log_abs_det_jacobian() (ELUTransform method), 77
log_abs_det_jacobian() (Householder method), 86
log_abs_det_jacobian() (LeakyReLUTransform method), 78
log_abs_det_jacobian() (LowerCholeskyAffine method), 78
log_abs_det_jacobian() (NeuralAutoregressive method), 87
log_abs_det_jacobian() (Permute method), 79
log_abs_det_jacobian() (Polynomial method), 89
log_abs_det_jacobian() (Radial method), 90
log_abs_det_jacobian() (Sylvester method), 90
log_abs_det_jacobian() (TanhTransform method), 79
log_density() (Gaussian method), 141
log_kernel_and Grad() (IMQSteinKernel method), 23
log_kernel_and_grad() (RBFSteinKernel method), 23
log_kernel_and_grad() (SteinKernel method), 24
log_likelihood_of_update() (EKFSate method), 222
log_partition_function (SpanningTree attribute), 73
log_prob() (BetaBinomial method), 56
log_prob() (Delta method), 57
log_prob() (DependentMaternGP method), 210
log_prob() (DirichletMultinomial method), 58
log_prob() (DiscreteHMM method), 59
log_prob() (Distribution method), 52
log_prob() (EKFDistribution method), 216
log_prob() (Empirical method), 60
log_prob() (FoldedDistribution method), 60
log_prob() (GammaGaussianHMM method), 62
log_prob() (GammaPoisson method), 62
log_prob() (GaussianHMM method), 64
log_prob() (GaussianMRF method), 65
log_prob() (GaussianScaleMixture method), 65
log_prob() (GenericLGSSM method), 210
log_prob() (GenericLGSSMWithGPNoiseModel method), 211
log_prob() (IndependentMaternGP method), 208
log_prob() (LinearHMM method), 67
log_prob() (LinearlyCoupledMaternGP method), 209
log_prob() (LKJCcorrCholesky method), 68
log_prob() (MaskedMixture method), 68
log_prob() (MixtureOfDiagNormals method), 69
log_prob() (MixtureOfDiagNormalsSharedCovariance method), 70
log_prob() (MultivariateStudentT method), 70
log_prob() (Rej ector method), 72
log_prob() (RelaxedBernoulliStraightThrough method), 71
log_prob() (RelaxedOneHotCategoricalStraightThrough method), 72
log_prob() (SpanningTree method), 73
log_prob() (Stable method), 74
log_prob() (TimeSeriesModel method), 207
log_prob() (Unit method), 75
log_prob() (VonMises method), 75
log_prob() (VonMises3D method), 76
log_prob() (ZeroInflatedDistribution method), 77
log_prob_sum() (Trace method), 120
log_weights (Empirical attribute), 60
logging() (HMC method), 32
LogisticNormal (class in pyro.distributions), 49
LogNormal (class in pyro.distributions), 49
loss() (EnergyDistance method), 25
loss() (ReweightedWakeSleep method), 21
loss() (Trace_ELBO method), 13
loss() (TraceCausalEffect_ELBO method), 162
loss() (TraceEnum_ELBO method), 15
loss() (TraceGraph_ELBO method), 14
loss() (TraceMeanField_ELBO method), 16
loss() (TraceTailAdaptive_ELBO method), 17
loss() (TraceTMC_ELBO method), 18
loss_and_grads() (JitTrace_ELBO method), 14
loss_and_grads() (JitTraceEnum_ELBO method), 21
loss_and_grads() (JitTraceGraph_ELBO method), 14
loss_and_grads() (JitTraceMeanField_ELBO method), 17
loss_and_grads() (RenyiELBO method), 18
loss_and_grads() (ReweightedWakeSleep method), 21
loss_and_grads() (Trace_ELBO method), 13
loss_and_grads() (TraceEnum_ELBO method), 15
loss_and_grads() (TraceGraph_ELBO method), 14
loss_and_grads() (TraceTMC_ELBO method), 18
loss_and_surrogate_loss() (JitTrace_ELBO method), 13
LowerCholeskyAffine (class in pyro.distributions.transforms), 78
LowRankMultivariateNormal (class in pyro.distributions), 49
LSH (class in pyro.contrib.tracking.hashing), 222

