19 Gaussian Processes 297
 19.1 Models ... 298
 19.2 Kernels .. 309
 19.3 Likelihoods .. 317
 19.4 Parameterized .. 320
 19.5 Util ... 321

20 Minipyro 323
 20.1 Mini Pyro .. 323

21 Biological Sequence Models with MuE 325
 21.1 Example MuE Models .. 325
 21.2 State Arrangers for Parameterizing MuEs 328
 21.3 Missing or Variable Length Data HMM 329
 21.4 Biosequence Dataset Loading 330

22 Optimal Experiment Design 333
 22.1 Expected Information Gain 334
 22.2 Generalised Linear Mixed Models 340

23 Random Variables 341
 23.1 Random Variable .. 341

24 Time Series 343
 24.1 Abstract Models .. 343
 24.2 Gaussian Processes ... 344
 24.3 Linear Gaussian State Space Models 347

25 Tracking 351
 25.1 Data Association .. 351
 25.2 Distributions .. 353
 25.3 Dynamic Models ... 354
 25.4 Extended Kalman Filter ... 358
 25.5 Hashing .. 360
 25.6 Measurements ... 361

26 Indices and tables 363

Python Module Index 365

Index 367
• Install Pyro.
• Learn the basic concepts of Pyro: models and inference
• Dive in to other tutorials and examples.
CHAPTER TWO

PRIMITIVES

get_param_store()
Returns the global ParamStoreDict.

clear_param_store()
Clears the global ParamStoreDict.

This is especially useful if you're working in a REPL. We recommend calling this before each training loop (to avoid leaking parameters from past models), and before each unit test (to avoid leaking parameters across tests).

param(name, init_tensor=None, constraint=Real(), event_dim=None)
Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

Parameters

- **name** (str) – name of parameter
- **init_tensor** (torch.Tensor or callable) – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
- **constraint** (torch.distributions.constraints.Constraint) – torch constraint, defaults to constraints.real.
- **event_dim** (int) – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

Returns

A constrained parameter. The underlying unconstrained parameter is accessible via pyro.param(...).unconstrained(), where .unconstrained is a weakref attribute.

Return type

torch.Tensor

sample(name, fn, *args, **kwargs)
Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Introduction to Pyro for a discussion.

Parameters

- **name** – name of sample
- **fn** – distribution class or function
- **obs** – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
• **obs_mask** *(bool or Tensor)* – Optional boolean tensor mask of shape broadcastable with `fn.batch_shape`. If provided, events with mask=True will be conditioned on `obs` and remaining events will be imputed by sampling. This introduces a latent sample site named `name + "_unobserved"` which should be used by guides.

• **infer** *(dict)* – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

```python
factor(name, log_factor, *, has_rsample=None)
```

Factor statement to add arbitrary log probability factor to a probabilistic model.

Warning: When using factor statements in guides, you’ll need to specify whether the factor statement originated from fully reparametrized sampling (e.g. the Jacobian determinant of a transformation of a reparameterized variable) or from nonreparameterized sampling (e.g. discrete samples). For the fully reparameterized case, set `has_rsample=True`; for the nonreparameterized case, set `has_rsample=False`. This is needed only in guides, not in models.

Parameters

- **name** *(str)* – Name of the trivial sample
- **log_factor** *(torch.Tensor)* – A possibly batched log probability factor.
- **has_rsample** *(bool)* – Whether the `log_factor` arose from a fully reparameterized distribution. Defaults to False when used in models, but must be specified for use in guides.

```python
deterministic(name, value, event_dim=None)
```

Deterministic statement to add a `Delta` site with name `name` and value `value` to the trace. This is useful when we want to record values which are completely determined by their parents. For example:

```python
x = pyro.sample("x", dist.Normal(0, 1))
x2 = pyro.deterministic("x2", x ** 2)
```

Note: The site does not affect the model density. This currently converts to a `sample()` statement, but may change in the future.

Parameters

- **name** *(str)* – Name of the site.
- **value** *(torch.Tensor)* – Value of the site.
- **event_dim** *(int)* – Optional event dimension, defaults to `value.ndim`.

```python
subsample(data, event_dim)
```

Subsampling statement to subsample data tensors based on enclosing `plate`s.

This is typically called on arguments to `model()` when subsampling is performed automatically by `plate`s by passing either the `subsample` or `subsample_size` kwarg. For example the following are equivalent:

```python
# Version 1. using indexing
def model(data):
    with pyro.plate("data", len(data), subsample_size=10, dim=-data.dim()) as ind:
```

(continues on next page)
data = data[ind]
...

Version 2. using pyro.subsample()
def model(data):
 with pyro.plate("data", len(data), subsample_size=10, dim=-data.dim()):
 data = pyro.subsample(data, event_dim=0)
 # ...

Parameters

- **data** *(Tensor)* – A tensor of batched data.
- **event_dim** *(int)* – The event dimension of the data tensor. Dimensions to the left are considered batch dimensions.

Returns A subsampled version of *data*

Return type **Tensor**

class plate(name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)

Bases: pyro.poutine.plate_messenger.PlateMessenger

Construct for conditionally independent sequences of variables.

plate can be used either sequentially as a generator or in parallel as a context manager (formerly *irange* and *iarange*, respectively).

Sequential *plate* is similar to *range()* in that it generates a sequence of values.

Vectorized *plate* is similar to *torch.arange()* in that it yields an array of indices by which other tensors can be indexed. *plate* differs from *torch.arange()* in that it also informs inference algorithms that the variables being indexed are conditionally independent. To do this, *plate* is provided as context manager rather than a function, and users must guarantee that all computation within an *plate* context is conditionally independent:

```python
with pyro.plate("name", size) as ind:
    # ...do conditionally independent stuff with ind...
```

Additionally, *plate* can take advantage of the conditional independence assumptions by subsampling the indices and informing inference algorithms to scale various computed values. This is typically used to subsample minibatches of data:

```python
with pyro.plate("data", len(data), subsample_size=100) as ind:
    batch = data[ind]
    assert len(batch) == 100
```

By default subsample_size=False and this simply yields a *torch.arange*(0, size). If 0 < subsample_size <= size this yields a single random batch of indices of size subsample_size and scales all log likelihood terms by size/batch_size, within this context.

Warning: This is only correct if all computation is conditionally independent within the context.

Parameters
• `name (str)` – A unique name to help inference algorithms match `plate` sites between models and guides.

• `size (int)` – Optional size of the collection being subsampled (like `stop` in builtin `range`).

• `subsample_size (int)` – Size of minibatches used in subsampling. Defaults to `size`.

• `subsample (Anything supporting `len()`)` – Optional custom subsample for user-defined subsampling schemes. If specified, then `subsample_size` will be set to `len(subsample)`.

• `dim (int)` – An optional dimension to use for this independence index. If specified, `dim` should be negative, i.e. should index from the right. If not specified, `dim` is set to the rightmost dim that is left of all enclosing `plate` contexts.

• `use_cuda (bool)` – DEPRECATED, use the `device` arg instead. Optional bool specifying whether to use cuda tensors for `subsample` and `log_prob`. Defaults to `torch.Tensor.is_cuda`.

• `device (str)` – Optional keyword specifying which device to place the results of `subsample` and `log_prob` on. By default, results are placed on the same device as the default tensor.

Returns A reusabke context manager yielding a single 1-dimensional `torch.Tensor` of indices.

Examples:

```bash
>>> # This version declares sequential independence and subsamples data:
>>> for i in pyro.plate('data', 100, subsample_size=10):
...     if z[i]:  # Control flow in this example prevents vectorization.
...         obs = pyro.sample(f'obs_{i}', dist.Normal(loc, scale), obs=data[i])

>>> # This version declares vectorized independence:
>>> with pyro.plate('data', 100, subsample_size=10):
...     obs = pyro.sample('obs', dist.Normal(loc, scale), obs=data)

>>> # This version subsamples data in vectorized way:
>>> with pyro.plate('data', 100, subsample_size=10) as ind:
...     obs = pyro.sample('obs', dist.Normal(loc, scale), obs=data[ind])

>>> # This wraps a user-defined subsampling method for use in pyro:
>>> ind = torch.randint(0, 100, (100,)).long() # custom subsample
>>> with pyro.plate('data', 100, subsample=ind):
...     obs = pyro.sample('obs', dist.Normal(loc, scale), obs=data[ind])

>>> # This reuses two different independence contexts.
>>> x_axis = pyro.plate('outer', 320, dim=-1)
>>> y_axis = pyro.plate('inner', 200, dim=-2)
>>> with x_axis:
...     x_noise = pyro.sample('x_noise', dist.Normal(loc, scale))
...     assert x_noise.shape == (320,)
>>> with y_axis:
...     y_noise = pyro.sample('y_noise', dist.Normal(loc, scale))
...     assert y_noise.shape == (200, 1)
>>> with x_axis, y_axis:
...     xy_noise = pyro.sample('xy_noise', dist.Normal(loc, scale))
...     assert xy_noise.shape == (200, 320)
```
See SVI Part II for an extended discussion.

plate_stack(prefix, sizes, rightmost_dim=-1)
Create a contiguous stack of plates with dimensions:

\[
\text{rightmost_dim} - \text{len(sizes)}, \ldots, \text{rightmost_dim}
\]

Parameters
- **prefix** (str) – Name prefix for plates.
- **sizes** (iterable) – An iterable of plate sizes.
- **rightmost_dim** (int) – The rightmost dim, counting from the right.

module(name, nn_module, update_module_params=False)
Registers all parameters of a `torch.nn.Module` with Pyro’s `param_store`. In conjunction with the `ParamStoreDict save()` and `load()` functionality, this allows the user to save and load modules.

Note: Consider instead using `PyroModule`, a newer alternative to `pyro.module()` that has better support for: jitting, serving in C++, and converting parameters to random variables. For details see the Modules Tutorial.

Parameters
- **name** (str) – name of module
- **nn_module** (`torch.nn.Module`) – the module to be registered with Pyro
- **update_module_params** – determines whether Parameters in the PyTorch module get overridden with the values found in the ParamStore (if any). Defaults to `False`

Returns `torch.nn.Module`

random_module(name, nn_module, prior, *args, **kwargs)

Warning: The `random_module` primitive is deprecated, and will be removed in a future release. Use `PyroModule` instead to to create Bayesian modules from `torch.nn.Module` instances. See the Bayesian Regression tutorial for an example.

DEPRECATED Places a prior over the parameters of the module `nn_module`. Returns a distribution (callable) over `nn.Modules`, which upon calling returns a sampled `nn.Module`.

Parameters
- **name** (str) – name of pyro module
- **nn_module** (`torch.nn.Module`) – the module to be registered with pyro
- **prior** – pyro distribution, stochastic function, or python dict with parameter names as keys and respective distributions/stochastic functions as values.

Returns a callable which returns a sampled module

barrier(data)
EXPERIMENTAL Ensures all values in data are ground, rather than lazy funsor values. This is useful in combination with `pyro.poutine.collapse()`.
enable_validation(is_validate=True)
Enable or disable validation checks in Pyro. Validation checks provide useful warnings and errors, e.g. NaN checks, validating distribution arguments and support values, detecting incorrect use of ELBO and MCMC. Since some of these checks may be expensive, you may want to disable validation of mature models to speed up inference.

The default behavior mimics Python’s assert statement: validation is on by default, but is disabled if Python is run in optimized mode (via python -O). Equivalently, the default behavior depends on Python’s global __debug__ value via pyro.enable_validation(__debug__). Validating is temporarily disabled during jit compilation, for all inference algorithms that support the PyTorch jit. We recommend developing models with non-jitted inference algorithms to ease debugging, then optionally moving to jitted inference once a model is correct.

Parameters
- is_validate (bool) – (optional; defaults to True) whether to enable validation checks.

validation_enabled(is_validate=True)
Context manager that is useful when temporarily enabling/disabling validation checks.

Parameters
- is_validate (bool) – (optional; defaults to True) temporary validation check over- ride.

trace(fn=None, ignore_warnings=False, jit_options=None)
Lazy replacement for torch.jit.trace() that works with Pyro functions that call pyro.param(). The actual compilation artifact is stored in the compiled attribute of the output. Call diagnostic methods on this attribute.

Example:
```python
def model(x):
    scale = pyro.param("scale", torch.tensor(0.5), constraint=constraints.positive)
    return pyro.sample("y", dist.Normal(x, scale))

@pyro.ops.jit.trace
def model_log_prob_fn(x, y):
    cond_model = pyro.condition(model, data={"y": y})
    tr = pyro.poutine.trace(cond_model).get_trace(x)
    return tr.log_prob_sum()```

**Parameters**
- fn (callable) – The function to be traced.
- ignore_warnings (bool) – Whether to ignore jit warnings.
- jit_options (dict) – Optional dict of options to pass to torch.jit.trace(), e.g. {"optimize": False}. 

8 Chapter 2. Primitives
CHAPTER THREE

INFERENCIE

In the context of probabilistic modeling, learning is usually called inference. In the particular case of Bayesian inference, this often involves computing (approximate) posterior distributions. In the case of parameterized models, this usually involves some sort of optimization. Pyro supports multiple inference algorithms, with support for stochastic variational inference (SVI) being the most extensive. Look here for more inference algorithms in future versions of Pyro.

See the Introductory tutorial for a discussion of inference in Pyro.

3.1 SVI

class SVI(model, guide, optim, loss, loss_and_grads=None, num_samples=0, num_steps=0, **kwargs)
    Bases: pyro.infer.abstract_infer.TracePosterior

Parameters

  • model – the model (callable containing Pyro primitives)
  • guide – the guide (callable containing Pyro primitives)
  • optim (PyroOptim) – a wrapper a for a PyTorch optimizer
  • loss (pyro.infer.elbo.ELBO) – an instance of a subclass of ELBO. Pyro provides three built-in losses: Trace_ELBO, TraceGraph_ELBO, and TraceEnum_ELBO. See the ELBO docs to learn how to implement a custom loss.
  • num_samples – (DEPRECATED) the number of samples for Monte Carlo posterior approximation
  • num_steps – (DEPRECATED) the number of optimization steps to take in run()

A unified interface for stochastic variational inference in Pyro. The most commonly used loss is loss=Trace_ELBO(). See the tutorial SVI Part I for a discussion.

evaluate_loss(*args, **kwargs)

Returns estimate of the loss

Return type float

Evaluate the loss function. Any args or kwargs are passed to the model and guide.

run(*args, **kwargs)
Warning: This method is deprecated, and will be removed in a future release. For inference, use `step()` directly, and for predictions, use the `Predictive` class.

```python
step(*args, **kwargs)
```

**Returns** estimate of the loss

**Return type** float

Take a gradient step on the loss function (and any auxiliary loss functions generated under the hood by `loss_and_grads`). Any args or kwargs are passed to the model and guide.

### 3.2 ELBO