M
make_dist() (BernoulliNet static method), 163
make_dist() (ExponentialNet static method), 163
make_dist() (LaplaceNet static method), 163
make_dist() (NormalNet static method), 164
make_dist() (StudentTNet static method), 164
map_estimate() (EasyGuide method), 166
map_estimate() (Group method), 167
marginal() (TracePosterior method), 29
marginal() (TracePredictive method), 29
marginal_eig() (in module pyro.contrib.oed.eig), 202
MarginalAssignment (class in pyro.contrib.tracking.assignment), 213
MarginalAssignmentPersistent (class in pyro.contrib.tracking.assignment), 214
MarginalAssignmentSparse (class in pyro.contrib.tracking.assignment), 213
marginalize() (Gaussian method), 142
Marginals (class in pyro.infer.abstract_infer), 28
markov() (in module pyro.poutine.handlers), 115
MarkovMessenger (class in pyro.poutine.markov_messenger), 128
mask() (in module pyro.poutine.handlers), 116
mask() (TorchDistributionMixin method), 54
MaskedMixture (class in pyro.distributions), 68
MaskMessenger (class in pyro.poutine.mask_messenger), 129
match() (ParamStoreDict method), 96
Matern32 (class in pyro.contrib.gp.kernels), 186
Matern52 (class in pyro.contrib.gp.kernels), 186
MaternKernel (class in pyro.ops.ssm_gp), 146
matrix_and_mvno_to_gaussian() (in module pyro.ops.gaussian), 142
mc_extend() (in module pyro.poutine.util), 123
MCMC (class in pyro.infer.mcmc.api), 29
mean (BetaBinomial attribute), 56
mean (Delta attribute), 57
mean (DirichletMultinomial attribute), 58
mean (EKFSate attribute), 221
mean (Empirical attribute), 60
mean (GammaPoisson attribute), 62
mean (MaskedMixture attribute), 68
mean (Measurement attribute), 224
mean (MultivariateStudentT attribute), 70
mean (VonMises attribute), 75
mean (ZeroInflatedDistribution attribute), 77
mean2pv() (DynamicModel method), 217
mean2pv() (Nep method), 218
mean2pv() (Ncv method), 219
mean_pv (EKFSate attribute), 221
Measurement (class in pyro.contrib.tracking.measurements), 224
median() (AutoContinuous method), 38
median() (AutoDelta method), 38
median() (AutoGuide method), 35
median() (AutoGuideList method), 36
merge_points() (in module pyro.contrib.tracking.hashing), 223
Messenger (class in pyro.contrib.minipyro), 195
Messenger (class in pyro.poutine.messenger), 123
MixedMultiOptimizer (class in pyro.optim.multi), 109
MixtureOfDiagNormals (class in pyro.distributions), 69
MixtureOfDiagNormalsSharedCovariance (class in pyro.distributions), 69
mk_dataset() (in module pyro.contrib.examples.multi_mnist), 169
mode (Parameterized attribute), 172, 193
model (AutoGuide attribute), 35
Model (class in pyro.contrib.cevae), 161
model (EasyGuide attribute), 165
model() (GPLVM method), 182
model() (GPMultiModel method), 174
model() (GPRegression method), 176
model() (MultiOptimizer method), 178
model() (VariationalGP method), 180
model() (VariationalSparseGP method), 181
module() (in module pyro), 6
module_from_param_with_module_name() (in module pyro.params.param_store), 97
MultiClass (class in pyro.contrib.gp.likelihoods), 191
Multinomial (class in pyro.distributions), 49
MultiOptimizer (class in pyro.optim.multi), 108
MultiplicativeLR() (in module pyro.optim.pymtorch_optimizers), 108
MultiStepLR() (in module pyro.optim.pymtorch_optimizers), 108
MultivariateNormal (class in pyro.distributions), 49
MultivariateStudentT (class in pyro.distributions), 70
mvn_to_gaussian() (in module pyro.ops.gaussian), 142

N
name_count() (in module pyro.contrib.autoname), 150
name_count() (in module pyro.contrib.autoname.scoping), 154
NameCountMessenger (class in pyro.contrib.autoname.scoping), 153
named_parameters() (ParamStoreDict method), 96
named_pyro_params() (PyroModel method), 101
Ncp (class in pyro.contrib.tracking.dynamic_models), 217
NcpContinuous (class in pyro.contrib.tracking.dynamic_models), 219
NcpDiscrete (class in pyro.contrib.tracking.dynamic_models), 219
Ncv (class in pyro.contrib.tracking.dynamic_models), 218
NcvContinuous (class in pyro.contrib.tracking.dynamic_models), 219
NcvDiscrete (class in pyro.contrib.tracking.dynamic_models), 220