```python
class ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore jit warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=- 1.0)
```

**Bases:** object

`ELBO` is the top-level interface for stochastic variational inference via optimization of the evidence lower bound. Most users will not interact with this base class `ELBO` directly; instead they will create instances of derived classes: `Trace_ELBO`, `TraceGraph_ELBO`, or `TraceEnum_ELBO`.

**Parameters**

- `num_particles` – The number of particles/samples used to form the ELBO (gradient) estimators.
- `max_plate_nesting (int)` – Optional bound on max number of nested `pyro.plate()` contexts. This is only required when enumerating over sample sites in parallel, e.g. if a site sets `infer={"enumerate": "parallel"}`. If omitted, `ELBO` may guess a valid value by running the (model,guide) pair once, however this guess may be incorrect if model or guide structure is dynamic.
- `vectorize_particles (bool)` – Whether to vectorize the ELBO computation over `num_particles`. Defaults to False. This requires static structure in model and guide.
- `strict Enumeration_warning (bool)` – Whether to warn about possible misuse of enumeration, i.e. that `pyro.infer.traceenum_elbo.TraceEnum_ELBO` is used if there are enumerated sample sites.
- `ignore jit warnings (bool)` – Flag to ignore warnings from the JIT tracer. When this is True, all `torch.jit.TracerWarning` will be ignored. Defaults to False.
- `jit_options (bool)` – Optional dict of options to pass to `torch.jit.trace()`, e.g. `{"check_trace": True}`.
- `retain_graph (bool)` – Whether to retain autograd graph during an SVI step. Defaults to None (False).
- `tail_adaptive_beta (float)` – Exponent beta with $-1.0 \leq beta < 0.0$ for use with `TraceTailAdaptive_ELBO`.

**References**

class Trace_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, ignore jit warnings=False, 
jit_options=None, retain_graph=None, tail adaptive beta=-1.0)
Bases: pyro.infer.elbo.ELBO

A trace implementation of ELBO-based SVI. The estimator is constructed along the lines of references [1] and [2].
There are no restrictions on the dependency structure of the model or the guide. The gradient estimator includes partial Rao-Blackwellization for reducing the variance of the estimator when non-reparameterizable random variables are present. The Rao-Blackwellization is partial in that it only uses conditional independence information that is marked by plate contexts. For more fine-grained Rao-Blackwellization, see TraceGraph_ELBO.

References
[2] Black Box Variational Inference, Rajesh Ranganath, Sean Gerrish, David M. Blei

loss(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

differentiable_loss(model, guide, *args, **kwargs)

Computes the surrogate loss that can be differentiated with autograd to produce gradient estimates for the model and guide parameters

loss_and_grads(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators.

class JitTrace_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, ignore jit warnings=False, 
jit_options=None, retain_graph=None, tail adaptive beta=-1.0)
Bases: pyro.infer.trace_elbo.Trace_ELBO

Like Trace_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:
- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

loss_and_surrogate_loss(model, guide, *args, **kwargs)
differentiable_loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)
class TraceGraph_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
    vectorize_particles=False, strict Enumeration_warning=True,
    ignore_jit_warnings=False, jit_options=None, retain_graph=None,
    tail_adaptive_beta=-1.0)

Bases: pyro.infer.elbo.ELBO

A TraceGraph implementation of ELBO-based SVI. The gradient estimator is constructed along the lines of
reference [1] specialized to the case of the ELBO. It supports arbitrary dependency structure for the model and
guide as well as baselines for non-reparameterizable random variables. Where possible, conditional dependency
information as recorded in the Trace is used to reduce the variance of the gradient estimator. In particular two
kinds of conditional dependency information are used to reduce variance:

• the sequential order of samples (z is sampled after y => y does not depend on z)
• plate generators

References
    Weber, Pieter Abbeel
[2] Neural Variational Inference and Learning in Belief Networks Andriy Mnih, Karol Gregor

loss(model, guide, *args, **kwargs)

    Returns  returns an estimate of the ELBO
    Return type  float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads(model, guide, *args, **kwargs)

    Returns  returns an estimate of the ELBO
    Return type  float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs
backward on the latter. Num particle many samples are used to form the estimators. If baselines are present,
an baseline loss is also constructed and differentiated.

class JitTraceGraph_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
    vectorize_particles=False, strict Enumeration_warning=True,
    ignore_jit_warnings=False, jit_options=None, retain_graph=None,
    tail_adaptive_beta=-1.0)

Bases: pyro.infer.tracegraph_elbo.TraceGraph_ELBO

Like TraceGraph_ELBO but uses torch.jit.trace() to compile loss_and_grads().

This works only for a limited set of models:

• Models must have static structure.
• Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered
  once per unique **kwargs.

loss_and_grads(model, guide, *args, **kwargs)
class BackwardSampleMessenger(enum_trace, guide_trace)
    Bases: pyro.poutine.messenger.Messenger

    Implements forward filtering / backward sampling for sampling from the joint posterior distribution

class TraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
    vectorize_particles=False, strict_enumeration_warning=True,
    ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)
    Bases: pyro.infer.elbo.ELBO

    A trace implementation of ELBO-based SVI that supports - exhaustive enumeration over discrete sample sites,
    and - local parallel sampling over any sample site in the guide.

    To enumerate over a sample site in the guide, mark the site with either infer={'enumerate': 'sequential'}
    or infer={'enumerate': 'parallel'}. To configure all guide sites at once, use config_enumerate().
    To enumerate over a sample site in the model, mark the site infer={'enumerate': 'parallel'}
    and ensure the site does not appear in the guide.

    This assumes restricted dependency structure on the model and guide: variables outside of an plate can never
    depend on variables inside that plate.

    loss(model, guide, *args, **kwargs)

        Returns  an estimate of the ELBO
        Return type  float

        Estimates the ELBO using num_particles many samples (particles).

differentiable_loss(model, guide, *args, **kwargs)

        Returns  a differentiable estimate of the ELBO
        Return type  torch.Tensor

        Raises ValueError – if the ELBO is not differentiable (e.g. is identically zero)

        Estimates a differentiable ELBO using num_particles many samples (particles). The result should be
        infinitely differentiable (as long as underlying derivatives have been implemented).

    loss_and_grads(model, guide, *args, **kwargs)

        Returns  an estimate of the ELBO
        Return type  float

        Estimates the ELBO using num_particles many samples (particles). Performs backward on the ELBO
        of each particle.

    compute_marginals(model, guide, *args, **kwargs)

        Computes marginal distributions at each model-enumerated sample site.

        Returns  a dict mapping site name to marginal Distribution object
        Return type  OrderedDict

    sample_posterior(model, guide, *args, **kwargs)

        Sample from the joint posterior distribution of all model-enumerated sites given all observations

3.2. ELBO
class JitTraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta= 1.0)
Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO

Like TraceEnum_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

• Models must have static structure.
• Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

differentiable_loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)

class TraceMeanField_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta= 1.0)
Bases: pyro.infer.trace_elbo.Trace_ELBO

A trace implementation of ELBO-based SVI. This is currently the only ELBO estimator in Pyro that uses analytic KL divergences when those are available.

In contrast to, e.g., TraceGraph_ELBO and Trace_ELBO this estimator places restrictions on the dependency structure of the model and guide. In particular it assumes that the guide has a mean-field structure, i.e. that it factorizes across the different latent variables present in the guide. It also assumes that all of the latent variables in the guide are reparameterized. This latter condition is satisfied for, e.g., the Normal distribution but is not satisfied for, e.g., the Categorical distribution.

Warning: This estimator may give incorrect results if the mean-field condition is not satisfied.

Note for advanced users:

The mean field condition is a sufficient but not necessary condition for this estimator to be correct. The precise condition is that for every latent variable z in the guide, its parents in the model must not include any latent variables that are descendants of z in the guide. Here ‘parents in the model’ and ‘descendants in the guide’ is with respect to the corresponding (statistical) dependency structure. For example, this condition is always satisfied if the model and guide have identical dependency structures.

loss(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.
class JitTraceMeanField_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.trace_mean_field_elbo.TraceMeanField_ELBO

Like TraceMeanField_ELBO but uses pyro.ops.jit.trace() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

differentiable_loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)

class TraceTailAdaptive_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.trace_elbo.Trace_ELBO

Interface for Stochastic Variational Inference with an adaptive f-divergence as described in ref. [1]. Users should specify num_particles > 1 and vectorize_particles==True. The argument tail_adaptive_beta can be specified to modify how the adaptive f-divergence is constructed. See reference for details.

Note that this interface does not support computing the variational objective itself; rather it only supports computing gradients of the variational objective. Consequently, one might want to use another SVI interface (e.g. RenyiELBO) in order to monitor convergence.

Note that this interface only supports models in which all the latent variables are fully reparameterized. It also does not support data subsampling.


loss(model, guide, *args, **kwargs)

It is not necessary to estimate the tail-adaptive f-divergence itself in order to compute the corresponding gradients. Consequently the loss method is left unimplemented.

class RenyiELBO(alpha=0, num_particles=2, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True)

Bases: pyro.infer.elbo.ELBO

An implementation of Renyi’s α-divergence variational inference following reference [1].

In order for the objective to be a strict lower bound, we require α ≥ 0. Note, however, that according to reference [1], depending on the dataset α < 0 might give better results. In the special case α = 0, the objective function is that of the important weighted autoencoder derived in reference [2].

Note: Setting α < 1 gives a better bound than the usual ELBO. For α = 1, it is better to use Trace_ELBO class because it helps reduce variances of gradient estimations.

Parameters
• **alpha** *(float)* – The order of \(\alpha\)-divergence. Here \(\alpha \neq 1\). Default is 0.

• **num_particles** – The number of particles/samples used to form the objective (gradient) estimator. Default is 2.

• **max_plate_nesting** *(int)* – Bound on max number of nested `pyro.plate()` contexts. Default is infinity.

• **strict Enumeration_warning** *(bool)* – Whether to warn about possible misuse of enumeration, i.e. that `TraceEnum_ELBO` is used iff there are enumerated sample sites.

References:


`loss(model, guide, *args, **kwargs)`

**Returns** returns an estimate of the ELBO

**Return type** `float`

Evaluates the ELBO with an estimator that uses `num_particles` many samples/particles.

`loss_and_grads(model, guide, *args, **kwargs)`

**Returns** returns an estimate of the ELBO

**Return type** `float`

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. `Num_particle` many samples are used to form the estimators.

`differentiable_loss(model, guide, *args, **kwargs)`

**Returns** a differentiable estimate of the marginal log-likelihood

**Return type** `torch.Tensor`
Raises `ValueError` – if the ELBO is not differentiable (e.g. is identically zero)

Computes a differentiable TMC estimate using `num_particles` many samples (particles). The result should be infinitely differentiable (as long as underlying derivatives have been implemented).

```python
loss(model, guide, *args, **kwargs)
loss_and_grads(model, guide, *args, **kwargs)
```

### 3.3 Importance

```python
class Importance(model, guide=None, num_samples=None)
```

Bases: `pyro.infer.abstract_infer.TracePosterior`

Parameters:
- `model`: probabilistic model defined as a function
- `guide`: guide used for sampling defined as a function
- `num_samples`: number of samples to draw from the guide (default 10)

This method performs posterior inference by importance sampling using the guide as the proposal distribution. If no guide is provided, it defaults to proposing from the model’s prior.

```python
get_ESS()
get_log_normalizer()
get_normalized_weights(log_scale=False)
```

Computes the Pareto tail index $k$ for a model/guide pair using the technique described in [1], which builds on previous work in [2]. If $0 < k < 0.5$ the guide is a good approximation to the model posterior, in the sense described in [1]. If $0.5 \leq k \leq 0.7$, the guide provides a suboptimal approximation to the posterior, but may still be useful in practice. If $k > 0.7$ the guide program provides a poor approximation to the full posterior, and caution should be used when using the guide. Note, however, that a guide may be a poor fit to the full posterior while still yielding reasonable model predictions. If $k < 0.0$ the importance weights corresponding to the model and guide appear to be bounded from above; this would be a bizarre outcome for a guide trained via ELBO maximization. Please see [1] for a more complete discussion of how the tail index $k$ should be interpreted.

Please be advised that a large number of samples may be required for an accurate estimate of $k$.

Note that we assume that the model and guide are both vectorized and have static structure. As is canonical in Pyro, the args and kwargs are passed to the model and guide.


```python
psis_diagnostic(model, guide, *args, **kwargs)
```

Parameters:
- `model` (*callable*): the model program.
- `guide` (*callable*): the guide program.
- `num_particles` (*int*): the total number of times we run the model and guide in order to compute the diagnostic. defaults to 1000.
Pyro Documentation

- `max_simultaneous_particles` – the maximum number of simultaneous samples drawn from the model and guide. defaults to `num_particles`. `num_particles` must be divisible by `max_simultaneous_particles`. compute the diagnostic. defaults to 1000.

- `max_plate_nesting (int)` – optional bound on max number of nested `pyro.plate()` contexts in the model/guide. defaults to 7.

  Returns float the PSIS diagnostic k

`vectorized_importance_weights(model, guide, *args, **kwargs)`

Parameters

- `model` – probabilistic model defined as a function
- `guide` – guide used for sampling defined as a function
- `num_samples` – number of samples to draw from the guide (default 1)
- `max_plate_nesting (int)` – Bound on max number of nested `pyro.plate()` contexts.
- `normalized (bool)` – set to True to return self-normalized importance weights

Returns returns a (num_samples,) shaped tensor of importance weights and the model and guide traces that produced them

Vectorized computation of importance weights for models with static structure:

```python
log_weights, model_trace, guide_trace = \
 vectorized_importance_weights(model, guide, *args,
 num_samples=1000,
 max_plate_nesting=4,
 normalized=False)
```

3.4 Reweighted Wake-Sleep

```python
class ReweightedWakeSleep(num_particles=None, insomnia=1.0, model_has_params=True,
 num_sleep_particles=None, vectorize_particles=False,
 max_plate_nesting=inf,
 strict Enumeration_warning=True)
```

Bases: `pyro.infer.elbo.ELBO`

An implementation of Reweighted Wake Sleep following reference [1].

Note: Sampling and log_prob evaluation asymptotic complexity:

1) Using wake-theta and/or wake-phi \(O(num\_particles)\) samples from guide, \(O(num\_particles)\) log_prob evaluations of model and guide

2) Using sleep-phi \(O(num\_sleep\_particles)\) samples from model, \(O(num\_sleep\_particles)\) log_prob evaluations of guide

if 1) and 2) are combined, \(O(num\_particles)\) samples from the guide, \(O(num\_sleep\_particles)\) from the model, \(O(num\_particles + num\_sleep\_particles)\) log_prob evaluations of the guide, and \(O(num\_particles)\) evaluations of the model
Note: This is particularly useful for models with stochastic branching, as described in [2].

Note: This returns _two_ losses, one each for (a) the model parameters \(\theta\), computed using the \(iwae\) objective, and (b) the guide parameters \(\phi\), computed using (a combination of) the \(csis\) objective and a self-normalized importance-sampled version of the \(csis\) objective.

Note: In order to enable computing the sleep-phi terms, the guide program must have its observations explicitly passed in through the keyworded argument \(observations\). Where the value of the observations is unknown during definition, such as for amortized variational inference, it may be given a default argument as \(observations=None\), and the correct value supplied during learning through \(svi.step(observations=\ldots)\).

Warning: Mini-batch training is not supported yet.

Parameters

- **num_particles** \((\text{int})\): The number of particles/samples used to form the objective (gradient) estimator. Default is 2.
- **insomnia** – The scaling between the wake-phi and sleep-phi terms. Default is 1.0 [wake-phi]
- **model_has_params** \((\text{bool})\): Indicate if model has learnable params. Useful in avoiding extra computation when running in pure sleep mode [csis]. Default is True.
- **num_sleep_particles** \((\text{int})\): The number of particles used to form the sleep-phi estimator. Matches \(num\_particles\) by default.
- **vectorize_particles** \((\text{bool})\): Whether the traces should be vectorised across \(num\_particles\). Default is True.
- **max_plate_nesting** \((\text{int})\): Bound on max number of nested pyro.plate() contexts. Default is infinity.
- **strict Enumeration Warning** \((\text{bool})\): Whether to warn about possible misuse of enumeration, i.e. that TraceEnum_ELBO is used iff there are enumerated sample sites.

References:


\texttt{loss(model, guide, *args, **kwargs)}

**Returns** returns model loss and guide loss

**Return type** float, float

**Computes the re-weighted wake-sleep estimators for the model (wake-theta) and the guide** \((\text{insomnia} \times \text{wake-phi} + (1 - \text{insomnia}) \times \text{sleep-phi})\).
loss_and_grads(model, guide, *args, **kwargs)

Returns returns model loss and guide loss

Return type float

Computes the RWS estimators for the model (wake-theta) and the guide (wake-phi). Performs backward as appropriate on both, using num_particle many samples/particles.

3.5 Sequential Monte Carlo

exception SMCFailed
Bases: ValueError

Exception raised when SMCFilter fails to find any hypothesis with nonzero probability.

class SMCFilter(model, guide, num_particles, max_plate_nesting, *, ess_threshold=0.5)
Bases: object

SMCFilter is the top-level interface for filtering via sequential monte carlo.

The model and guide should be objects with two methods: .init(state, ...) and .step(state, ...), intended to be called first with init(), then with step() repeatedly. These two methods should have the same signature as SMCFilter’s init() and step() of this class, but with an extra first argument state that should be used to store all tensors that depend on sampled variables. The state will be a dict-like object, SMCState, with arbitrary keys and torch.Tensor values. Models can read and write state but guides can only read from it.

Inference complexity is $O(len(state) \times num\_time\_steps)$, so to avoid quadratic complexity in Markov models, ensure that state has fixed size.

Parameters

- **model** (*object*) – probabilistic model with init and step methods
- **guide** (*object*) – guide used for sampling, with init and step methods
- **num_particles** (*int*) – The number of particles used to form the distribution.
- **max_plate_nesting** (*int*) – Bound on max number of nested pyro.plate() contexts.
- **ess_threshold** (*float*) – Effective sample size threshold for deciding when to importance resample: resampling occurs when $ess < ess\_threshold \times num\_particles$.

get_empirical()

Returns a marginal distribution over all state tensors.

Return type a dictionary with keys which are latent variables and values which are Empirical objects.

init(*args, **kwargs)

Perform any initialization for sequential importance resampling. Any args or kwargs are passed to the model and guide

step(*args, **kwargs)

Take a filtering step using sequential importance resampling updating the particle weights and values while resampling if desired. Any args or kwargs are passed to the model and guide
class SMCState(num_particles)
    Bases: dict

    Dictionary-like object to hold a vectorized collection of tensors to represent all state during inference with SMCFilter. During inference, the SMCFilter resample these tensors.

    Keys may have arbitrary hashable type. Values must be torch.Tensor s.

    Parameters
    ----------
    num_particles : int

3.6 Stein Methods

class IMQSteinKernel(alpha=0.5, beta=-0.5, bandwidth_factor=None)
    Bases: pyro.infer.svgd.SteinKernel

    An IMQ (inverse multi-quadratic) kernel for use in the SVGD inference algorithm [1]. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [2]. The kernel takes the form

    \[ K(x, y) = (\alpha + \|x - y\|^2 / h)^\beta \]

    where \( \alpha \) and \( \beta \) are user-specified parameters and \( h \) is the bandwidth.

    Parameters
    ----------
    • alpha : float – Kernel hyperparameter, defaults to 0.5.
    • beta : float – Kernel hyperparameter, defaults to -0.5.
    • bandwidth_factor : float – Optional factor by which to scale the bandwidth, defaults to 1.0.

    Variables
    ---------
    bandwidth_factor : float – Property that controls the factor by which to scale the bandwidth at each iteration.

    References
    ----------

    property bandwidth_factor

    log_kernel_and_grad(particles)
        See pyro.infer.svgd.SteinKernel.log_kernel_and_grad()

class RBFSteinKernel(bandwidth_factor=None)
    Bases: pyro.infer.svgd.SteinKernel

    A RBF kernel for use in the SVGD inference algorithm. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [1].

    Parameters
    ----------
    bandwidth_factor : float – Optional factor by which to scale the bandwidth, defaults to 1.0.

    Variables
    ---------
    bandwidth_factor : float – Property that controls the factor by which to scale the bandwidth at each iteration.

    References
    ----------

    property bandwidth_factor
**log_kernel_and_grad** *(particles)*

See `pyro.infer.svgd.SteinKernel.log_kernel_and_grad()`

**class SVGD**( *model, kernel, optim, num_particles, max_plate_nesting, mode='univariate'*)

Bases: `object`

A basic implementation of Stein Variational Gradient Descent as described in reference [1].

**Parameters**

- **model** – The model (callable containing Pyro primitives). Model must be fully vectorized and may only contain continuous latent variables.

- **kernel** – a SVGD compatible kernel like `RBFSteinKernel`.

- **optim** *(pyro.optim.PyroOptim)* – A wrapper for a PyTorch optimizer.

- **num_particles** *(int)* – The number of particles used in SVGD.

- **max_plate_nesting** *(int)* – The max number of nested `pyro.plate()` contexts in the model.

- **mode** *(str)* – Whether to use a Kernelized Stein Discrepancy that makes use of multivariate test functions (as in [1]) or univariate test functions (as in [2]). Defaults to `univariate`.

**Example usage:**

```python
from pyro.infer import SVGD, RBFSteinKernel
from pyro.optim import Adam

kernel = RBFSteinKernel()
adam = Adam({"lr": 0.1})
svgd = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)

for step in range(500):
 svgd.step(model_arg1, model_arg2)

final_particles = svgd.get_named_particles()
```

**References**


**get_named_particles**()

Create a dictionary mapping name to vectorized value, of the form `{name: tensor}`. The leading dimension of each tensor corresponds to particles, i.e. this creates a struct of arrays.

**step**( *args, **kwargs*)

Computes the SVGD gradient, passing args and kwargs to the model, and takes a gradient step.

**Return** `dict` A dictionary of the form `{name: float}`, where each float is a mean squared gradient. This can be used to monitor the convergence of SVGD.

**class SteinKernel**

Bases: `object`

Abstract class for kernels used in the `SVGD` inference algorithm.
abstract log_kernel_and_grad(particles)
Compute the component kernels and their gradients.

Parameters particles – a tensor with shape (N, D)

Returns A pair (log_kernel, kernel_grad) where log_kernel is a (N, N, D)-shaped tensor equal

to the logarithm of the kernel and kernel_grad is a (N, N, D)-shaped tensor where the entry

(n, m, d) represents the derivative of log_kernel w.r.t. x_{m,d}, where x_{m,d} is the d\textsuperscript{th}

dimension of particle m.

vectorize(fn, num_particles, max_plate_nesting)

3.7 Likelihood free methods

class EnergyDistance(beta=1.0, prior_scale=0.0, num_particles=2, max_plate_nesting=inf)
Bases: object

Posterior predictive energy distance [1,2] with optional Bayesian regularization by the prior.

Let \( p(x,z)=p(z) p(x|z) \) be the model, \( q(z|x) \) be the guide. Then given data \( x \) and drawing an iid pair of samples

\( (Z, X) \) and \( (Z', X') \) (where \( Z \) is latent and \( X \) is the posterior predictive),

\[
Z \sim q(z|x); \quad X \sim p(x|Z)
\]
\[
Z' \sim q(z|x); \quad X' \sim p(x|Z')
\]

\[
loss = E_X \|X - x\|^{\beta} - \frac{1}{2} E_{X,X'} \|X - X'\|^{\beta} - \lambda E_Z \log p(Z)
\]

This is a likelihood-free inference algorithm, and can be used for likelihoods without tractable density functions.
The \( \beta \) energy distance is a robust loss functions, and is well defined for any distribution with finite fractional

moment \( E[\|X\|^{\beta}] \).

This requires static model structure, a fully reparametrized guide, and reparametrized likelihood distributions in
the model. Model latent distributions may be non-reparametrized.

References


Parameters

- **beta (float)** – Exponent \( \beta \) from [1,2]. The loss function is strictly proper for distributions

  with finite beta-absolute moment \( E[\|X\|^{\beta}] \). Thus for heavy tailed distributions beta should

  be small, e.g. for Cauchy distributions, \( \beta < 1 \) is strictly proper. Defaults to 1. Must be in

  the open interval (0,2).

- **prior_scale (float)** – Nonnegative scale for prior regularization. Model parameters are

  trained only if this is positive. If zero (default), then model log densities will not be computed

  (guide log densities are never computed).

- **num_particles (int)** – The number of particles/samples used to form the gradient estima-

  tors. Must be at least 2.

- **max_plate_nesting (int)** – Optional bound on max number of nested pyro.plate() contexts. If omitted, this will guess a valid value by running the (model,guide) pair once.
__call__(model, guide, *args, **kwargs)
Computes the surrogate loss that can be differentiated with autograd to produce gradient estimates for the model and guide parameters.

loss(*args, **kwargs)
Not implemented. Added for compatibility with unit tests only.

3.8 Discrete Inference

infer_discrete(fn=None, first_available_dim=None, temperature=1, *, strict Enumeration warning=True)
A poutine that samples discrete sites marked with site["infer"]["enumerate"] = "parallel" from the posterior, conditioned on observations.

Example:

```python
@infer_discrete(first_available_dim=-1, temperature=0)
@config_enumurate
def viterbi_decoder(data, hidden_dim=10):
 transition = 0.3 / hidden_dim + 0.7 * torch.eye(hidden_dim)
 means = torch.arange(float(hidden_dim))
 states = [0]
 for t in pyro.markov(range(len(data))):
 states.append(pyro.sample("states_{0}".format(t),
 dist.Categorical(transition[states[-1]])))
 pyro.sample("obs_{0}".format(t),
 dist.Normal(means[states[-1]], 1.),
 obs=data[t])
 return states # returns maximum likelihood states
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **first_available_dim** (int) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer.
- **temperature** (int) – Either 1 (sample via forward-filter backward-sample) or 0 (optimize via Viterbi-like MAP inference). Defaults to 1 (sample).
- **strict Enumeration warning** (bool) – Whether to warn in case no enumerated sample sites are found. Defaults to True.

class TraceEnumSample_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta=-1.0)

Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO

This extends TraceEnum_ELBO to make it cheaper to sample from discrete latent states during SVI.

The following are equivalent but the first is cheaper, sharing work between the computations of loss and z:

```python
Version 1.
elbo = TraceEnumSample_ELBO(max_plate_nesting=1)
```
loss = elbo.loss(*args, **kwargs)
z = elbo.sample_saved()

# Version 2.
elbo = TraceEnum_ELBO(max_plate_nesting=1)
loss = elbo.loss(*args, **kwargs)
guide_trace = poutine.trace(guide).get_trace(*args, **kwargs)
z = infer_discrete(poutine.replay(model, guide_trace),
        first_available_dim=-2)(*args, **kwargs)
sample_saved()

Generate latent samples while reusing work from SVI.step().

3.9 Prediction utilities

class Predictive(model, posterior_samples=None, guide=None, num_samples=None, return_sites=(), parallel=False):
    Bases: torch.nn.modules.module.Module

    EXPERIMENTAL class used to construct predictive distribution. The predictive distribution is obtained by running the model conditioned on latent samples from posterior_samples. If a guide is provided, then posterior samples from all the latent sites are also returned.

    Warning: The interface for the Predictive class is experimental, and might change in the future.

    Parameters

    - model – Python callable containing Pyro primitives.
    - posterior_samples (dict) – dictionary of samples from the posterior.
    - guide (callable) – optional guide to get posterior samples of sites not present in posterior_samples.
    - num_samples (int) – number of samples to draw from the predictive distribution. This argument has no effect if posterior_samples is non-empty, in which case, the leading dimension size of samples in posterior_samples is used.
    - return_sites (list, tuple, or set) – sites to return; by default only sample sites not present in posterior_samples are returned.
    - parallel (bool) – predict in parallel by wrapping the existing model in an outermost plate messenger. Note that this requires that the model has all batch dims correctly annotated via plate. Default is False.

call(*args, **kwargs)

    Method that calls forward() and returns parameter values of the guide as a tuple instead of a dict, which is a requirement for JIT tracing. Unlike forward(), this method can be traced by torch.jit.trace_module().

    Warning: This method may be removed once PyTorch JIT tracer starts accepting dict as valid return types. See issue.
**forward**(*args, **kwargs*)

Returns dict of samples from the predictive distribution. By default, only sample sites not contained in `posterior_samples` are returned. This can be modified by changing the `return_sites` keyword argument of this `Predictive` instance.

**Note:** This method is used internally by `Module`. Users should instead use `__call__()` as in `Predictive(model)(*args, **kwargs)`.

**Parameters**

- **args** – model arguments.
- **kwargs** – model keyword arguments.

**get_samples**(*args, **kwargs*)

**get_vectorized_trace**(*args, **kwargs*)

Returns a single vectorized trace from the predictive distribution. Note that this requires that the model has all batch dims correctly annotated via `plate`.

**Parameters**

- **args** – model arguments.
- **kwargs** – model keyword arguments.

**training**: `bool`

class **EmpiricalMarginal**(*args, **kwargs*)

**Bases**: `pyro.distributions.empirical.Empirical`

Marginal distribution over a single site (or multiple, provided they have the same shape) from the `TracePosterior`'s model.

**Note:** If multiple sites are specified, they must have the same tensor shape. Samples from each site will be stacked and stored within a single tensor. See `Empirical`. To hold the marginal distribution of sites having different shapes, use `Marginals` instead.

**Parameters**

- **trace_posterior** (`TracePosterior`) – a `TracePosterior` instance representing a Monte Carlo posterior.
- **sites** (`list`) – optional list of sites for which we need to generate the marginal distribution.

class **Marginals**(trace_posterior, sites=None, validate_args=None)

**Bases**: `object`

Holds the marginal distribution over one or more sites from the `TracePosterior`’s model. This is a convenience container class, which can be extended by `TracePosterior` subclasses. e.g. for implementing diagnostics.

**Parameters**

- **trace_posterior** (`TracePosterior`) – a `TracePosterior` instance representing a Monte Carlo posterior.
- **sites** (`list`) – optional list of sites for which we need to generate the marginal distribution.
property empirical
A dictionary of sites’ names and their corresponding EmpiricalMarginal distribution.

Type OrderedDict

support(flatten=False)
Gets support of this marginal distribution.

Parameters flatten (bool) – A flag to decide if we want to flatten batch_shape when the marginal distribution is collected from the posterior with num_chains > 1. Defaults to False.

Returns a dict with keys are sites’ names and values are sites’ supports.

Return type OrderedDict

class TracePosterior(num_chains=1)
Bases: object

Abstract TracePosterior object from which posterior inference algorithms inherit. When run, collects a bag of execution traces from the approximate posterior. This is designed to be used by other utility classes like EmpiricalMarginal, that need access to the collected execution traces.

information_criterion(pointwise=False)
Computes information criterion of the model. Currently, returns only “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and the corresponding effective number of parameters.

Reference:
[1] Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC, Aki Vehtari, Andrew Gelman, and Jonah Gabry

Parameters pointwise (bool) – a flag to decide if we want to get a vectorized WAIC or not.
When pointwise=False, returns the sum.

Returns a dictionary containing values of WAIC and its effective number of parameters.

Return type OrderedDict

marginal(sites=None)
Generates the marginal distribution of this posterior.

Parameters sites (list) – optional list of sites for which we need to generate the marginal distribution.

Returns A Marginals class instance.

Return type Marginals

run(*args, **kwargs)
Calls self_traces to populate execution traces from a stochastic Pyro model.

Parameters
• args – optional args taken by self_traces.
• kwargs – optional keywords args taken by self_traces.

class TracePredictive(model, posterior, num_samples, keep_sites=None)
Bases: pyro.infer.abstract_infer.TracePosterior

Warning: This class is deprecated and will be removed in a future release. Use the Predictive class instead.

3.9. Prediction utilities
Generates and holds traces from the posterior predictive distribution, given model execution traces from the approximate posterior. This is achieved by constraining latent sites to randomly sampled parameter values from the model execution traces and running the model forward to generate traces with new response (“_RETURN”) sites.

:param model: arbitrary Python callable containing Pyro primitives.
:param TracePosterior posterior: trace posterior instance holding samples from the model’s approximate posterior.
:param int num_samples: number of samples to generate.
:param keep_sites: The sites which should be sampled from posterior distribution (default: all)

```
marginal(sites=None)
```

Gets marginal distribution for this predictive posterior distribution.

## 3.10 MCMC

### 3.10.1 MCMC

```python
class MCMC(kernel, num_samples, warmup_steps=None, initial_params=None, num_chains=1, hook_fn=None, mp_context=None, disable_progbar=False, disable_validation=True, transforms=None, save_params=None)
```

Wrapper class for Markov Chain Monte Carlo algorithms. Specific MCMC algorithms are TraceKernel instances and need to be supplied as a `kernel` argument to the constructor.

**Parameters**

- **kernel** – An instance of the `TraceKernel` class, which when given an execution trace returns another sample trace from the target (posterior) distribution.
- **num_samples** (*int*) – The number of samples that need to be generated, excluding the samples discarded during the warmup phase.
- **warmup_steps** (*int*) – Number of warmup iterations. The samples generated during the warmup phase are discarded. If not provided, default is the same as `num_samples`.
- **num_chains** (*int*) – Number of MCMC chains to run in parallel. Depending on whether `num_chains` is 1 or more than 1, this class internally dispatches to either `_UnarySampler` or `_MultiSampler`.
- **initial_params** (*dict*) – dict containing initial tensors in unconstrained space to initiate the markov chain. The leading dimension’s size must match that of `num_chains`. If not specified, parameter values will be sampled from the prior.
- **hook_fn** – Python callable that takes in `(kernel, samples, stage, i)` as arguments. `stage` is either `sample` or `warmup` and `i` refers to the `i`th sample for the given stage. This can be used to implement additional logging, or more generally, run arbitrary code per generated sample.
- **mp_context** (*str*) – Multiprocessing context to use when `num_chains > 1`. Only applicable for Python 3.5 and above. Use `mp_context=”spawn”` for CUDA.
- **disable_progbar** (*bool*) – Disable progress bar and diagnostics update.
• **disable_validation** *(bool)* – Disables distribution validation check. Defaults to True, disabling validation, since divergent transitions will lead to exceptions. Switch to False to enable validation, or to None to preserve existing global values.

• **transforms** *(dict)* – dictionary that specifies a transform for a sample site with constrained support to unconstrained space.

• **save_params** *(List[str])* – Optional list of a subset of parameter names to save during sampling and diagnostics. This is useful in models with large nuisance variables. Defaults to None, saving all params.

**diagnostics()**
Gets some diagnostics statistics such as effective sample size, split Gelman-Rubin, or divergent transitions from the sampler.

**get_samples**(num_samples=None, group_by_chain=False)
Get samples from the MCMC run, potentially resampling with replacement.

For parameter details see: **select_samples**.

**run**(args, **kwargs)
Run MCMC to generate samples and populate self._samples.

Example usage:

```python
def model(data):
...

nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_samples=500)
mcmc.run(data)
samples = mc localsamples()
```

**Parameters**

• **args** – optional arguments taken by **MCMCKernel.setup**.

• **kwargs** – optional keywords arguments taken by **MCMCKernel.setup**.

**summary**(prob=0.9)
Prints a summary table displaying diagnostics of samples obtained from posterior. The diagnostics displayed are mean, standard deviation, median, the 90% Credibility Interval, **effective_sample_size()**, **split_gelman_rubin()**.

**Parameters** **prob** *(float)* – the probability mass of samples within the credibility interval.

### 3.10.2 StreamingMCMC

class StreamingMCMC(kernel, num_samples, warmup_steps=None, initial_params=None, statistics=None, num_chains=1, hook_fn=None, disable_progbar=False, disable_validation=True, transforms=None, save_params=None)

Bases: pyro.infer.mcmc.api.AbstractMCMC

MCMC that computes required statistics in a streaming fashion. For this class no samples are retained but only aggregated statistics. This is useful for running memory expensive models where we care only about specific statistics (especially useful in a memory constrained environments like GPU).

For available streaming ops please see **streaming**.
diagnostics()

    Gets diagnostics. Currently a split Gelman-Rubin is only supported and requires ‘mean’ and ‘variance’ streaming statistics to be present.

get_statistics(group_by_chain=True)

    Returns a dict of statistics defined by those passed to the class constructor.

        Parameters group_by_chain (bool) – Whether statistics should be chain-wise or merged together.

run(*args, **kwargs)

    Run StreamingMCMC to compute required self._statistics.

3.10.3 MCMCKernel

class MCMCKernel

    Bases: object

    cleanup()

        Optional method to clean up any residual state on termination.

    diagnostics()

        Returns a dict of useful diagnostics after finishing sampling process.

    end_warmup()

        Optional method to tell kernel that warm-up phase has been finished.

    property initial_params

        Returns a dict of initial params (by default, from the prior) to initiate the MCMC run.

            Returns dict of parameter values keyed by their name.

    logging()

        Relevant logging information to be printed at regular intervals of the MCMC run. Returns None by default.

            Returns String containing the diagnostic summary. e.g. acceptance rate

            Return type string

    abstract sample(params)

        Samples parameters from the posterior distribution, when given existing parameters.

            Parameters

                • params (dict) – Current parameter values.

                • time_step (int) – Current time step.

            Returns New parameters from the posterior distribution.

    setup(warmup_steps, *args, **kwargs)

        Optional method to set up any state required at the start of the simulation run.

            Parameters

                • warmup_steps (int) – Number of warmup iterations.

                • *args – Algorithm specific positional arguments.

                • **kwargs – Algorithm specific keyword arguments.
3.10.4 HMC

class HMC(model=None, potential_fn=None, step_size=1, trajectory_length=None, num_steps=None, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8, init_strategy=<function init_to_uniform>)

Bases: pyro.infer.mcmc.mcmc_kernel.MCMCKernel

Simple Hamiltonian Monte Carlo kernel, where step_size and num_steps need to be explicitly specified by the user.

References

[1] MCMC Using Hamiltonian Dynamics, Radford M. Neal

Parameters

- **model** – Python callable containing Pyro primitives.
- **potential_fn** – Python callable calculating potential energy with input is a dict of real support parameters.
- **step_size** (*float*) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- **trajectory_length** (*float*) – Length of a MCMC trajectory. If not specified, it will be set to step_size x num_steps. In case num_steps is not specified, it will be set to 2\(\pi\).
- **num_steps** (*int*) – The number of discrete steps over which to simulate Hamiltonian dynamics. The state at the end of the trajectory is returned as the proposal. This value is always equal to int(trajectory_length / step_size).
- **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.
- **adapt_mass_matrix** (*bool*) – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.
- **full_mass** (*bool*) – A flag to decide if mass matrix is dense or diagonal.
- **transforms** (*dict*) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement log_abs_det_jacobian. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in torch.distributions.constraint_registry.
- **max_plate_nesting** (*int*) – Optional bound on max number of nested pyro.plate() contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
- **jit_compile** (*bool*) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
- **jit_options** (*dict*) – A dictionary contains optional arguments for torch.jit.trace() function.
- **ignore_jit_warnings** (*bool*) – Flag to ignore warnings from the JIT tracer when jit_compile=True. Default is False.
- **target_accept_prob** (*float*) – Increasing this value will lead to a smaller step size, hence the sampling will be slower and more robust. Default to 0.8.
- **init_strategy** (callable) – A per-site initialization function. See Initialization section for available functions.

**Note:** Internally, the mass matrix will be ordered according to the order of the names of latent variables, not the order of their appearance in the model.

Example:

```python
code_snippet
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

>>> def model(data):
... coefs_mean = torch.zeros(dim)
... coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
... y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels)
... return y

>>> hmc_kernel = HMC(model, step_size=0.0855, num_steps=4)
>>> mcmc = MCMC(hmc_kernel, num_samples=500, warmup_steps=100)
>>> mcmc.run(data)
>>> mcmc.get_samples()['beta'].mean(0)
tensor([0.9819, 1.9258, 2.9737])
```

cleanup()
clear_cache()
diagnostics()

property **initial_params**

property **inverse_mass_matrix**

logging()

property **mass_matrix_adapter**

property **num_steps**

sample(params)

setup(warmup_steps, *args, **kwargs)

property **step_size**
3.10.5 NUTS

class NUTS(model=None, potential_fn=None, step_size=1, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, use_multinomial_sampling=True, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8, max_tree_depth=10, init_strategy=<function init_to_uniform>)

Bases: pyro.infer.mcmc.hmc.HMC

No-U-Turn Sampler kernel, which provides an efficient and convenient way to run Hamiltonian Monte Carlo. The number of steps taken by the integrator is dynamically adjusted on each call to sample to ensure an optimal length for the Hamiltonian trajectory [1]. As such, the samples generated will typically have lower autocorrelation than those generated by the HMC kernel. Optionally, the NUTS kernel also provides the ability to adapt step size during the warmup phase.

Refer to the baseball example to see how to do Bayesian inference in Pyro using NUTS.

References


[2] A Conceptual Introduction to Hamiltonian Monte Carlo, Michael Betancourt

[3] Slice Sampling, Radford M. Neal

Parameters

- **model** – Python callable containing Pyro primitives.
- **potential_fn** – Python callable calculating potential energy with input is a dict of real support parameters.
- **step_size** (*float*) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.
- **adapt_mass_matrix** (*bool*) – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.
- **full_mass** (*bool*) – A flag to decide if mass matrix is dense or diagonal.
- **use_multinomial_sampling** (*bool*) – A flag to decide if we want to sample candidates along its trajectory using “multinomial sampling” or using “slice sampling”. Slice sampling is used in the original NUTS paper [1], while multinomial sampling is suggested in [2]. By default, this flag is set to True. If it is set to False, NUTS uses slice sampling.
- **transforms** (*dict*) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement log_abs_det_jacobian. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in torch.distributions.constraint_registry.
- **max_plate_nesting** (*int*) – Optional bound on max number of nested pyro.plate() contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
- **jit_compile** (*bool*) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
• **jit_options** *(dict)* – A dictionary contains optional arguments for `torch.jit.trace()` function.

• **ignore jit warnings** *(bool)* – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.

• **target_accept_prob** *(float)* – Target acceptance probability of step size adaptation scheme. Increasing this value will lead to a smaller step size, so the sampling will be slower but more robust. Default to 0.8.

• **max_tree_depth** *(int)* – Max depth of the binary tree created during the doubling scheme of NUTS sampler. Default to 10.

• **init_strategy** *(callable)* – A per-site initialization function. See *Initialization* section for available functions.

Example:

```python
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()
>>> def model(data):
... coefs_mean = torch.zeros(dim)
... coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
... y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)),
 obs=labels)
... return y
>>> nuts_kernel = NUTS(model, adapt_step_size=True)
>>> mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=300)
>>> mcmc.run(data)
>>> mcmc.get_samples()['beta'].mean(0)
tensor([0.9221, 1.9464, 2.9228])
```

### 3.10.6 BlockMassMatrix

class **BlockMassMatrix** *(init_scale=1.0)*

**Bases:** object

EXPERIMENTAL. This class is used to adapt (inverse) mass matrix and provide useful methods to calculate algebraic terms which involves the mass matrix.