O
Object (class in pyro.contrib.autoname.named), 151
observation_nodes (Trace attribute), 121
OMTMultivariateNormal (class in pyro.distributions), 70
OneCycleLR() (in module pyro.optim.pymtorch_optimizers), 108
OneHotCategorical (class in pyro.distributions), 50

P
pack_tensors() (Trace method), 121
param() (in module pyro), 5
param() (in module pyro.contrib.minipyro), 196
param_() (Object method), 152
param_name() (ParamStoreDict method), 97
param_nodes (Trace attribute), 121
param_with_module_name() (in module pyro.params.param_store), 97
Parameterized (class in pyro.contrib.gp), 171
Parameterized (class in pyro.contrib.gp.parameterized), 192
ParamStoreDict (class in pyro.params.param_store), 95
Pareto (class in pyro.distributions), 50
Periodic (class in pyro.contrib.gp.kernels), 187
Permute (class in pyro.distributions.transforms), 78
permit() (in module pyro.distributions.transforms), 93
pi() (in module pyro.ops.stats), 144
Planar (class in pyro.distributions.transforms), 87
planar() (in module pyro.distributions.transforms), 94
plate (class in pyro), 7
plate() (EasyGuide method), 166
plate() (in module pyro.contrib.minipyro), 196
PlateMessenger (class in pyro.contrib.minipyro), 195
PlateMessenger (class in pyro.poutine.plate_messenger), 129
Poisson (class in pyro.contrib.gp.likelihoods), 192
Poisson (class in pyro.distributions), 50
Polynomial (class in pyro.contrib.gp.kernels), 187
Polynomial (class in pyro.distributions.transforms), 88
polynomial() (in module pyro.distributions.transforms), 94
PositionMeasurement (class in pyro.contrib.tracking.measurements), 224
posterior_eig() (in module pyro.contrib.oed.eig), 201
postprocess_message() (Messenger method), 195
postprocess_message() (trace method), 196
potential_grad() (in module pyro.ops.integrator), 134
precision_matrix (MultivariateStudentT attribute), 70
predecessors() (Trace method), 121
predict() (EKFState method), 221
Predictive (class in pyro.infer.predictive), 26
print_and_log() (in module pyro.contrib.examples.util), 170
prior (PyroSample attribute), 99
process_covariance() (MaternKernel method), 146
process_message() (block method), 196
process_message() (Messenger method), 195
process_message() (PlateMessenger method), 195
process_message() (replay method), 196
process_noise_cov() (DynamicModel method), 217
process_noise_cov() (Ncp method), 218
process_noise_cov() (NcpContinuous method), 219
process_noise_cov() (NcpDiscrete method), 220
process_noise_cov() (Ncv method), 219
process_noise_cov() (NcvContinuous method), 220
process_noise_cov() (NcvDiscrete method), 220
process_noise_dist() (DynamicModel method), 217
Product (class in pyro.contrib.gp.kernels), 187
prune_subsample_sites() (in module pyro.poutine.util), 123
psis_diagnostic() (in module pyro.infer.importance), 19
pyro.contrib.autoname (module), 149
pyro.contrib.autoname.named (module), 151
pyro.contrib.autoname.scoping (module), 153
pyro.contrib.bnn (module), 157
pyro.contrib.bnn.hidden_layer (module), 157
pyro.contrib.cevae (module), 159
pyro.contrib.easyguide (module), 165
pyro.contrib.examples.bart (module), 169
pyro.contrib.examples.multi_mnist (module), 169
pyro.contrib.examples.util (module), 170
pyro.contrib.gp (module), 171
pyro.contrib.gp.kernels (module), 183
pyro.contrib.gp.likelihoods (module), 189
pyro.contrib.gp.models.gplvm (module), 182
pyro.contrib.gp.models.gpr (module), 175
pyro.contrib.gp.models.model (module), 172
pyro.contrib.gp.models.sgpr (module), 177
pyro.contrib.gp.models.vgp (module), 179
pyro.contrib.gp.models.vsgp (module), 180
pyro.contrib.gp.parameterized (module), 192
pyro.contrib.gp.util (module), 193
pyro.contrib.minipyro (module), 194
pyro.contrib.oed (module), 197
pyro.contrib.oed.eig (module), 198
pyro.contrib.oed.gmm (module), 204