The mass matrix will have block structure, which can be specified by using the method `configure()` with the corresponding structured `mass_matrix_shape` arg.

**Parameters**

- **init_scale** *(float)* – initial scale to construct the initial mass matrix.

**configure**(mass_matrix_shape, adapt_mass_matrix=True, options={})

Sets up an initial mass matrix.

**Parameters**

- **mass_matrix_shape** *(dict)* – a dict that maps tuples of site names to the shape of the corresponding mass matrix. Each tuple of site names corresponds to a block.
• **adapt_mass_matrix** *(bool)* – a flag to decide whether an adaptation scheme will be used.
• **options** *(dict)* – tensor options to construct the initial mass matrix.

**end_adaptation()**
Updates the current mass matrix using the adaptation scheme.

**property inverse_mass_matrix**

**kinetic_grad** *(r)*
Computes the gradient of kinetic energy w.r.t. the momentum *r*. It is equivalent to compute velocity given the momentum *r*.

Parameters **r** *(dict)* – a dictionary maps site names to a tensor momentum.

Returns a dictionary maps site names to the corresponding gradient

**property mass_matrix_size**
A dict that maps site names to the size of the corresponding mass matrix.

**scale** *(r_unscaled, r_prototype)*
Computes $M^{1/2} @ r_{unscaled}$.

Note that *r* is generated from a gaussian with scale mass_matrix_sqrt. This method will scale it.

Parameters
• **r_unscaled** *(dict)* – a dictionary maps site names to a tensor momentum.
• **r_prototype** *(dict)* – a dictionary maps site names to prototype momentum. Those prototype values are used to get shapes of the scaled version.

Returns a dictionary maps site names to the corresponding tensor

**unscale** *(r)*
Computes $inv(M^{1/2}) @ r$.

Note that *r* is generated from a gaussian with scale mass_matrix_sqrt. This method will unscale it.

Parameters **r** *(dict)* – a dictionary maps site names to a tensor momentum.

Returns a dictionary maps site names to the corresponding tensor

**update** *(z, z_grad)*
Updates the adaptation scheme using the new sample *z* or its grad *z_grad*.

Parameters
• **z** *(dict)* – the current value.
• **z_grad** *(dict)* – grad of the current value.

### 3.10.7 Utilities

**initialize_model** *(model, model_args=(), model_kwargs={}, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, skip_jit_warnings=False, num_chains=1, init_strategy=<function init_to_uniform>, initial_params=None)*

Given a Python callable with Pyro primitives, generates the following model-specific properties needed for inference using HMC/NUTS kernels:
• initial parameters to be sampled using a HMC kernel,
• a potential function whose input is a dict of parameters in unconstrained space,
• transforms to transform latent sites of *model* to unconstrained space,
• a prototype trace to be used in MCMC to consume traces from sampled parameters.

Parameters

• \texttt{model} – a Pyro model which contains Pyro primitives.
• \texttt{model_args} (\texttt{tuple}) – optional args taken by \texttt{model}.
• \texttt{model_kwargs} (\texttt{dict}) – optional kwargs taken by \texttt{model}.
• \texttt{transforms} (\texttt{dict}) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement \texttt{log_abs_det_jacobian}. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in \texttt{torch.distributions.constraint_registry}.
• \texttt{max_plate_nesting} (\texttt{int}) – Optional bound on max number of nested \texttt{pyro.plate()} contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
• \texttt{jit_compile} (\texttt{bool}) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
• \texttt{jit_options} (\texttt{dict}) – A dictionary contains optional arguments for \texttt{torch.jit.trace()} function.
• \texttt{ignore_jit_warnings} (\texttt{bool}) – Flag to ignore warnings from the JIT tracer when \texttt{jit_compile=True}. Default is False.
• \texttt{num_chains} (\texttt{int}) – Number of parallel chains. If \texttt{num_chains > 1}, the returned \texttt{initial_params} will be a list with \texttt{num_chains} elements.
• \texttt{init_strategy} (\texttt{callable}) – A per-site initialization function. See \texttt{Initialization} section for available functions.
• \texttt{initial_params} (\texttt{dict}) – dict containing initial tensors in unconstrained space to initiate the markov chain.

Returns a tuple of (\texttt{initial_params, potential_fn, transforms, prototype_trace})

diagnostics\hspace{1em}(\texttt{samples, group_by_chain=True})
Gets diagnostics statistics such as effective sample size and split Gelman-Rubin using the samples drawn from the posterior distribution.

Parameters

• \texttt{samples} (\texttt{dict}) – dictionary of samples keyed by site name.
• \texttt{group_by_chain} (\texttt{bool}) – If True, each variable in \texttt{samples} will be treated as having shape \texttt{num_chains \times num_samples \times sample_shape}. Otherwise, the corresponding shape will be \texttt{num_samples \times sample_shape} (i.e. without chain dimension).

Returns dictionary of diagnostic stats for each sample site.

select_samples\hspace{1em}(\texttt{samples, num_samples=None, group_by_chain=False})
Performs selection from given MCMC samples.

Parameters

• \texttt{samples} (\texttt{dictionary}) – Samples object to sample from.
• \texttt{num_samples} (\texttt{int}) – Number of samples to return. If \texttt{None}, all the samples from an MCMC chain are returned in their original ordering.
• `group_by_chain (bool)` – Whether to preserve the chain dimension. If True, all samples will have `num_chains` as the size of their leading dimension.

**Returns** dictionary of samples keyed by site name.

### 3.11 Automatic Guide Generation

#### 3.11.1 AutoGuide

class AutoGuide(model, *, create_plates=None)

Bases: `pyro.nn.module.PyroModule`

Base class for automatic guides. Derived classes must implement the `forward()` method, with the same `*args, **kwargs` as the base `model`. Auto guides can be used individually or combined in an `AutoGuideList` object.

**Parameters**

• `model (callable)` – A pyro model.

• `create_plates (callable)` – An optional function inputing the same `*args, **kwargs` as `model()` and returning a `pyro.plate` or iterable of plates. Plates not returned will be created automatically as usual. This is useful for data subsampling.

**property model**

call(*args, **kwargs)

Method that calls `forward()` and returns parameter values of the guide as a `tuple` instead of a `dict`, which is a requirement for JIT tracing. Unlike `forward()`, this method can be traced by `torch.jit.trace_module()`.

**Warning:** This method may be removed once PyTorch JIT tracer starts accepting `dict` as valid return types. See issue [https://github.com/pytorch/pytorch/issues/27743](https://github.com/pytorch/pytorch/issues/27743).

**sample_latent(**kwargs)**

Samples an encoded latent given the same `*args, **kwargs` as the base `model`.

**median(*args, **kwargs)**

Returns the posterior median value of each latent variable.

**Returns** A dict mapping sample site name to median tensor.

**Return type** dict

**training:** bool
class AutoGuideList(model, *, create_plates=None)


Container class to combine multiple automatic guides.

Example usage:
```
guide = AutoGuideList(my_model)
guide.append(AutoDiagonalNormal(poutine.block(model, hide=['assignment'])))
guide.append(AutoDiscreteParallel(poutine.block(model, expose=['assignment'])))
svi = SVI(model, guide, optim, Trace_ELBO())
```

Parameters

- **model** (callable) – a Pyro model

append(part)

Add an automatic guide for part of the model. The guide should have been created by blocking the model to restrict to a subset of sample sites. No two parts should operate on any one sample site.

Parameters

- **part** (AutoGuide or callable) – a partial guide to add

add(part)

Deprecated alias for append().

forward(*args, **kwargs)

A composite guide with the same *args, **kwargs as the base model.

Note: This method is used internally by Module. Users should instead use __call__().

Returns

A dict mapping sample site name to sampled value.

Return type: dict

median(*args, **kwargs)

Returns the posterior median value of each latent variable.

Returns

A dict mapping sample site name to median tensor.

Return type: dict

quantiles(quantiles, *args, **kwargs)

Returns the posterior quantile values of each latent variable.

Parameters

- **quantiles** (list) – A list of requested quantiles between 0 and 1.

Returns

A dict mapping sample site name to quantiles tensor.

Return type: dict

training: bool
3.11.3 AutoCallable

class AutoCallable(model, guide, median=<function AutoCallable.<lambda>>):
    Bases: pyro.infer.autoguide.guides.AutoGuide

    AutoGuide wrapper for simple callable guides.

    This is used internally for composing autoguides with custom user-defined guides that are simple callables, e.g.:

    ```python
 def my_local_guide(*args, **kwargs):
 ...
 guide = AutoGuideList(model)
 guide.add(AutoDelta(poutine.block(model, expose=['my_global_param'])))
 guide.add(my_local_guide) # automatically wrapped in an AutoCallable
    ```

    To specify a median callable, you can instead:

    ```python
 def my_local_median(*args, **kwargs):
 ...
 guide.add(AutoCallable(model, my_local_guide, my_local_median))
    ```

    For more complex guides that need e.g. access to plates, users should instead subclass AutoGuide.

    Parameters
    - `model` (callable) – a Pyro model
    - `guide` (callable) – a Pyro guide (typically over only part of the model)
    - `median` (callable) – an optional callable returning a dict mapping sample site name to computed median tensor.

    forward(*args, **kwargs)
    training: bool

3.11.4 AutoNormal

class AutoNormal(model, *, init_loc_fn=<function init_to_feasible>, init_scale=0.1, create_plates=None):
    Bases: pyro.infer.autoguide.guides.AutoGuide

    This implementation of AutoGuide uses a Normal distribution with a diagonal covariance matrix to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

    It should be equivalent to :class: AutoDiagonalNormal, but with more convenient site names and with better support for :class: TraceMeanField_ELBO.

    In AutoDiagonalNormal, if your model has N named parameters with dimensions k_i and sum k_i = D, you get a single vector of length D for your mean, and a single vector of length D for sigmas. This guide gives you N distinct normals that you can call by name.

    Usage:

    ```python
 guide = AutoNormal(model)
 svi = SVI(model, guide, ...)
    ```

    Parameters
• **model** (*callable*) – A Pyro model.

• **init_loc_fn** (*callable*) – A per-site initialization function. See *Initialization* section for available functions.

• **init_scale** (*float*) – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.

• **create_plates** (*callable*) – An optional function inputing the same *args, **kwargs* as `model()` and returning a `pyro.plate` or iterable of plates. Plates not returned will be created automatically as usual. This is useful for data subsampling.

```python
scale_constraint = SoftplusPositive(lower_bound=0.0)
```

```python
forward(*args, **kwargs)
 An automatic guide with the same *args, **kwargs as the base model.
```

---

**Note:** This method is used internally by `Module`. Users should instead use `__call__()`.

```python
Returns A dict mapping sample site name to sampled value.
Return type dict
```

```python
median(*args, **kwargs)
 Returns the posterior median value of each latent variable.
Returns A dict mapping sample site name to median tensor.
Return type dict
```

```python
quantiles(quantiles, *args, **kwargs)
 Returns posterior quantiles each latent variable. Example:
    ```
    print(guide.quantiles([0.05, 0.5, 0.95]))
    ```
Parameters quantiles (*torch.Tensor or list*) – A list of requested quantiles between 0 and 1.
Returns A dict mapping sample site name to a tensor of quantile values.
Return type dict
```

```python
training: bool
```

### 3.11.5 AutoDelta

```python
class AutoDelta(model, init_loc_fn=<function init_to_median>, *, create_plates=None)
 Bases: pyro.infer.autoguide.guides.AutoGuide
```

This implementation of `AutoGuide` uses Delta distributions to construct a MAP guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

---

**Note:** This class does MAP inference in constrained space.

---

Usage:
guide = AutoDelta(model)
svi = SVI(model, guide, ...)

Latent variables are initialized using init_loc_fn(). To change the default behavior, create a custom init_loc_fn() as described in Initialization, for example:

```python
def my_init_fn(site):
 if site['name'] == "level":
 return torch.tensor([-1., 0., 1.])
 if site['name'] == "concentration":
 return torch.ones(k)
 return init_to_sample(site)
```

**Parameters**

- `model` *(callable)* – A Pyro model.
- `init_loc_fn` *(callable)* – A per-site initialization function. See Initialization section for available functions.
- `create_plates` *(callable)* – An optional function inputing the same `*args, **kwargs` as `model()` and returning a `pyro.plate` or iterable of plates. Plates not returned will be created automatically as usual. This is useful for data subsampling.

**forward** *(*args, **kwargs)*

An automatic guide with the same `*args, **kwargs` as the base model.

**Note:** This method is used internally by `Module`. Users should instead use `__call__()`.

**Returns** A dict mapping sample site name to sampled value.

**Return type** `dict`

**median** *(*args, **kwargs)*

Returns the posterior median value of each latent variable.

**Returns** A dict mapping sample site name to median tensor.

**Return type** `dict`

**training**: `bool`

### 3.11.6 AutoContinuous

**class** `AutoContinuous` *(model, init_loc_fn=<function init_to_median>)*

**Bases**: `pyro.infer.autoguide.guides.AutoGuide`

Base class for implementations of continuous-valued Automatic Differentiation Variational Inference [1]. This uses `torch.distributions.transforms` to transform each constrained latent variable to an unconstrained space, then concatenate all variables into a single unconstrained latent variable. Each derived class implements a `get_posterior()` method returning a distribution over this single unconstrained latent variable. Assumes model structure and latent dimension are fixed, and all latent variables are continuous.

**Parameters**

- `model` *(callable)* – a Pyro model
Reference:

[1] Automatic Differentiation Variational Inference, Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei

Parameters

- **model** *(callable)* – A Pyro model.
- **init_loc_fn** *(callable)* – A per-site initialization function. See Initialzation section for available functions.

**get_base_dist()**

Returns the base distribution of the posterior when reparameterized as a `TransformedDistribution`. This should not depend on the model’s *args, **kwargs.

```
posterior = TransformedDistribution(self.get_base_dist(), self.get_transform(*args, **kwargs))
```

Returns a `TorchDistribution` instance representing the base distribution.

**get_transform(*args, **kwargs)**

Returns the transform applied to the base distribution when the posterior is reparameterized as a `TransformedDistribution`. This may depend on the model’s *args, **kwargs.

```
posterior = TransformedDistribution(self.get_base_dist(), self.get_transform(*args, **kwargs))
```

Returns a `Transform` instance.

**get_posterior(*args, **kwargs)**

Returns the posterior distribution.

**sample_latent(*args, **kwargs)**

Samples an encoded latent given the same *args, **kwargs as the base model.

**forward(*args, **kwargs)**

An automatic guide with the same *args, **kwargs as the base model.

Note: This method is used internally by `Module`. Users should instead use `__call__()`.

```
Returns A dict mapping sample site name to sampled value.
Return type dict
```

**median(*args, **kwargs)**

Returns the posterior median value of each latent variable.

```
Returns A dict mapping sample site name to median tensor.
Return type dict
```

**quantiles(quantiles, *args, **kwargs)**

Returns posterior quantiles each latent variable. Example:
```python
print(guide.quantiles([0.05, 0.5, 0.95]))
```

**Parameters**

`quantiles` *(torch.Tensor or list)* – A list of requested quantiles between 0 and 1.

**Returns**

A dict mapping sample site name to a tensor of quantile values.

**Return type**

`dict`

---

### 3.11.7 AutoMultivariateNormal

class `AutoMultivariateNormal` *(model, init_loc_fn=<function init_to_median>, init_scale=0.1)*

**Bases:** *pyro.infer.autoguide.guides.AutoContinuous*

This implementation of `AutoContinuous` uses a Cholesky factorization of a Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s `*args, **kwargs`.

**Usage:**

```python
guide = AutoMultivariateNormal(model)
svi = SVI(model, guide, ...)
```

By default the mean vector is initialized by `init_loc_fn()` and the Cholesky factor is initialized to the identity times a small factor.

**Parameters**

- `model` *(callable)* – A generative model.
- `init_loc_fn` *(callable)* – A per-site initialization function. See `Initialization` section for available functions.
- `init_scale` *(float)* – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.

```python
scale_constraint = SoftplusPositive(lower_bound=0.0)
scale_tril_constraint = UnitLowerCholesky()
get_base_dist()
get_transform(*args, **kwargs)
get_posterior(*args, **kwargs)

Returns a MultivariateNormal posterior distribution.
```

**training:** *bool*
3.11.8 AutoDiagonalNormal

class AutoDiagonalNormal(model, init_loc_fn=<function init_to_median>, init_scale=0.1)  
Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Normal distribution with a diagonal covariance matrix to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

guide = AutoDiagonalNormal(model)  
svi = SVI(model, guide, ...)

By default the mean vector is initialized to zero and the scale is initialized to the identity times a small factor.

Parameters

- **model (callable)** – A generative model.
- **init_loc_fn (callable)** – A per-site initialization function. See Initialization section for available functions.
- **init_scale (float)** – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.

scale_constraint = SoftplusPositive(lower_bound=0.0)

guide = AutoDiagonalNormal(model)
svi = SVI(model, guide, ...)

3.11.9 AutoLowRankMultivariateNormal

class AutoLowRankMultivariateNormal(model, init_loc_fn=<function init_to_median>, init_scale=0.1, rank=None)  
Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a low rank plus diagonal Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

guide = AutoLowRankMultivariateNormal(model, rank=10)  
svi = SVI(model, guide, ...)

By default the cov_diag is initialized to a small constant and the cov_factor is initialized randomly such that on average cov_factor.matmul(cov_factor.t()) has the same scale as cov_diag.

Parameters

- **model (callable)** – A generative model.
- **rank (int or None)** – The rank of the low-rank part of the covariance matrix. Defaults to approximately sqrt(latent dim).
- **init_loc_fn (callable)** – A per-site initialization function. See Initialization section for available functions.
• **init_scale** (*float*) – Approximate initial scale for the standard deviation of each (unconstrained transformed) latent variable.

```
scale_constraint = SoftplusPositive(lower_bound=0.0)
```

```
get_posterior(*args, **kwargs)
Returns a LowRankMultivariateNormal posterior distribution.
```

```
training: bool
```

### 3.11.10 AutoNormalizingFlow

```python
class AutoNormalizingFlow(model, init_transform_fn)
Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Diagonal Normal distribution transformed via a sequence of bijective transforms (e.g. various TransformModule subclasses) to construct a guide over the entire latent space. The guide does not depend on the model's *args, **kwargs.
```

```
Usage:
```
```
transform_init = partial(iterated, block_autoregressive, repeats=2)
guide = AutoNormalizingFlow(model, transform_init)
svi = SVI(model, guide, ...)
```

```
Parameters
```
```
• **model** (*callable*) – a generative model
• **init_transform_fn** – a callable which when provided with the latent dimension returns an instance of Transform, or TransformModule if the transform has trainable params.
```

```
get_base_dist()
get_transform(*args, **kwargs)
get_posterior(*args, **kwargs)
training: bool
```

### 3.11.11 AutoIAFNormal

```python
class AutoIAFNormal(model, hidden_dim=None, init_loc_fn=None, num_transforms=1, **init_transform_kwargs)
Bases: pyro.infer.autoguide.guides.AutoNormalizingFlow

This implementation of AutoContinuous uses a Diagonal Normal distribution transformed via a AffineAutoregressive to construct a guide over the entire latent space. The guide does not depend on the model's *args, **kwargs.
```

```
Usage:
```
```
guide = AutoIAFNormal(model, hidden_dim=latent_dim)
svi = SVI(model, guide, ...)
```

Parameters
• **model** (*callable*) – a generative model
• **hidden_dim** (*list[int]*) – number of hidden dimensions in the IAF
• **init_loc_fn** (*callable*) – A per-site initialization function. See *Initialization* section for available functions.

**Warning:** This argument is only to preserve backwards compatibility and has no effect in practice.

• **num_transforms** (*int*) – number of *AffineAutoregressive* transforms to use in sequence.
• **init_transform_kwargs** – other keyword arguments taken by *affine_autoregressive()*.

```python
training: bool
```

### 3.11.12 AutoLaplaceApproximation

```python
class AutoLaplaceApproximation(model, init_loc_fn=<function init_to_median>):
 Bases: pyro.infer.autoguide.guides.AutoContinuous
 Laplace approximation (quadratic approximation) approximates the posterior \(\log p(z|x) \) by a multivariate normal distribution in the unconstrained space. Under the hood, it uses Delta distributions to construct a MAP guide over the entire (unconstrained) latent space. Its covariance is given by the inverse of the hessian of \(-\log p(x, z) \) at the MAP point of \(z \).

Usage:

```python
delta_guide = AutoLaplaceApproximation(model)
svi = SVI(model, delta_guide, ...)
# ...then train the delta_guide...
guide = delta_guide.laplace_approximation()
```

By default the mean vector is initialized to an empirical prior median.

Parameters

• **model** (*callable*) – a generative model
• **init_loc_fn** (*callable*) – A per-site initialization function. See *Initialization* section for available functions.

```python
get_posterior(*args, **kwargs)
    Returns a Delta posterior distribution for MAP inference.
```

```python
laplace_approximation(*args, **kwargs)
    Returns a *AutoMultivariateNormal* instance whose posterior's loc and scale_tril are given by Laplace approximation.
```

```python
training: bool
```
3.11.13 AutoDiscreteParallel

class AutoDiscreteParallel(model, *, create_plates=None)

Bases: `pyro.infer.autoguide.guides.AutoGuide`

A discrete mean-field guide that learns a latent discrete distribution for each discrete site in the model.

forward(args, **kwargs)

An automatic guide with the same *args, **kwargs* as the base model.

Note: This method is used internally by `Module`. Users should instead use `__call__()`.

Returns A dict mapping sample site name to sampled value.

Return type dict

training: bool

3.11.14 AutoStructured

class AutoStructured(model, *, conditionals: Union[str, Dict[str, Union[str, Callable]]] = 'mvn',
dependencies: Union[str, Dict[str, Dict[str, Union[str, Callable]]]] = 'linear',
init_loc_fn: Callable = <function init_to_feasible>, init_scale: float = 0.1,
create_plates: Optional[Callable] = None)

Bases: `pyro.infer.autoguide.guides.AutoGuide`

Structured guide whose conditional distributions are Delta, Normal, MultivariateNormal, or by a callable, and whose latent variables can depend on each other either linearly (in unconstrained space) or via shearing by a callable.

Usage:

```python
def model(data):
    x = pyro.sample("x", dist.LogNormal(0, 1))
    with pyro.plate("plate", len(data)):
        y = pyro.sample("y", dist.Normal(0, 1))
        pyro.sample("z", dist.Normal(y, x), obs=data)
```

Either fully automatic...
guide = AutoStructured(model)

...or with specified conditional and dependency types...
guide = AutoStructured(
 model, conditionals="normal", dependencies="linear"
)

...or with custom dependency structure and distribution types.
guide = AutoStructured(
 model=model,
 conditionals={"x": "normal", "y": "delta"},
 dependencies={"x": {"y": "linear"}}
)
```
Once trained, this guide can be used with `StructuredReparam` to precondition a model for use in HMC and NUTS inference.

**Note:** If you declare a dependency of a high-dimensional downstream variable on a low-dimensional upstream variable, you may want to use a lower learning rate for that weight, e.g.:

```python
def optim_config(param_name):
 config = {'lr': 0.01}
 if "deps.my_downstream.my_upstream" in param_name:
 config["lr"] *= 0.1
 return config

adam = pyro.optim.Adam(optim_config)
```

**Parameters**

- **model (callable)** – A Pyro model.
- **conditionals** – Either a single distribution type or a dict mapping each latent variable name to a distribution type. A distribution type is either a string in {"delta", "normal", "mvn"}) or a callable that returns a sample from a zero mean (or approximately centered) noise distribution (such callables typically call `pyro.param()` and `pyro.sample()` internally).
- **dependencies** – Dependency type, or a dict mapping each site name to a dict mapping its upstream dependencies to dependency types. If only a dependency type is provided, dependency structure will be inferred. A dependency type is either the string “linear” or a callable that maps a flattened upstream perturbation to flattened downstream perturbation. The string “linear” is equivalent to `nn.Linear(upstream.numel(), downstream.numel(), bias=False)`. Dependencies must not contain cycles or self-loops.
- **init_loc_fn (callable)** – A per-site initialization function. See `Initialization` section for available functions.
- **init_scale (float)** – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.
- **create_plates (callable)** – An optional function inputing the same `*args,**kwargs` as `model()` and returning a `pyro.plate` or iterable of plates. Plates not returned will be created automatically as usual. This is useful for data subsampling.

```python
scale_constraint = SoftplusPositive(lower_bound=0.0)
scale_tril_constraint = SoftplusLowerCholesky()
get_deltas()
forward(*args, **kwargs)
median(*args, **kwargs)
training: bool
```
3.11.15 AutoGaussian

```python
class AutoGaussian(*args, **kwargs):
 Bases: pyro.infer.autoguide.guides.AutoGuide
 Gaussian guide with optimal conditional independence structure.
 This is equivalent to a full rank AutoMultivariateNormal guide, but with a sparse precision matrix determined
 by dependencies and plates in the model [1]. Depending on model structure, this can have asymptotically better
 statistical efficiency than AutoMultivariateNormal.

 This guide implements multiple backends for computation. All backends use the same statistically
 optimal parametrization. The default “dense” backend has computational complexity similar to
 AutoMultivariateNormal. The experimental “funsor” backend can be asymptotically cheaper in terms of
 time and space (using Gaussian tensor variable elimination [2,3]), but incurs large constant overhead. The “funsor”
 backend requires funsor which can be installed via pip install pyro-ppl[funsor].

 The guide currently does not depend on the model’s *args, **kwargs.

 Example:
 guide = AutoGaussian(model)
 svi = SVI(model, guide, ...)

 Example using experimental funsor backend:
 !pip install pyro-ppl[funsor]
 guide = AutoGaussian(model, backend="funsor")
 svi = SVI(model, guide, ...)
```

References

    of generative models for effective amortized inference” https://dl.acm.org/doi/10.5555/3327144.3327229


Parameters

- model (callable) – A Pyro model.
- init_loc_fn (callable) – A per-site initialization function. See Initialization section for
  available functions.
- init_scale (float) – Initial scale for the standard deviation of each (unconstrained trans-
  formed) latent variable.
- backend (str) – Backend for performing Gaussian tensor variable elimination. Defaults to
  “dense”; other options include “funsor”.

scale_constraint = SoftplusPositive(lower_bound=0.0)

forward(*args, **kwargs) → Dict[str, torch.Tensor]
median(*args, **kwargs) → Dict[str, torch.Tensor]
    Returns the posterior median value of each latent variable.
Returns  A dict mapping sample site name to median tensor.

Return type  dict

training:  bool

3.11.16  AutoMessenger

class AutoMessenger(model: Callable, *, amortized_plates: Tuple[str, ...] = ())


Base class for GuideMessenger autoguides.

Parameters

- **model (callable)** – A Pyro model.
- **amortized_plates (tuple)** – A tuple of names of plates over which guide parameters should be shared. This is useful for subsampling, where a guide parameter can be shared across all plates.

call(*args, **kwargs)

Method that calls forward() and returns parameter values of the guide as a tuple instead of a dict, which is a requirement for JIT tracing. Unlike forward(), this method can be traced by torch.jit.trace_module().

Warning:  This method may be removed once PyTorch JIT tracer starts accepting dict as valid return types. See issue <https://github.com/pytorch/pytorch/issues/27743>_.

training:  bool

3.11.17  AutoNormalMessenger

class AutoNormalMessenger(model: Callable, *, init_loc_fn: Callable = functools.partial(<function init_to_mean>, fallback=<function init_to_feasible>), init_scale: float = 0.1, amortized_plates: Tuple[str, ...] = ())

Bases: pyro.infer.autoguide.effect.AutoMessenger

AutoMessenger with mean-field normal posterior.

The mean-field posterior at any site is a transformed normal distribution. This posterior is equivalent to AutoNormal or AutoDiagonalNormal, but allows customization via subclassing.

Derived classes may override the get_posterior() behavior at particular sites and use the mean-field normal behavior simply as a default, e.g.:

def model(data):
    a = pyro.sample("a", dist.Normal(0, 1))
    b = pyro.sample("b", dist.Normal(0, 1))
    c = pyro.sample("c", dist.Normal(a + b, 1))
    pyro.sample("obs", dist.Normal(c, 1), obs=data)

class MyGuideMessenger(AutoNormalMessenger):
    def get_posterior(self, name, prior):
        if name == "c":
            (continues on next page)
# Use a custom distribution at site c.

```python
bias = pyro.param("c_bias", lambda: torch.zeros(()))
weight = pyro.param("c_weight", lambda: torch.ones(()),
 constraint=constraints.positive)
scale = pyro.param("c_scale", lambda: torch.ones(()),
 constraint=constraints.positive)
a = self.upstream_value("a")
b = self.upstream_value("b")
loc = bias + weight * (a + b)
return dist.Normal(loc, scale)

Fall back to mean field.
return super().get_posterior(name, prior)
```

Note that above we manually computed `loc = bias + weight * (a + b)`. Alternatively we could reuse the model-side computation by setting `loc = bias + weight * prior.loc`:

```python
class MyGuideMessenger_v2(AutoNormalMessenger):
 def get_posterior(self, name, prior):
 if name == "c":
 # Use a custom distribution at site c.
 bias = pyro.param("c_bias", lambda: torch.zeros(()))
 scale = pyro.param("c_scale", lambda: torch.ones(()),
 constraint=constraints.positive)
 weight = pyro.param("c_weight", lambda: torch.ones(()),
 constraint=constraints.positive)
 loc = bias + weight * prior.loc
 return dist.Normal(loc, scale)
 # Fall back to mean field.
 return super().get_posterior(name, prior)
```

Parameters

- **model** *(callable)* – A Pyro model.
- **init_loc_fn** *(callable)* – A per-site initialization function. See Initialization section for available functions.
- **init_scale** *(float)* – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.
- **amortized_plates** *(tuple)* – A tuple of names of plates over which guide parameters should be shared. This is useful for subsampling, where a guide parameter can be shared across all plates.

### get_posterior

```python
get_posterior(name: str, prior: pyro.distributions.distribution.Distribution) →
Union[pyro.distributions.distribution.Distribution, torch.Tensor]
```

### median

```python
median(*args, **kwargs)
```

### training

```python
training: bool
```
3.11.18 AutoHierarchicalNormalMessenger

class AutoHierarchicalNormalMessenger(model: Callable, *, init_loc_fn: Callable =
    functools.partial(<function init_to_mean>, fallback=<function
    init_to_feasible>), init_scale: float = 0.1, amortized_plates:
    Tuple[str, ...] = (), init_weight: float = 1.0, hierarchical_sites:
    Optional[list] = None)

Bases: pyro.infer.autoguide.effect.AutoNormalMessenger

AutoMessenger with mean-field normal posterior conditional on all dependencies.

The mean-field posterior at any site is a transformed normal distribution, the mean of which depends on the value
of that site given its dependencies in the model:

\[
\text{loc\_total} = \text{loc} + \text{transform.inv(prior\_mean)} \times \text{weight}
\]

Where the value of prior\_mean is conditional on upstream sites in the model, loc is independent component of
the mean in the untransformed space, weight is element-wise factor that scales the prior mean. This approach
doesn't work for distributions that don't have the mean.

Derived classes may override particular sites and use this simply as a default, see AutoNormalMessenger doc-
umentation for example.

Parameters

- model (callable) – A Pyro model.
- init_loc_fn (callable) – A per-site initialization function. See Initialization section for
  available functions.
- init_scale (float) – Initial scale for the standard deviation of each (unconstrained trans-
  formed) latent variable.
- init_weight (float) – Initial value for the weight of the contribution of hierarchical sites
to posterior mean for each latent variable.
- hierarchical_sites (list) – List of latent variables (model sites) that have hierarchical
dependencies. If None, all sites are assumed to have hierarchical dependencies. If None,
for the sites that don't have upstream sites, the loc and weight of the guide are represent-
ing/learning deviation from the prior.

weight_type = 'element-wise'

generate_posterior(name: str, prior: pyro.distributions.distribution.Distribution) →
    Union[pyro.distributions.distribution.Distribution, torch.Tensor]

median(*args, **kwargs)

training: bool
3.11.19 AutoRegressiveMessenger

class AutoRegressiveMessenger(model: Callable, *, init_loc_fn: Callable = functools.partial(<function init_to_mean>, fallback=<function init_to_feasible>), init_scale: float = 0.1, amortized_plates: Tuple[str, ...] = ())

Bases: pyro.infer.autoguide.effect.AutoMessenger

AutoMessenger with recursively affine-transformed priors using prior dependency structure.

The posterior at any site is a learned affine transform of the prior, conditioned on upstream posterior samples. The affine transform operates in unconstrained space. This supports only continuous latent variables.

Derived classes may override the get_posterior() behavior at particular sites and use the regressive behavior simply as a default, e.g.:

class MyGuideMessenger(AutoRegressiveMessenger):
    def get_posterior(self, name, prior):
        if name == "x":  # Use a custom distribution at site x.
            loc = pyro.param("x_loc", lambda: torch.zeros(prior.shape()))
            scale = pyro.param("x_scale", lambda: torch.ones(prior.shape())),
            constraint=constraints.positive
            return dist.Normal(loc, scale).to_event(prior.event_dim())  # Fall back to autoregressive.
        return super().get_posterior(name, prior)

Warning: This guide currently does not support jit-based elbos.

Parameters

- model (callable) – A Pyro model.
- init_loc_fn (callable) – A per-site initialization function. See Initialization section for available functions.
- init_scale (float) – Initial scale for the standard deviation of each (unconstrained transformed) latent variable.
- amortized_plates (tuple) – A tuple of names of plates over which guide parameters should be shared. This is useful for subsampling, where a guide parameter can be shared across all plates.

get_posterior(name: str, prior: pyro.distributions.distribution.Distribution) →
    Union[pyro.distributions.distribution.Distribution, torch.Tensor]

training: bool
3.11.20 Initialization

The pyro.infer.autoguide.initialization module contains initialization functions for automatic guides.

The standard interface for initialization is a function that inputs a Pyro trace site dict and returns an appropriately sized value to serve as an initial constrained value for a guide estimate.

`init_to_feasible(site=None)`
Initialize to an arbitrary feasible point, ignoring distribution parameters.

`init_to_sample(site=None)`
Initialize to a random sample from the prior.

`init_to_median(site=None, num_samples=15, *, fallback: Optional[Callable] = <function init_to_feasible>())`
Initialize to the prior median; fallback to fallback (defaults to `init_to_feasible()`) if mean is undefined.

Parameters
- `fallback (callable)` – Fallback init strategy, for sites not specified in values.

Raises `ValueError` – If fallback=None and no value for a site is given in values.

`init_to_mean(site=None, *, fallback: Optional[Callable] = <function init_to_median()>)`
Initialize to the prior mean; fallback to fallback (defaults to `init_to_median()`) if mean is undefined.

Parameters
- `fallback (callable)` – Fallback init strategy, for sites not specified in values.

Raises `ValueError` – If fallback=None and no value for a site is given in values.

`init_to_uniform(site: Optional[dict] = None, radius: float = 2.0)`
Initialize to a random point in the area (-radius, radius) of unconstrained domain.

Parameters
- `radius (float)` – specifies the range to draw an initial point in the unconstrained domain.

`init_to_value(site: Optional[dict] = None, values: dict = {}, *, fallback: Optional[Callable] = <function init_to_uniform()>)`
Initialize to the value specified in values. Fallback to fallback (defaults to `init_to_uniform()`) strategy for sites not appearing in values.

Parameters
- `values (dict)` – dictionary of initial values keyed by site name.
- `fallback (callable)` – Fallback init strategy, for sites not specified in values.

Raises `ValueError` – If fallback=None and no value for a site is given in values.

`init_to_generated(site=None, generate=<function <lambda>>)`
Initialize to another initialization strategy returned by the callback generate which is called once per model execution.

This is like `init_to_value()` but can produce different (e.g. random) values once per model execution. For example to generate values and return `init_to_value` you could define:

```python
def generate():
 values = {"x": torch.randn(100), "y": torch.rand(5)}
 return init_to_value(values=values)

my_init_fn = init_to_generated(generate=generate)
```

Parameters `generate (callable)` – A callable returning another initialization function, e.g. returning an `init_to_value(values={...})` populated with a dictionary of random samples.
class `InitMessenger(init_fn)`

Bases: `pyro.poutine.messenger.Messenger`

Initializes a site by replacing `.sample()` calls with values drawn from an initialization strategy. This is mainly for internal use by autoguide classes.

Parameters `init_fn` (callable) – An initialization function.

### 3.12 Reparameterizers

The `pyro.infer.reparam` module contains reparameterization strategies for the `pyro.poutine.handlers.reparam()` effect. These are useful for altering geometry of a poorly-conditioned parameter space to make the posterior better shaped. These can be used with a variety of inference algorithms, e.g. Auto*Normal* guides and MCMC.

**TypedDict(**args, **kwargs)**

class `Reparam`

Abstract base class for reparameterizers.

Derived classes should implement `apply()`.

```python
apply(msg: dict) → dict
```

Abstract method to apply reparameterizer.

Parameters `name` (dict) – A simplified Pyro message with fields: - `name`: str the sample site’s name - `fn`: Callable a distribution - `value`: Optional[torch.Tensor] an observed or initial value - `is_observed`: bool whether value is an observation

Returns A simplified Pyro message with fields `fn`, `value`, and `is_observed`.

Return type dict

```python
__call__(name, fn, obs)
```

DEPRECATED. Subclasses should implement `apply()` instead. This will be removed in a future release.

### 3.12.1 Automatic Strategies

These reparametrization strategies are registered with `register_reparam_strategy()` and are accessed by name via `poutine.reparam(config=name_of_strategy)`. See `reparam()` for usage.

class `Strategy`

Bases: `abc.ABC`

Abstract base class for reparameterizer configuration strategies.

Derived classes must implement the `configure()` method.

```python
configure(msg: dict) → Optional[pyro.infer.reparam.reparam.Reparam]
```

Inputs a sample site and returns either None or a `Reparam` instance.

This will be called only on the first model execution; subsequent executions will use the reparameterizer stored in `self.config`.

Parameters `msg` (dict) – A sample site to possibly reparametrize.