pyro.contrib.timeseries.base (module), 207
pyro.contrib.timeseries.gp (module), 208
pyro.contrib.timeseries/lgssm (module), 210
pyro.contrib.timeseries/lgssmgp (module), 211
pyro.contrib.tracking (module), 213
pyro.contrib.tracking.assignment (module), 213
pyro.contrib.tracking.distributions (module), 216
pyro.contrib.tracking.dynamic_models (module), 216
pyro.contrib.tracking.extended_kalman_filter (module), 220
pyro.contrib.tracking.hashing (module), 222
pyro.contrib.tracking.measurements (module), 224
pyro.distributions.torch (module), 47
pyro.infer.abstract_infer (module), 27
RationalQuadratic (class in pyro.contrib.gp.kernels), 188
RBF (class in pyro.contrib.gp.kernels), 187
RBFSteinKernel (class in pyro.infer.svrg), 23
ReduceLRonPlateau() (in module pyro.optim.pytorch_optimizers), 108
ReentrantMessenger (class in pyro.poutine.reentrant_messenger), 129
register() (pyro.poutine.messaging.Messaging class method), 123
Rejector (class in pyro.distributions), 72
RelaxedBernoulli (class in pyro.distributions), 72
RelaxedBernoulliStraightThrough (class in pyro.distributions), 71
RelaxedOneHotCategorical (class in pyro.distributions), 50
RelaxedOneHotCategoricalStraightThrough (class in pyro.distributions), 71
remove() (LSH method), 223
remove_node() (Trace method), 121
RenyiELBO (class in pyro.infer.renyi_elbo), 17
Reparam (class in pyro.infer.reparam.reparam), 42
reparam() (in module pyro.poutine.handlers), 116
reparam() (NeutraReparam method), 46
reparameterized_nodes (Trace attribute), 121
ReparamMessenger (class in pyro.poutine.reparam_messenger), 129
repeated_matmul() (in module pyro.ops.tensor_utils), 137
replace_param() (ParamStoreDict method), 96
replay (class in pyro.contrib.minipyro), 196
replay() (in module pyro.poutine.handlers), 116
ReplayMessenger (class in pyro.poutine.replay_messenger), 130
rsample() (in module pyro.ops.stats), 144
reset() (DualAveraging method), 134
reset() (WelfordCovariance method), 134
reset_parameters() (Householder method), 86
reset_parameters() (Planar method), 88
reset_parameters() (Polynomial method), 89
reset_parameters() (Radial method), 90
reset_parameters2 () (Sylvester method), 90
reset_stack() (NonlocalExit method), 121
reshape() (Gaussian method), 141
reshape() (TorchDistributionMixin method), 53
ReweightedWakeSleep (class in pyro.infer.rws), 20
RMSprop() (in module pyro.optim.pytorch_optimizers), 108
Rprop() (in module pyro.optim.pytorch_optimizers), 108
rsample() (AVFMultivariateNormal method), 56
rsample() (Delta method), 57
rsample() (GaussianHMM method), 64
rsample() (GaussianScaleMixture method), 65
rsample() (LinearHMM method), 67
rsample() (MaskedMixture method), 68
rsample() (MixtureOfDiagNormals method), 69
rsample() (MixtureOfDiagNormalsSharedCovariance method), 70
rsample() (MultivariateStudentT method), 70
rsample() (OMTMultivariateNormal method), 71
rsample() (Rejctor method), 72
rsample() (RelaxedBernoulliStraightThrough method), 71
rsample() (RelaxedOneHotCategoricalStraightThrough method), 72
rsample() (Stable method), 74
run (MCMC attribute), 30
run() (SVI method), 12
run() (TracePosterior method), 29
S
S () (Sylvester method), 90
sample() (BetaBinomial method), 56
sample() (DirichletMultinomial method), 58
sample() (Distribution method), 52
sample() (Empirical method), 60
sample() (GammaPoisson method), 62
sample() (Group method), 167
sample() (HMC method), 32
sample() (in module pyro), 5
sample() (in module pyro.contrib.minipyro), 196
sample() (LKJCorrCholesky method), 68
sample() (MaskedMixture method), 68
sample() (NUTS method), 34
sample() (SpanningTree method), 73
sample() (Unit method), 75
sample() (VonMises method), 75
sample() (ZeroInflatedDistribution method), 77
sample() (Object method), 152
sample_latent() (AutoContinuous method), 39
sample_latent() (AutoGuide method), 36