Returns An optional reparameterizer instance.
__call__(msg_or_fn: Union[dict, Callable])
Strategies can be used as decorators to reparametrize a model.

Parameters msg_or_fn – Public use: a model to be decorated. (Internal use: a site to be configured for reparametrization).

class MinimalReparam
Bases: pyro.infer.reparam.strategies.Strategy

Minimal reparametrization strategy that reparametrizes only those sites that would otherwise lead to error, e.g. Stable and ProjectedNormal random variables.

Example:

```python
@MinimalReparam()
def model(...):
 ...
```

which is equivalent to:

```python
@poutine.reparam(config=MinimalReparam())
def model(...):
 ...
```

configure(msg: dict) → Optional[pyro.infer.reparam.reparam.Reparam]

class AutoReparam(*, centered: Optional[float] = None)
Bases: pyro.infer.reparam.strategies.Strategy

Applies a recommended set of reparametrizers. These currently include: MinimalReparam, TransformReparam, a fully-learnable LocScaleReparam, and GumbelSoftmaxReparam.

Example:

```python
@AutoReparam()
def model(...):
 ...
```

which is equivalent to:

```python
@poutine.reparam(config=AutoReparam())
def model(...):
 ...
```

Warning: This strategy may change behavior across Pyro releases. To inspect or save a given behavior, extract the .config dict after running the model at least once.

Parameters centered – Optional centering parameter for LocScaleReparam reparametrizers. If None (default), centering will be learned. If a float in [0, 1], then a fixed centering. To completely decenter (e.g. in MCMC), set to 0.0.

configure(msg: dict) → Optional[pyro.infer.reparam.reparam.Reparam]
3.12.2 Conjugate Updating

class ConjugateReparam(guide)
    Bases: pyro.infer.reparam.reparam.Reparam

    EXPERIMENTAL Reparameterize to a conjugate updated distribution.
    This updates a prior distribution fn using the conjugate_update() method. The guide may be either a dis-
    tribution object or a callable inputting model *args,**kwargs and returning a distribution object. The guide
    may be approximate or learned.
    For example consider the model and naive variational guide:

    total = torch.tensor(10.)
    count = torch.tensor(2.)

    def model():
        prob = pyro.sample("prob", dist.Beta(0.5, 1.5))
        pyro.sample("count", dist.Binomial(total, prob), obs=count)

    guide = AutoDiagonalNormal(model)  # learns the posterior over prob

    Instead of using this learned guide, we can hand-compute the conjugate posterior distribution over “prob”, and
    then use a simpler guide during inference, in this case an empty guide:

    reparam_model = poutine.reparam(model, {
        "prob": ConjugateReparam(dist.Beta(1 + count, 1 + total - count))
    })

    def reparam_guide():
        pass  # nothing remains to be modeled!

    Parameters
guide (Distribution or callable) – A likelihood distribution or a callable re-
    turning a guide distribution. Only a few distributions are supported, depending on the prior
    distribution’s conjugate_update() implementation.

    apply(msg)

3.12.3 Loc-Scale Decentering

class LocScaleReparam(centered=None, shape_params=None)
    Bases: pyro.infer.reparam.reparam.Reparam

    Generic decentering reparameterizer [1] for latent variables parameterized by loc and scale (and possibly
    additional shape_params).
    This reparameterization works only for latent variables, not likelihoods.


    Parameters
    • centered (float) – optional centered parameter. If None (default) learn a per-site per-
        element centering parameter in [0, 1]. If 0, fully decenter the distribution; if 1, preserve the
        centered distribution unchanged.
• `shape_params` *(tuple or list)* – Optional list of additional parameter names to copy unchanged from the centered to decentered distribution. If absent, all params in a distribution’s `.arg_constraints` will be copied.

```
apply(msg)
```

### 3.12.4 Gumbel-Softmax

**class GumbelSoftmaxReparam**

Bases: `pyro.infer.reparam.reparam.Reparam`

Reparametrizer for `RelaxedOneHotCategorical` latent variables.

This is useful for transforming multimodal posteriors to unimodal posteriors. Note this increases the latent dimension by 1 per event.

This reparameterization works only for latent variables, not likelihoods.

```
apply(msg)
```

### 3.12.5 Transformed Distributions

**class TransformReparam**

Bases: `pyro.infer.reparam.reparam.Reparam`

Reparameterizer for `pyro.distributions.torch.TransformedDistribution` latent variables.

This is useful for transformed distributions with complex, geometry-changing transforms, where the posterior has simple shape in the space of `base_dist`.

This reparameterization works only for latent variables, not likelihoods.

```
apply(msg)
```

### 3.12.6 Discrete Cosine Transform

**class DiscreteCosineReparam** *(dim=-1, smooth=0.0, *, experimental_allow_batch=False)*

Bases: `pyro.infer.reparam.unit_jacobian.UnitJacobianReparam`

Discrete Cosine reparameterizer, using a `DiscreteCosineTransform`.

This is useful for sequential models where coupling along a time-like axis (e.g. a banded precision matrix) introduces long-range correlation. This reparameterizes to a frequency-domain representation where posterior covariance should be closer to diagonal, thereby improving the accuracy of diagonal guides in SVI and improving the effectiveness of a diagonal mass matrix in HMC.

When reparameterizing variables that are approximately continuous along the time dimension, set `smooth=1`. For variables that are approximately continuously differentiable along the time axis, set `smooth=2`.

This reparameterization works only for latent variables, not likelihoods.

**Parameters**

- `dim` *(int)* – Dimension along which to transform. Must be negative. This is an absolute dim counting from the right.
• **smooth** (*float*) – Smoothing parameter. When 0, this transforms white noise to white noise; when 1 this transforms Brownian noise to white noise; when -1 this transforms violet noise to white noise; etc. Any real number is allowed. [https://en.wikipedia.org/wiki/Colors_of_noise](https://en.wikipedia.org/wiki/Colors_of_noise).

• **experimental_allow_batch** (*bool*) – EXPERIMENTAL allow coupling across a batch dimension. The targeted batch dimension and all batch dimensions to the right will be converted to event dimensions. Defaults to False.

### 3.12.7 Haar Transform

**class HaarReparam(dim=-1, flip=False, *, experimental_allow_batch=False)**

Bases: `pyro.infer.reparam.unit_jacobian.UnitJacobianReparam`

Haar wavelet reparameterizer, using a *HaarTransform*.

This is useful for sequential models where coupling along a time-like axis (e.g. a banded precision matrix) introduces long-range correlation. This reparameterizes to a frequency-domain representation where posterior covariances should be closer to diagonal, thereby improving the accuracy of diagonal guides in SVI and improving the effectiveness of a diagonal mass matrix in HMC.

This reparameterization works only for latent variables, not likelihoods.

**Parameters**

- **dim** (*int*) – Dimension along which to transform. Must be negative. This is an absolute dim counting from the right.

- **flip** (*bool*) – Whether to flip the time axis before applying the Haar transform. Defaults to false.

- **experimental_allow_batch** (*bool*) – EXPERIMENTAL allow coupling across a batch dimension. The targeted batch dimension and all batch dimensions to the right will be converted to event dimensions. Defaults to False.

### 3.12.8 Unit Jacobian Transforms

**class UnitJacobianReparam(transform, suffix='transformed', *, experimental_allow_batch=False)**

Bases: `pyro.infer.reparam.reparam.Reparam`

Reparameterizer for *Transform* objects whose Jacobian determinant is one.

**Parameters**

- **transform** (*Transform*) – A transform whose Jacobian has determinant 1.

- **suffix** (*str*) – A suffix to append to the transformed site.

- **experimental_allow_batch** (*bool*) – EXPERIMENTAL allow coupling across a batch dimension. The targeted batch dimension and all batch dimensions to the right will be converted to event dimensions. Defaults to False.

**apply**(*msg*)
3.12.9 StudentT Distributions

class StudentTReparam
    Bases: pyro.infer.reparam.reparam.Reparam
    Auxiliary variable reparameterizer for StudentT random variables.
    This is useful in combination with LinearHMMReparam because it allows StudentT processes to be treated as conditionally Gaussian processes, permitting cheap inference via GaussianHMM.
    This reparameterizes a StudentT by introducing an auxiliary Gamma variable conditioned on which the result is Normal.

apply(msg)

3.12.10 Stable Distributions

class LatentStableReparam
    Bases: pyro.infer.reparam.reparam.Reparam
    Auxiliary variable reparameterizer for Stable latent variables.
    This is useful in inference of latent Stable variables because the log_prob() is not implemented.
    This uses the Chambers-Mallows-Stuck method [1], creating a pair of parameter-free auxiliary distributions (Uniform(-\pi/2,\pi/2) and Exponential(1)) with well-defined .log_prob() methods, thereby permitting use of reparameterized stable distributions in likelihood-based inference algorithms like SVI and MCMC.
    This reparameterization works only for latent variables, not likelihoods. For likelihood-compatible reparameterization see SymmetricStableReparam or StableReparam.


apply(msg)

class SymmetricStableReparam
    Bases: pyro.infer.reparam.reparam.Reparam
    Auxiliary variable reparameterizer for symmetric Stable random variables (i.e. those for which skew=0).
    This is useful in inference of symmetric Stable variables because the log_prob() is not implemented.
    This reparameterizes a symmetric Stable random variable as at totally-skewed (skew=1) Stable scale mixture of Normal random variables. See Proposition 3. of [1] (but note we differ since Stable uses Nolan’s continuous S0 parameterization).


apply(msg)

class StableReparam
    Bases: pyro.infer.reparam.reparam.Reparam
    Auxiliary variable reparameterizer for arbitrary Stable random variables.
    This is useful in inference of non-symmetric Stable variables because the log_prob() is not implemented.
    This reparameterizes a Stable random variable as sum of two other stable random variables, one symmetric and the other totally skewed (applying Property 2.3.a of [1]). The totally skewed variable is sampled as in LatentStableReparam, and the symmetric variable is decomposed as in SymmetricStableReparam.
3.12.11 Projected Normal Distributions

```python
class ProjectedNormalReparam
 Bases: pyro.infer.reparam.reparam.Reparam

 Reparametrizer for ProjectedNormal latent variables.
 This reparameterization works only for latent variables, not likelihoods.
```

3.12.12 Hidden Markov Models

```python
class LinearHMMReparam(init=None, trans=None, obs=None)
 Bases: pyro.infer.reparam.reparam.Reparam

 Auxiliary variable reparameterizer for LinearHMM random variables.
 This defers to component reparameterizers to create auxiliary random variables conditioned on which the process becomes a GaussianHMM. If the observation_dist is a TransformedDistribution this reorders those transforms so that the result is a TransformedDistribution of GaussianHMM.

 This is useful for training the parameters of a LinearHMM distribution, whose log_prob() method is undefined. To perform inference in the presence of non-Gaussian factors such as Stable(), StudentT() or LogNormal(), configure with StudentTReparam, StableReparam, SymmetricStableReparam, etc. component reparameterizers for init, trans, and scale. For example:

```py
hmm = LinearHMM(
    init_dist=Stable(1,0,1,0).expand([2]).to_event(1),
    trans_matrix=torch.eye(2),
    trans_dist=MultivariateNormal(torch.zeros(2), torch.eye(2)),
    obs_matrix=torch.eye(2),
    obs_dist=TransformedDistribution(
        Stable(1.5,-0.5,1.0).expand([2]).to_event(1),
        ExpTransform(3))
)

rep = LinearHMMReparam(init=SymmetricStableReparam(),
                        obs=StableReparam())

with poutine.reparam(config={"hmm": rep}):
    pyro.sample("hmm", hmm, obs=data)
```

Parameters

- **init** (Reparam) – Optional reparameterizer for the initial distribution.
- **trans** (Reparam) – Optional reparameterizer for the transition distribution.
- **obs** (Reparam) – Optional reparameterizer for the observation distribution.
3.12.13 Site Splitting

class SplitReparam(sections, dim)
 Bases: pyro.infer.reparam.reparam.Reparam

 Reparameterizer to split a random variable along a dimension, similar to torch.split().

 This is useful for treating different parts of a tensor with different reparameterizers or inference methods. For example when performing HMC inference on a time series, you can first apply DiscreteCosineReparam or HaarReparam, then apply SplitReparam to split into low-frequency and high-frequency components, and finally add the low-frequency components to the full_mass matrix together with globals.

 Parameters

 - sections (Size of a single chunk or list of sizes for each chunk.
 - dim (Dimension along which to split. Defaults to -1.

 Type list(int)

 apply(msg)

3.12.14 Neural Transport

class NeuTraReparam(guide)
 Bases: pyro.infer.reparam.reparam.Reparam

 This uses a trained AutoContinuous guide to alter the geometry of a model, typically for use e.g. in MCMC. Example usage:

 # Step 1. Train a guide
guide = AutoIAFNormal(model)
svi = SVI(model, guide, ...)
...train the guide...

 # Step 2. Use trained guide in NeuTra MCMC
neutra = NeuTraReparam(guide)
model = poutine.reparam(model, config=lambda _: neutra)
nuts = NUTS(model)
...now use the model in HMC or NUTS...

 This reparameterization works only for latent variables, not likelihoods. Note that all sites must share a single common NeuTraReparam instance, and that the model must have static structure.

 Parameters guide (AutoContinuous) – A trained guide.

 reparam(fn=None)

 apply(msg)

 transform_sample(latent)
 Given latent samples from the warped posterior (with a possible batch dimension), return a dict of samples from the latent sites in the model.
Parameters **latent** – sample from the warped posterior (possibly batched). Note that the batch dimension must not collide with plate dimensions in the model, i.e., any batch dims \(d < \max_\text{plate_nesting}\).

Returns a dict of samples keyed by latent sites in the model.

Return type dict

3.12.15 Structured Preconditioning

class StructuredReparam

guide: `pyro.infer.autoguide.structured.AutoStructured`

Bases: `pyro.infer.reparam.reparam.Reparam`

Preconditioning reparameterizer of multiple latent variables.

This uses a trained `AutoStructured` guide to alter the geometry of a model, typically for use e.g. in MCMC. Example usage:

```python
# Step 1. Train a guide
guide = AutoStructured(model, ...)
svi = SVI(model, guide, ...)
# ...train the guide...

# Step 2. Use trained guide in preconditioned MCMC
model = StructuredReparam(guide).reparam(model)
nuts = NUTS(model)
# ...now use the model in HMC or NUTS...
```

This reparameterization works only for latent variables, not likelihoods. Note that all sites must share a single common `StructuredReparam` instance, and that the model must have static structure.

Parameters

- **guide** (`AutoStructured`) – A trained guide.
- **reparam** (`fn=None`)
- **apply** (`msg`)
- **transform_samples** (`aux_samples`, `save_params=None`)

Given latent samples from the warped posterior (with a possible batch dimension), return a dict of samples from the latent sites in the model.

Parameters

- **aux_samples** (`dict`) – Dict site name to tensor value for each latent auxiliary site (or if `save_params` is specified, then for only those latent auxiliary sites needed to compute requested params).
- **save_params** (`list`) – An optional list of site names to save. This is useful in models with large nuisance variables. Defaults to None, saving all params.

Parameters

- **guide** (`AutoStructured`) – A trained guide.
Returns a dict of samples keyed by latent sites in the model.

Return type dict

3.13 Inference utilities

enable_validation(is_validate)

is_validation_enabled()

validation_enabled(is_validate=True)

3.13.1 Model inspection

get_dependencies(model: Callable, model_args: Optional[tuple] = None, model_kwargs: Optional[dict] = None) → Dict[str, object]

Infers dependency structure about a conditioned model.

This returns a nested dictionary with structure like:

```python
{
    "prior_dependencies": {
        "variable1": {"variable1": set()},
        "variable2": {"variable1": set(), "variable2": set()},
        ...
    },
    "posterior_dependencies": {
        "variable1": {"variable1": {"plate1"}, "variable2": set()},
        ...
    }
}
```

where

- **prior_dependencies** is a dict mapping downstream latent and observed variables to dictionaries mapping upstream latent variables on which they depend to sets of plates inducing full dependencies. That is, included plates introduce quadratically many dependencies as in complete-bipartite graphs, whereas excluded plates introduce only linearly many dependencies as in independent sets of parallel edges. Prior dependencies follow the original model order.

- **posterior_dependencies** is a similar dict, but mapping latent variables to the latent or observed sits on which they depend in the posterior. Posterior dependencies are reversed from the model order.

Dependencies elide `pyro.deterministic` sites and `pyro.sample(..., Delta(...))` sites.

Examples

Here is a simple example with no plates. We see every node depends on itself, and only the latent variables appear in the posterior:

```python
def model_1():
a = pyro.sample("a", dist.Normal(0, 1))
pyro.sample("b", dist.Normal(a, 1), obs=torch.tensor(0.0))

assert get_dependencies(model_1) == {
```

(continues on next page)
Here is an example where two variables a and b start out conditionally independent in the prior, but become conditionally dependent in the posterior do the so-called collider variable c on which they both depend. This is called “moralization” in the graphical model literature:

```python
def model_2():
    a = pyro.sample("a", dist.Normal(0, 1))
    b = pyro.sample("b", dist.LogNormal(0, 1))
    c = pyro.sample("c", dist.Normal(a, b))
    pyro.sample("d", dist.Normal(c, 1), obs=torch.tensor(0.))

assert get_dependencies(model_2) == {
    "prior_dependencies": {
        "a": {"a": set()},
        "b": {"a": set(), "b": set()},
    },
    "posterior_dependencies": {
        "a": {"a": set(), "b": set()},
    },
}
```

Dependencies can be more complex in the presence of plates. So far all the dict values have been empty sets of plates, but in the following posterior we see that c depends on itself across the plate p. This means that, among the elements of c, e.g. $c[0]$ depends on $c[1]$ (this is why we explicitly allow variables to depend on themselves):

```python
def model_3():
    with pyro.plate("p", 5):
        a = pyro.sample("a", dist.Normal(0, 1))
        pyro.sample("b", dist.Normal(a.sum(), 1), obs=torch.tensor(0.0))

assert get_dependencies(model_3) == {
    "prior_dependencies": {
        "a": {"a": set()},
        "b": {"a": set(), "b": set()},
    },
    "posterior_dependencies": {
        "a": {"a": set(), "b": set(), "c": set()},
        "b": {"b": set(), "c": set()},
        "c": {"c": set(), "d": set()},
    },
}
```

Parameters

• **model** *(callable)* – A model.
• **model_args** *(tuple)* – Optional tuple of model args.
• **model_kwargs** *(dict)* – Optional dict of model kwargs.

Returns A dictionary of metadata (see above).

Return type dict

Renders a model using graphviz.

If filename is provided, this saves an image; otherwise this draws the graph. For example usage see the model rendering tutorial.

Parameters

• **model** – Model to render.
• **model_args** – Positional arguments to pass to the model.
• **model_kwargs** – Keyword arguments to pass to the model.
• **filename** *(str)* – File to save rendered model in.
• **render_distributions** *(bool)* – Whether to include RV distribution annotations in the plot.

Returns A model graph.

Return type graphviz.Digraph
4.1 PyTorch Distributions

Most distributions in Pyro are thin wrappers around PyTorch distributions. For details on the PyTorch distribution interface, see torch.distributions.distribution.Distribution. For differences between the Pyro and PyTorch interfaces, see TorchDistributionMixin.

4.1.1 Bernoulli

class Bernoulli(*args, **kwargs)

4.1.2 Beta

class Beta(*args, **kwargs)

4.1.3 Binomial

class Binomial(*args, **kwargs)

4.1.4 Categorical

class Categorical(*args, **kwargs)
 Wraps torch.distributions.categorical.Categorical with TorchDistributionMixin.
4.1.5 Cauchy