sample_multi() (in module pyro.contrib.examples.multi_mnist), 169
sample_one() (in module pyro.contrib.examples.multi_mnist), 169
sample_posterior() (TraceEnum_ELBO method), 15
sample_saved() (TraceEnumSample_ELBO method), 26
sample_size (Empirical attribute), 60
save() (ParamStoreDict method), 97
save() (PyroOptim method), 105
scale () (in module pyro.poutine.handlers), 117
scale_tril (MultivariateStudentT attribute), 70
ScaleMessenger (class in pyro.poutine.scale_messenger), 130
scope() (in module pyro.contrib.autoname), 149
Index 243
scope() (in module pyro.contrib.autoname.scoping), 153
ScopeMessenger (class in pyro.contrib.autoname.scoping), 153
score_parts() (Distribution method), 52
score_parts() (Rejector method), 72
seed (class in pyro.contrib.minipyro), 196
seed() (in module pyro.poutine.handlers), 117
SeedMessenger (class in pyro.poutine.seed_messenger), 131
set_data() (GPModel method), 174
set_mode() (Parameterized method), 172, 193
set_prior() (Parameterized method), 171, 193
set_rng_seed() (.seed(),), 117
setdefault() (ParamStoreDict method), 96
setup() (HMC method), 32
SGD() (in module pyro.optim.pytorch_optimizers), 108
shape() (TorchDistributionMixin method), 53
share_memory() (AdagradRMSProp method), 107
sign (CorrLCholeskyTransform attribute), 77
sign (ELUTransform attribute), 77
sign (LeakyReLUTransform attribute), 78
sign (TanhTransform attribute), 79
site_is_subsample() (in module pyro.poutine.util), 123
SMCFilter (class in pyro.infer.smcfilter), 22
SMCState (class in pyro.infer.smcfilter), 22
SpanningTree (class in pyro.distributions), 72
SparseAdam (in module pyro.optim.pytorch_optimizers), 107
SparseGPRegression (class in pyro.contrib.gp.models.sgpr), 177
split_gelman_rubin() (in module pyro.ops.stats), 143
Stable (class in pyro.distributions), 73
StableReparam (class in pyro.infer.reparam.stable), 44
stationary_covariance() (MaternKernel method), 146
SteinKernel (class in pyro.infer.svi), 24
step() (AdagradRMSProp method), 107
step() (ClippedAdam method), 107
step() (DualAveraging method), 134
step() (MixedMultiOptimizer method), 109
step() (MultiOptimizer method), 109
step() (PyroLRScheduler method), 106
step() (PyroMultiOptimizer method), 109
step() (SMCFilter method), 22
step() (SVGD method), 24
step() (SVI method), 12, 195
step_size (HMC attribute), 32
StepLR() (in module pyro.optim.pytorch_optimizers), 108
stochastic_nodes (Trace attribute), 121
StudentT (class in pyro.distributions), 50
StudentTNet (class in pyro.contrib.cevae), 164
StudentTReparam (class in pyro.infer.reparam.student), 43
SubsampleMessenger (class in pyro.poutine.subsample_messenger), 131
successors() (Trace method), 121
Sum (class in pyro.contrib.gp.kernels), 188
summary() (MCMC method), 30
support (BetaBinomial attribute), 56
support (Delta attribute), 57
support (DirichletMultinomial attribute), 58
support (Empirical attribute), 60
support (FoldedDistribution attribute), 60
support (GammaPoisson attribute), 62
support (InverseGamma attribute), 66
support (LinearHMM attribute), 67
support (LKJCorrCholesky attribute), 68
support (MaskedMixture attribute), 68
support (MultivariateStudentT attribute), 70
support (SpanningTree attribute), 73
support (Stable attribute), 74
support (Unit attribute), 75
support (VonMises attribute), 75
support (VonMises3D attribute), 76
support (ZeroInflatedNegativeBinomial attribute), 76
support (ZeroInflatedPoisson attribute), 76
support() (Margins method), 28
SVGD (class in pyro.infer.svi), 23
SVI (class in pyro.contrib.minipyro), 195
SVI (class in pyro.infer.svi), 11
Sylvester (class in pyro.distributions.transforms), 90
sylvester() (in module pyro.distributions.transforms), 94
symbolize_dims() (Trace method), 121
SymmetricStableReparam (class in pyro.infer.reparam.stable), 44

T
t_dist() (Guide method), 162
t_dist() (Model method), 162
tanh() (in module pyro.distributions.transforms), 94
TanhTransform (class in pyro.distributions.transforms), 79
time (EKFState attribute), 221
time (Measurement attribute), 224
TimeSeriesModel (class in pyro.contrib.timeseries), 207
to_event() (TorchDistributionMixin method), 53
to_gaussian() (AffineNormal method), 142
Index

A

to_pyro_module_() (in module pyro.nn.module), 102
to_script_module() (CEVAE method), 161
topological_sort() (Trace method), 121
TorchDistribution_sort() (class in pyro.distributions), 54
TorchDistributionMixion (class in pyro.distributions.torch_distribution), 52
TorchMultiOptimizer (class in pyro.optim.multi), 109

trace (class in pyro.contrib.minipyro), 196
Trace (class in pyro.poutine), 119
trace (TraceHandler attribute), 132
trace() (in module pyro.ops.jit), 9
trace() (in module pyro.poutine.handlers), 118
Trace_ELBO (class in pyro.infer.trace_elbo), 13
Trace_ELBO() (in module pyro.contrib.minipyro), 195
TraceCausalEffect_ELBO (class pyro.contrib.cevae), 162
TraceEnum_ELBO (class pyro.infer.traceenum_elbo), 15
TraceEnumSample_ELBO (class pyro.infer.trace_discrete), 26
TraceGraph_ELBO (class pyro.infer.tracegraph_elbo), 14
TraceHandler (class pyro.poutine.trace_messenger), 131
TraceMeanField_ELBO (class pyro.infer.trace_mean_field_elbo), 16
TraceMessenger (class pyro.poutine.trace_messenger), 132
TracePosterior (class in pyro.infer.abstract_infer), 28
TracePredictive (class pyro.infer.abstract_infer), 29
TraceTailAdaptive_ELBO (class pyro.infer.trace_tail_adaptive_elbo), 17
TraceTMC_ELBO (class in pyro.infer.tracetmc_elbo), 18

train() (in module pyro.contrib.gp.util), 194
transform_sample() (NeuTraReparam method), 46
TransformedDistribution (class in pyro.distributions), 51
Transforming (class in pyro.contrib.gp.kernels), 188
TransformModule (class in pyro.distributions), 91
TransformReparam (class in pyro.infer.reparam.transform), 43
transition_matrix() (MaternKernel method), 146
transition_matrix_and_covariance() (MaternKernel method), 146
try_add() (ApproxSet method), 223

U
u() (Householder method), 86

V

validate_edges() (SpanningTree method), 73
validation_enabled() (in module pyro), 8
values() (ParamStoreDict method), 96
variance (BetaBinomial attribute), 56
variance (DirichletMultinomial attribute), 58
variance (Empirical attribute), 60
variance (GammaPoission attribute), 62
variance (MaskedMixture attribute), 68
variance (MultivariateStudentT attribute), 70
variance (VonMises attribute), 75
variance (ZeroInflatedDistribution attribute), 77
VariationalGP (class in pyro.contrib.gp.models.vgp), 179
VariationalSparseGP (class in pyro.contrib.gp.models.vgp), 180
vectorize() (in module pyro.infer.svdg), 24
vectorized (CondIndepStackFrame attribute), 127
vectorized_importance_weights() (in module pyro.infer.importance), 19
velocity_verlet() (in module pyro.ops.integrator), 134
VerticalScaling (class in pyro.contrib.gp.kernels), 188

W

vi_eig() (in module pyro.contrib.odeig), 199
Vindex (class in pyro.poutine.indexing), 139
vindex() (in module pyro.ops.indexing), 138
vnmc_eig() (in module pyro.contrib.odeig), 203
volume_preserving (Householder attribute), 86
volume_preserving (LowerCholeskyAffine attribute), 78
volume_preserving (Permute attribute), 79
VonMises (class in pyro.distributions), 75
VonMises3D (class in pyro.distributions), 75

Weibull (class in pyro.distributions), 51
WelfordCovariance (class in pyro.ops.welford), 134
WhiteNoise (class in pyro.contrib.gp.kernels), 189

X
x_dist() (Model method), 162

Y
y_dist() (Guide method), 162
y_dist() (Model method), 162
y_mean() (Model method), 162

Z
z_dist() (Guide method), 162
z_dist() (Model method), 162
ZeroInflatedDistribution (class in pyro.distributions), 76
ZeroInflatedNegativeBinomial (class in pyro.distributions), 76
ZeroInflatedPoisson (class in pyro.distributions), 76