```python
class Cauchy(*args, **kwargs)
    Wraps torch.distributions.cauchy.Cauchy with TorchDistributionMixin.
```

4.1.6 Chi2

```python
class Chi2(*args, **kwargs)
    Wraps torch.distributions.chi2.Chi2 with TorchDistributionMixin.
```

4.1.7 ContinuousBernoulli

```python
class ContinuousBernoulli(*args, **kwargs)
```

4.1.8 Dirichlet

```python
class Dirichlet(*args, **kwargs)
    Wraps torch.distributions.dirichlet.Dirichlet with TorchDistributionMixin.
```

4.1.9 Exponential

```python
class Exponential(*args, **kwargs)
    Wraps torch.distributions.exponential.Exponential with TorchDistributionMixin.
```

4.1.10 ExponentialFamily

```python
class ExponentialFamily(*args, **kwargs)
    Wraps torch.distributions.exp_family.ExponentialFamily with TorchDistributionMixin.
```

4.1.11 FisherSnedecor

```python
class FisherSnedecor(*args, **kwargs)
```

4.1.12 Gamma

```python
class Gamma(*args, **kwargs)
    Wraps torch.distributions.gamma.Gamma with TorchDistributionMixin.
```
4.1.13 Geometric

class Geometric(*args, **kwargs)

4.1.14 Gumbel

class Gumbel(*args, **kwargs)

4.1.15 HalfCauchy

class HalfCauchy(*args, **kwargs)
 Wraps torch.distributions.half_cauchy.HalfCauchy with TorchDistributionMixin.

4.1.16 HalfNormal

class HalfNormal(*args, **kwargs)

4.1.17 Independent

class Independent(*args, **kwargs)
 Wraps torch.distributions.independent.Independent with TorchDistributionMixin.

4.1.18 Kumaraswamy

class Kumaraswamy(*args, **kwargs)

4.1.19 LKJCholesky

class LKJCholesky(*args, **kwargs)
 Wraps torch.distributions.lkj_cholesky.LKJCholesky with TorchDistributionMixin.

4.1.20 Laplace

class Laplace(*args, **kwargs)
 Wraps torch.distributions.laplace.Laplace with TorchDistributionMixin.
4.1.21 LogNormal

```python
class LogNormal(*args, **kwargs)
    Wraps torch.distributions.log_normal.LogNormal with TorchDistributionMixin.
```

4.1.22 LogisticNormal

```python
class LogisticNormal(*args, **kwargs)
    Wraps torch.distributions.logistic_normal.LogisticNormal with TorchDistributionMixin.
```

4.1.23 LowRankMultivariateNormal

```python
class LowRankMultivariateNormal(*args, **kwargs)
    Wraps torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal with TorchDistributionMixin.
```

4.1.24 MixtureSameFamily

```python
class MixtureSameFamily(*args, **kwargs)
    Wraps torch.distributions.mixture_same_family.MixtureSameFamily with TorchDistributionMixin.
```

4.1.25 Multinomial

```python
class Multinomial(*args, **kwargs)
    Wraps torch.distributions.multinomial.Multinomial with TorchDistributionMixin.
```

4.1.26 MultivariateNormal

```python
class MultivariateNormal(*args, **kwargs)
```

4.1.27 NegativeBinomial

```python
class NegativeBinomial(*args, **kwargs)
    Wraps torch.distributions.negative_binomial.NegativeBinomial with TorchDistributionMixin.
```
4.1.28 Normal

class Normal(*args, **kwargs)

4.1.29 OneHotCategorical

class OneHotCategorical(*args, **kwargs)
 Wraps torch.distributions.one_hot_categorical.OneHotCategorical with TorchDistributionMixin.

4.1.30 OneHotCategoricalStraightThrough

class OneHotCategoricalStraightThrough(*args, **kwargs)
 Wraps torch.distributions.one_hot_categorical.OneHotCategoricalStraightThrough with TorchDistributionMixin.

4.1.31 Pareto

class Pareto(*args, **kwargs)
 Wraps torch.distributions.pareto.Pareto with TorchDistributionMixin.

4.1.32 Poisson

class Poisson(*args, **kwargs)
 Wraps torch.distributions.poisson.Poisson with TorchDistributionMixin.

4.1.33 RelaxedBernoulli

class RelaxedBernoulli(*args, **kwargs)
 Wraps torch.distributions.relaxed_bernoulli.RelaxedBernoulli with TorchDistributionMixin.

4.1.34 RelaxedOneHotCategorical

class RelaxedOneHotCategorical(*args, **kwargs)
 Wraps torch.distributions.relaxed_categorical.RelaxedOneHotCategorical with TorchDistributionMixin.
4.1.35 StudentT

class StudentT(*args, **kwargs)
 Wraps torch.distributions.studentT.StudentT with TorchDistributionMixin.

4.1.36 TransformedDistribution

class TransformedDistribution(*args, **kwargs)
 Wraps torch.distributions.transformed_distribution.TransformedDistribution with TorchDistributionMixin.

4.1.37 Uniform

class Uniform(*args, **kwargs)
 Wraps torch.distributions.uniform.Uniform with TorchDistributionMixin.

4.1.38 VonMises

class VonMises(*args, **kwargs)

4.1.39 Weibull

class Weibull(*args, **kwargs)
 Wraps torch.distributions.weibull.Weibull with TorchDistributionMixin.

4.2 Pyro Distributions

4.2.1 Abstract Distribution

class Distribution(*args, **kwargs)
 Bases: object
 Base class for parameterized probability distributions.
 Distributions in Pyro are stochastic function objects with sample() and log_prob() methods. Distribution are stochastic functions with fixed parameters:

 d = dist.Bernoulli(param)
 x = d() # Draws a random sample.
 p = d.log_prob(x) # Evaluates log probability of x.

Implementing New Distributions:
Derived classes must implement the methods: sample(), log_prob().

Examples:
Take a look at the examples to see how they interact with inference algorithms.

has_rsample = False
has Enumerate Support = False

__call__(*args, **kwargs)
 Samples a random value (just an alias for .sample(*args, **kwargs)).
 For tensor distributions, the returned tensor should have the same .shape as the parameters.
 Returns A random value.
 Return type torch.Tensor

abstract sample(*args, **kwargs)
 Samples a random value.
 For tensor distributions, the returned tensor should have the same .shape as the parameters, unless otherwise noted.
 Parameters sample_shape (torch.Size) – the size of the iid batch to be drawn from the distribution.
 Returns A random value or batch of random values (if parameters are batched). The shape of the result should be self.shape().
 Return type torch.Tensor

abstract log_prob(x, *args, **kwargs)
 Evaluates log probability densities for each of a batch of samples.
 Parameters x (torch.Tensor) – A single value or a batch of values batched along axis 0.
 Returns log probability densities as a one-dimensional Tensor with same batch size as value and params. The shape of the result should be self.batch_size.
 Return type torch.Tensor

score_parts(x, *args, **kwargs)
 Computes ingredients for stochastic gradient estimators of ELBO.
 The default implementation is correct both for non-reparameterized and for fully reparameterized distributions. Partially reparameterized distributions should override this method to compute correct .score_function and .entropy_term parts.
 Setting .has_rsample on a distribution instance will determine whether inference engines like SVI use reparameterized samplers or the score function estimator.
 Parameters x (torch.Tensor) – A single value or batch of values.
 Returns A ScoreParts object containing parts of the ELBO estimator.
 Return type ScoreParts

enumerate_support(expand=True)
 Returns a representation of the parametrized distribution’s support, along the first dimension. This is implemented only by discrete distributions.
 Note that this returns support values of all the batched RVs in lock-step, rather than the full cartesian product.
 Parameters expand (bool) – whether to expand the result to a tensor of shape (n,) + batch_shape + event_shape. If false, the return value has unexpanded shape (n,) + (1,)*len(batch_shape) + event_shape which can be broadcasted to the full shape.
 Returns An iterator over the distribution’s discrete support.
 Return type iterator
conjugate_update(other)

EXPERIMENTAL Creates an updated distribution fusing information from another compatible distribution. This is supported by only a few conjugate distributions.

This should satisfy the equation:

```python
fg, log_normalizer = f.conjugate_update(g)
assert f.log_prob(x) + g.log_prob(x) == fg.log_prob(x) + log_normalizer
```

Note this is equivalent to `funsor.ops.add` on Funsor distributions, but we return a lazy sum (updated, log_normalizer) because PyTorch distributions must be normalized. Thus `conjugate_update()` should commute with `dist_to_funsor()` and `tensor_to_funsor()`

```python
dist_to_funsor(f) + dist_to_funsor(g)
== dist_to_funsor(fg) + tensor_to_funsor(log_normalizer)
```

Parameters

- **other** – A distribution representing \(p(data|latent) \) but normalized over latent rather than data. Here latent is a candidate sample from self and data is a ground observation of unrelated type.

Returns

A pair (updated, log_normalizer) where updated is an updated distribution of type `type(self)`, and log_normalizer is a `Tensor` representing the normalization factor.

has_rsample_(value)

Force reparameterized or detached sampling on a single distribution instance. This sets the `.has_rsample` attribute in-place.

This is useful to instruct inference algorithms to avoid reparameterized gradients for variables that discontinuously determine downstream control flow.

Parameters

- **value** (*bool*) – Whether samples will be pathwise differentiable.

Returns

self

Return type `Distribution`

property rv

EXPERIMENTAL Switch to the Random Variable DSL for applying transformations to random variables. Supports either chaining operations or arithmetic operator overloading.

Example usage:

```python
# This should be equivalent to an Exponential distribution.
Uniform(0, 1).rv.log().neg().dist

# These two distributions Y1, Y2 should be the same
X = Uniform(0, 1).rv
Y1 = X.mul(4).pow(0.5).sub(1).abs().neg().dist
Y2 = (-abs((4*X)**(0.5) - 1)).dist
```

Returns

A :class:`pyro.contrib.randomvariable.random_variable.RandomVariable` object wrapping this distribution.

Return type `RandomVariable`
4.2.2 TorchDistributionMixin

class TorchDistributionMixin(*args, **kwargs)
 Bases: pyro.distributions.distribution.Distribution

 Mixin to provide Pyro compatibility for PyTorch distributions.
 You should instead use TorchDistribution for new distribution classes.
 This is mainly useful for wrapping existing PyTorch distributions for use in Pyro. Derived classes
 must first inherit from torch.distributions.distribution.Distribution and then inherit from
 TorchDistributionMixin.

 __call__(sample_shape=torch.Size([]))
 Samples a random value.
 This is reparameterized whenever possible, calling rsample() for reparameterized distributions and
 sample() for non-reparameterized distributions.

 Parameters sample_shape (torch.Size()) – the size of the iid batch to be drawn from the dis-
 tribution.

 Returns A random value or batch of random values (if parameters are batched). The shape of
 the result should be self.shape().

 Return type torch.Tensor

 property event_dim
 Returns Number of dimensions of individual events.
 Return type int

 shape(sample_shape=torch.Size([]))
 The tensor shape of samples from this distribution.
 Samples are of shape:

 \[\text{d.shape(sample_shape)} = \text{sample_shape} + \text{d.batch_shape} + \text{d.event_shape} \]

 Parameters sample_shape (torch.Size()) – the size of the iid batch to be drawn from the dis-
 tribution.

 Returns Tensor shape of samples.

 Return type torch.Size

 classmethod infer_shapes(**arg_shapes)
 Infers batch_shape and event_shape given shapes of args to __init__().

 Note: This assumes distribution shape depends only on the shapes of tensor inputs, not in the data con-
 tained in those inputs.

 Parameters **arg_shapes – Keywords mapping name of input arg to torch.Size or tuple
 representing the sizes of each tensor input.

 Returns A pair (batch_shape, event_shape) of the shapes of a distribution that would be
 created with input args of the given shapes.

 Return type tuple
Pyro Documentation

```python
expand(batch_shape, _instance=None)
```

Returns a new ExpandedDistribution instance with batch dimensions expanded to `batch_shape`.

Parameters

- `batch_shape` *(tuple)* – batch shape to expand to.
- `_instance` – unused argument for compatibility with `torch.distributions.Distribution.expand()`

Returns

An instance of `ExpandedDistribution`.

Return type

`ExpandedDistribution`

```python
expand_by(sample_shape)
```

Expands a distribution by adding `sample_shape` to the left side of its `batch_shape`.

To expand internal dims of `self.batch_shape` from 1 to something larger, use `expand()` instead.

Parameters

- `sample_shape` *(torch.Size)* – The size of the iid batch to be drawn from the distribution.

Returns

An expanded version of this distribution.

Return type

`ExpandedDistribution`

```python
reshape(sample_shape=None, extra_event_dims=None)
```

to_event(reinterpreted_batch_ndims=None)

Reinterprets the n rightmost dimensions of this distribution's `batch_shape` as event dims, adding them to the left side of `event_shape`.

Example:

```python
gs = [d1.batch_shape, d1.event_shape]  
gs = [torch.Size([2, 3]), torch.Size([4, 5])]  
gs = d1.to_event(1)  
gs = [d2.batch_shape, d2.event_shape]  
gs = [torch.Size([2]), torch.Size([3, 4, 5])]  
gs = d1.to_event(2)  
gs = [d3.batch_shape, d3.event_shape]  
gs = [torch.Size([]), torch.Size([2, 3, 4, 5])]  
```

Parameters

- `reinterpreted_batch_ndims` *(int)* – The number of batch dimensions to reinterpret as event dimensions. May be negative to remove dimensions from an `pyro.distributions.torch.Independent`. If None, convert all dimensions to event dimensions.

Returns

A reshaped version of this distribution.

Return type

`pyro.distributions.torch.Independent`

```python
independent(reinterpreted_batch_ndims=None)
```

mask(mask)

Masks a distribution by a boolean or boolean-valued tensor that is broadcastable to the distributions `batch_shape`.

Parameters

- `mask` *(bool or torch.Tensor)* – A boolean or boolean valued tensor.

Returns

A masked copy of this distribution.

Return type

`MaskedDistribution`

Chapter 4. Distributions
4.2.3 TorchDistribution

class TorchDistribution(*args, **kwargs*)**

Bases: \torch.distributions_distribution.Distribution, \pyro.distributions_torch_distribution.TorchDistributionMixin

Base class for PyTorch-compatible distributions with Pyro support.

This should be the base class for almost all new Pyro distributions.

Note: Parameters and data should be of type Tensor and all methods return type Tensor unless otherwise noted.

Tensor Shapes:

TorchDistributions provide a method `.shape()` for the tensor shape of samples:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
```

Pyro follows the same distribution shape semantics as PyTorch. It distinguishes between three different roles for tensor shapes of samples:

- *sample shape* corresponds to the shape of the iid samples drawn from the distribution. This is taken as an argument by the distribution’s `sample` method.
- *batch shape* corresponds to non-identical (independent) parameterizations of the distribution, inferred from the distribution’s parameter shapes. This is fixed for a distribution instance.
- *event shape* corresponds to the event dimensions of the distribution, which is fixed for a distribution class.

These shapes are collapsed when we try to score a sample from the distribution via `d.log_prob(x)`.

These shapes are related by the equation:

```python
assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape
```

Distributions provide a vectorized `log_prob()` method that evaluates the log probability density of each event in a batch independently, returning a tensor of shape `sample_shape + d.batch_shape`:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
log_p = d.log_prob(x)
assert log_p.shape == sample_shape + d.batch_shape
```

Implementing New Distributions:

Derived classes must implement the methods `sample()` (or `rsample()` if `.has_rsample == True`) and `log_prob()`, and must implement the properties `batch_shape`, and `event_shape`. Discrete classes may also implement the `enumerate_support()` method to improve gradient estimates and set `.has.enumerate_support = True`.

expand(`batch_shape`, `_instance=None`)

Returns a new ExpandedDistribution instance with batch dimensions expanded to `batch_shape`.

Parameters

- **batch_shape** *(tuple)* – batch shape to expand to.
• _instance – unused argument for compatibility with torch.distributions.

Returns an instance of ExpandedDistribution.

Return type ExpandedDistribution

4.2.4 AffineBeta

class AffineBeta(*args, **kwargs)

Bases: pyro.distributions.torch.TransformedDistribution

Beta distribution scaled by scale and shifted by loc:

\[X \sim \text{Beta}(\text{concentration1}, \text{concentration0}) \]
\[f(X) = \text{loc} + \text{scale} \cdot X \]
\[Y = f(X) \sim \text{AffineBeta}(\text{concentration1}, \text{concentration0}, \text{loc}, \text{scale}) \]

Parameters

- concentration1 (float or torch.Tensor) – 1st concentration parameter (alpha) for the Beta distribution.
- concentration0 (float or torch.Tensor) – 2nd concentration parameter (beta) for the Beta distribution.
- loc (float or torch.Tensor) – location parameter.
- scale (float or torch.Tensor) – scale parameter.

arg_constraints: Dict[str, torch.distributions.constraints.Constraint] =
{ 'concentration0': GreaterThan(lower_bound=0.0), 'concentration1':
 GreaterThan(lower_bound=0.0), 'loc': Real(), 'scale':
 GreaterThan(lower_bound=0.0)}

property concentration0
property concentration1
expand(batch_shape, _instance=None)

property high

static infer_shapes(concentration1, concentration0, loc, scale)

property loc

property low

property mean

rsample(sample_shape=torch.Size([]))

Generates a sample from Beta distribution and applies AffineTransform. Additionally clamps the output in order to avoid NaN and Inf values in the gradients.

sample(sample_shape=torch.Size([]))

Generates a sample from Beta distribution and applies AffineTransform. Additionally clamps the output in order to avoid NaN and Inf values in the gradients.

property sample_size

property scale
4.2.5 AsymmetricLaplace

class AsymmetricLaplace(*args, **kwargs)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Asymmetric version of the Laplace distribution.

To the left of `loc` this acts like an Exponential\((1/(\text{asymmetry} \times \text{scale}))\); to the right of `loc` this acts like an Exponential\((\text{asymmetry}/\text{scale})\). The density is continuous so the left and right densities at `loc` agree.

Parameters

- `loc` – Location parameter, i.e. the mode.
- `scale` – Scale parameter = geometric mean of left and right scales.
- `asymmetry` – Square of ratio of left to right scales.

arg_constraints = {'asymmetry': GreaterThan(lower_bound=0.0), 'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}

expand(batch_shape, _instance=None)

has_rsample = True

left_scale()

log_prob(value)

property mean

right_scale()

rsample(sample_shape=torch.Size([]))

support = Real()

property variance

4.2.6 AVFMultivariateNormal

class AVFMultivariateNormal(*args, **kwargs)
Bases: pyro.distributions.torch.MultivariateNormal

Multivariate normal (Gaussian) distribution with transport equation inspired control variates (adaptive velocity fields).

A distribution over vectors in which all the elements have a joint Gaussian density.

Parameters

- `loc` (torch.Tensor) – D-dimensional mean vector.
- `scale_tril` (torch.Tensor) – Cholesky of Covariance matrix; D x D matrix.
- `control_var` (torch.Tensor) – 2 x L x D tensor that parameterizes the control variate; L is an arbitrary positive integer. This parameter needs to be learned (i.e. adapted) to achieve lower variance gradients. In a typical use case this parameter will be adapted concurrently with the `loc` and `scale_tril` that define the distribution.
Example usage:

```python
control_var = torch.tensor(0.1 * torch.ones(2, 1, D), requires_grad=True)
opt_cv = torch.optim.Adam([control_var], lr=0.1, betas=(0.5, 0.999))

for _ in range(1000):
    d = AVFMultivariateNormal(loc, scale_tril, control_var)
    z = d.rsample()
    cost = torch.pow(z, 2.0).sum()
    cost.backward()
    opt_cv.step()
    opt_cv.zero_grad()

arg_constraints = {'control_var': Real(), 'loc': Real(), 'scale_tril': LowerTriangular()}

rsample(sample_shape=torch.Size([]))
```

4.2.7 BetaBinomial

class BetaBinomial(*args, **kwargs)

Bases: `pyro.distributions.torch_distribution.TorchDistribution`

Compound distribution comprising of a beta-binomial pair. The probability of success (probs for the Binomial distribution) is unknown and randomly drawn from a Beta distribution prior to a certain number of Bernoulli trials given by total_count.

Parameters

- `concentration1 (float or torch.Tensor)`: 1st concentration parameter (alpha) for the Beta distribution.
- `concentration0 (float or torch.Tensor)`: 2nd concentration parameter (beta) for the Beta distribution.
- `total_count (float or torch.Tensor)`: Number of Bernoulli trials.

property concentration0

property concentration1

enumrate_support (expand=True)

expand (batch_shape, _instance=None)

has enumerate support = True

log_prob(value)

property mean

sample(sample_shape=())

property support

property variance
4.2.8 CoalescentTimes

class CoalescentTimes(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

Distribution over sorted coalescent times given irregular sampled leaf_times and constant population size.
Sample values will be sorted sets of binary coalescent times. Each sample value will have cardinality value.size(-1) = leaf_times.size(-1) - 1, so that phylogenies are complete binary trees. This distribution can thus be batched over multiple samples of phylogenies given fixed (number of) leaf times, e.g. over phylogeny samples from BEAST or MrBayes.

References

Parameters
- leaf_times (torch.Tensor) – Vector of times of sampling events, i.e. leaf nodes in the phylogeny. These can be arbitrary real numbers with arbitrary order and duplicates.
- rate (torch.Tensor) – Base coalescent rate (pairwise rate of coalescence) under a constant population size model. Defaults to 1.

arg_constraints = {'leaf_times': Real(), 'rate': GreaterThan(lower_bound=0.0)}

log_prob(value)
sample(sample_shape=torch.Size(()))

property support

4.2.9 CoalescentTimesWithRate

class CoalescentTimesWithRate(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

Distribution over coalescent times given irregular sampled leaf_times and piecewise constant coalescent rates defined on a regular time grid.
This assumes a piecewise constant base coalescent rate specified on time intervals \((-\infty, 1], [1, 2],..., [T-1, \infty), \) where \(T = rate_grid.size(-1)\). Leaves may be sampled at arbitrary real times, but are commonly sampled in the interval \([0, T]\).
Sample values will be sorted sets of binary coalescent times. Each sample value will have cardinality value.size(-1) = leaf_times.size(-1) - 1, so that phylogenies are complete binary trees. This distribution can thus be batched over multiple samples of phylogenies given fixed (number of) leaf times, e.g. over phylogeny samples from BEAST or MrBayes.
This distribution implements log_prob() but not .sample().
See also CoalescentRateLikelihood.

References

Parameters

- **leaf_times** (torch.Tensor) – Tensor of times of sampling events, i.e. leaf nodes in the phylogeny. These can be arbitrary real numbers with arbitrary order and duplicates.

- **rate_grid** (torch.Tensor) – Tensor of base coalescent rates (pairwise rate of coalescence). For example in a simple SIR model this might be \(\text{beta} \times S / I \). The rightmost dimension is time, and this tensor represents a (batch of) rates that are piecewise constant in time.

arg_constraints = {'leaf_times': Real(), 'rate_grid':
GreaterThan(lower_bound=0.0)}

property duration

expand(batch_shape, _instance=None)

log_prob(value)

Computes likelihood as in equations 7-8 of [3].

This has time complexity \(O(T + S \times N \log(N)) \) where \(T \) is the number of time steps, \(N \) is the number of leaves, and \(S = \text{sample_shape.numel()} \) is the number of samples of value.

Parameters value (torch.Tensor) – A tensor of coalescent times. These denote sets of size

leaf_times.size(-1) - 1 along the trailing dimension and should be sorted along that
dimension.

Returns Likelihood \(p(\text{coal_times} | \text{leaf_times, rate_grid}) \)

Return type torch.Tensor

property support

4.2.10 ConditionalDistribution

class ConditionalDistribution

Bases: abc.ABC

abstract condition(context)

 Return type torch.distributions.Distribution

4.2.11 ConditionalTransformedDistribution

class ConditionalTransformedDistribution(base_dist, transforms)

Bases: pyro.distributions.conditional.ConditionalDistribution

clear_cache()

c condition(context)
4.2.12 Delta

class Delta(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Degenerate discrete distribution (a single point).
 Discrete distribution that assigns probability one to the single element in its support. Delta distribution parameterized by a random choice should not be used with MCMC based inference, as doing so produces incorrect results.

 Parameters
 • v (torch.Tensor) – The single support element.
 • log_density (torch.Tensor) – An optional density for this Delta. This is useful to keep the class of Delta distributions closed under differentiable transformation.
 • event_dim (int) – Optional event dimension, defaults to zero.

 arg_constraints = {'log_density': Real(), 'v': Dependent()}

 expand(batch_shape, _instance=None)

 has_rsample = True
 log_prob(x)
 property mean
 rsample(sample_shape=torch.Size([]))
 property support
 property variance

4.2.13 DirichletMultinomial

class DirichletMultinomial(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Compound distribution comprising of a dirichlet-multinomial pair. The probability of classes (probs for the Multinomial distribution) is unknown and randomly drawn from a Dirichlet distribution prior to a certain number of Categorical trials given by total_count.

 Parameters
 • concentration (float or torch.Tensor) – concentration parameter (alpha) for the Dirichlet distribution.
 • total_count (int or torch.Tensor) – number of Categorical trials.
 • is_sparse (bool) – Whether to assume value is mostly zero when computing log_prob(), which can speed up computation when data is sparse.

 arg_constraints = {'concentration': IndependentConstraint(GreaterThan(lower_bound=0.0), 1), 'total_count': IntegerGreaterThan(lower_bound=0)}

 property concentration
 expand(batch_shape, _instance=None)
 static infer_shapes(concentration, total_count=())
log_prob(value)

property mean

sample(sample_shape=())

property support

property variance

4.2.14 DiscreteHMM

class DiscreteHMM(*args, **kwargs)
Bases: pyro.distributions.hmm.HiddenMarkovModel

Hidden Markov Model with discrete latent state and arbitrary observation distribution. This uses [1] to parallelize over time, achieving \(O(\log(\text{time}))\) parallel complexity.

The event_shape of this distribution includes time on the left:

\[
event_shape = (\text{num_steps},) + \text{observation_dist.event_shape}
\]

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_logits and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing log_prob() to work with arbitrary length data:

homogeneous + homogeneous case:
event_shape = (1,) + \text{observation_dist.event_shape}

References:

Parameters

- **initial_logits** (Tensor) – A logits tensor for an initial categorical distribution over latent states. Should have rightmost size state_dim and be broadcastable to batch_shape + (state_dim,).

- **transition_logits** (Tensor) – A logits tensor for transition conditional distributions between latent states. Should have rightmost shape (state_dim, state_dim) (old, new), and be broadcastable to batch_shape + (num_steps, state_dim, state_dim).

- **observation_dist** (Distribution) – A conditional distribution of observed data conditioned on latent state. The .batch_shape should have rightmost size state_dim and be broadcastable to batch_shape + (num_steps, state_dim). The .event_shape may be arbitrary.

- **duration** (int) – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

arg_constraints = {'initial_logits': Real(), 'transition_logits': Real()}

expand(batch_shape, _instance=None)

filter(value)

Compute posterior over final state given a sequence of observations.
Parameters value (Tensor) – A sequence of observations.

Returns A posterior distribution over latent states at the final time step. result.logits can then be used as initial_logits in a sequential Pyro model for prediction.

Return type Categorical

log_prob(value)

property support

4.2.15 EmpiricalDistribution
class Empirical(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution
 Empirical distribution associated with the sampled data. Note that the shape requirement for log_weights is that its shape must match the leftmost shape of samples. Samples are aggregated along the aggregation_dim, which is the rightmost dim of log_weights.

Example:

```python
>>> emp_dist = Empirical(torch.randn(2, 3, 10), torch.ones(2, 3))
>>> emp_dist.batch_shape
    torch.Size([2])
>>> emp_dist.event_shape
    torch.Size([10])

>>> single_sample = emp_dist.sample()
>>> single_sample.shape
    torch.Size([2, 10])

>>> batch_sample = emp_dist.sample((100,))
>>> batch_sample.shape
    torch.Size([100, 2, 10])

>>> emp_dist.log_prob(single_sample).shape
    torch.Size([2])

# Vectorized samples cannot be scored by log_prob.
>>> with pyro.validation_enabled():
...    emp_dist.log_prob(batch_sample).shape
Traceback (most recent call last):
...    ValueError: `value.shape` must be torch.Size([2, 10])
```

Parameters

- **samples** (torch.Tensor) – samples from the empirical distribution.
- **log_weights** (torch.Tensor) – log weights (optional) corresponding to the samples.

arg_constraints = {}

enumerate_support (expand=True)
 See pyro.distributions.torch_distribution.TorchDistribution.enumerate_support()

property event_shape
 See pyro.distributions.torch_distribution.TorchDistribution.event_shape()
hasEnumerateSupport = True

log_prob(value)

 Returns the log of the probability mass function evaluated at value. Note that this currently only supports scoring values with empty sample_shape.

 Parameters
 value (torch.Tensor) – scalar or tensor value to be scored.

property log_weights

property mean

 See pyro.distributions.torch_distribution.TorchDistribution.mean()

sample(sample_shape=torch.Size([]))

 See pyro.distributions.torch_distribution.TorchDistribution.sample()

property sample_size

 Number of samples that constitute the empirical distribution.

 Return int number of samples collected.

support = Real()

property variance

 See pyro.distributions.torch_distribution.TorchDistribution.variance()

4.2.16 ExtendedBetaBinomial

class ExtendedBetaBinomial(*args, **kwargs)

 Bases: pyro.distributions.conjugate.BetaBinomial

 EXPERIMENTAL BetaBinomial distribution extended to have logical support the entire integers and to allow arbitrary integer total_count. Numerical support is still the integer interval [0, total_count].

 arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0),
 'concentration1': GreaterThan(lower_bound=0.0),
 'total_count': Integer}

 log_prob(value)

 support = Real()

4.2.17 ExtendedBinomial

class ExtendedBinomial(*args, **kwargs)

 Bases: pyro.distributions.torch.Binomial

 EXPERIMENTAL Binomial distribution extended to have logical support the entire integers and to allow arbitrary integer total_count. Numerical support is still the integer interval [0, total_count].

 arg_constraints = {'logits': Real(),
 'probs': Interval(lower_bound=0.0,
 upper_bound=1.0),
 'total_count': Integer}

 log_prob(value)

 support = Integer
4.2.18 FoldedDistribution

class FoldedDistribution(*args, **kwargs)
 Bases: pyro.distributions.torch.TransformedDistribution

 Equivalent to TransformedDistribution(base_dist, AbsTransform()),
 but additionally supports log_prob().

 Parameters
 base_dist (Distribution) – The distribution to reflect.

expand(batch_shape, _instance=None)

log_prob(value)

support = GreaterThan(lower_bound=0.0)

4.2.19 GammaGaussianHMM

class GammaGaussianHMM(*args, **kwargs)
 Bases: pyro.distributions.hmm.HiddenMarkovModel

 Hidden Markov Model with the joint distribution of initial state, hidden state,
 and observed state is a MultivariateStudentT distribution along the line of
 references [2] and [3]. This adapts [1] to parallelize over time to achieve
 O(log(time)) parallel complexity.

 This GammaGaussianHMM class corresponds to the generative model:

 \[
 \begin{align*}
 s & = \text{Gamma}(df/2, df/2).\text{sample}() \\
 z & = \text{scale}(\text{initial_dist}, s).\text{sample}() \\
 x & = [] \\
 \text{for } t \text{ in range(num_events):} \\
 & \quad z = z @ \text{transition_matrix} + \text{scale}(\text{transition_dist}, s).\text{sample}() \\
 & \quad x.\text{append}(z @ \text{observation_matrix} + \text{scale}(\text{observation_dist}, s).\text{sample}())
 \end{align*}
 \]

 where scale(mvn(loc, precision), s) := mvn(loc, s * precision).

 The event_shape of this distribution includes time on the left:

 event_shape = (num_steps,) + observation_dist.event_shape

 This distribution supports any combination of homogeneous/heterogeneous
 time dependency of transition_dist and observation_dist. However, because
 time is included in this distribution's event_shape, the homogeneous/homogeneous
 case will have a broadcastable event_shape with num_steps = 1, allowing log_prob() to
 work with arbitrary length data:

 event_shape = (1, obs_dim) # homogeneous + homogeneous case

References:

Variables
• **hidden_dim** *(int)* – The dimension of the hidden state.
• **obs_dim** *(int)* – The dimension of the observed state.

Parameters

• **scale_dist** *(Gamma)* – Prior of the mixing distribution.
• **initial_dist** *(MultivariateNormal)* – A distribution with unit scale mixing over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape *(hidden_dim,)*.
• **transition_matrix** *(Tensor)* – A linear transformation of hidden state. This should have shape broadcastable to self.batch_shape + *(num_steps, hidden_dim, hidden_dim)* where the rightmost dims are ordered *(old, new).*
• **transition_dist** *(MultivariateNormal)* – A process noise distribution with unit scale mixing. This should have batch_shape broadcastable to self.batch_shape + *(num_steps, hidden_dim, hidden_dim).*
• **observation_matrix** *(Tensor)* – A linear transformation from hidden to observed state. This should have shape broadcastable to self.batch_shape + *(num_steps, hidden_dim, obs_dim).*
• **observation_dist** *(MultivariateNormal)* – An observation noise distribution with unit scale mixing. This should have batch_shape broadcastable to self.batch_shape + *(num_steps, hidden_dim, obs_dim).*
• **duration** *(int)* – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

 arg_constraints = {}

 expand(batch_shape, _instance=None)

 filter(value)

 Compute posteriors over the multiplier and the final state given a sequence of observations. The posterior is a pair of Gamma and MultivariateNormal distributions (i.e. a GammaGaussian instance).

 Parameters

 value *(Tensor)* – A sequence of observations.

 Returns

 A pair of posterior distributions over the mixing and the latent state at the final time step.

 Return type

 a tuple of ~pyro.distributions.Gamma and ~pyro.distributions.MultivariateNormal

 log_prob(value)

 support = IndependentConstraint(Real(), 2)

4.2.20 GammaPoisson

 class GammaPoisson(*args, **kwargs)

 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Compound distribution comprising of a gamma-poisson pair, also referred to as a gamma-poisson mixture. The rate parameter for the Poisson distribution is unknown and randomly drawn from a Gamma distribution.

 Note: This can be treated as an alternate parametrization of the NegativeBinomial *(total_count, probs)* distribution, with concentration = total_count and rate = *(1 - probs) / probs.*
Parameters

- **concentration** (*float or torch.Tensor*) – shape parameter (alpha) of the Gamma distribution.

- **rate** (*float or torch.Tensor*) – rate parameter (beta) for the Gamma distribution.

```python
arg_constraints = {
    'concentration': GreaterThan(lower_bound=0.0),
    'rate': GreaterThan(lower_bound=0.0)}
```

- **property concentration**
- **expand** (*batch_shape, _instance=None*)
- **log_prob** (*value*)
- **property mean**
- **property rate**
- **sample** (*sample_shape=*())
- **support = IntegerGreaterThan(lower_bound=0)**
- **property variance**

4.2.21 GaussianHMM

```python
class GaussianHMM(*args, **kwargs)
    Bases: pyro.distributions.hmm.HiddenMarkovModel
```

Hidden Markov Model with Gaussians for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve $O(\log(\text{time}))$ parallel complexity, however it differs in that it tracks the log normalizer to ensure `log_prob()` is differentiable.

This corresponds to the generative model:

```python
z = initial_distribution.sample()
x = []
for t in range(num_events):
    z = z @ transition_matrix + transition_dist.sample()
x.append(z @ observation_matrix + observation_dist.sample())
```

The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of `transition_dist` and `observation_dist`. However, because time is included in this distribution's event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with `num_steps = 1`, allowing `log_prob()` to work with arbitrary length data:

```python
event_shape = (1, obs_dim)  # homogeneous + homogeneous case
```

References:

Variables
• **hidden_dim** (*int*) – The dimension of the hidden state.

• **obs_dim** (*int*) – The dimension of the observed state.

Parameters

• **initial_dist** (*MultivariateNormal*) – A distribution over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape (hidden_dim,).

• **transition_matrix** (*Tensor*) – A linear transformation of hidden state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, hidden_dim) where the rightmost dims are ordered (old, new).

• **transition_dist** (*MultivariateNormal*) – A process noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (hidden_dim,).

• **observation_matrix** (*Tensor*) – A linear transformation from hidden to observed state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, obs_dim).

• **observation_dist** (*MultivariateNormal or Normal*) – An observation noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (obs_dim,).

• **duration** (*int*) – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

```
arg_constraints = {}

conjugate_update(other)

EXPERIMENTAL Creates an updated GaussianHMM fusing information from another compatible distribution.

This should satisfy:

```python
fg, log_normalizer = f.conjugate_update(g)
assert f.log_prob(x) + g.log_prob(x) == fg.log_prob(x) + log_normalizer
```

Parameters **other** (*MultivariateNormal or Normal*) – A distribution representing p(data|self.probs) but normalized over self.probs rather than data.

Returns a pair (updated, log_normalizer) where updated is an updated GaussianHMM, and log_normalizer is a Tensor representing the normalization factor.

```
expand(batch_shape, _instance=None)
```

```
filter(value)

Compute posterior over final state given a sequence of observations.

Parameters **value** (*Tensor*) – A sequence of observations.

Returns A posterior distribution over latent states at the final time step. result can then be used as initial_dist in a sequential Pyro model for prediction.

Return type **MultivariateNormal**
```

```
has_rsample = True
```

```
log_prob(value)
```
prefix_condition(data)

EXPERIMENTAL Given self has event_shape == (t+f, d) and data of shape batch_shape + (t, d), compute a conditional distribution of event_shape (f, d). Typically t is the number of training time steps, f is the number of forecast time steps, and d is the data dimension.

Parameters

- data (Tensor) – data of dimension at least 2.

rsample(sample_shape=torch.Size([]))

rsample_posterior(value, sample_shape=torch.Size([]))

EXPERIMENTAL Sample from the latent state conditioned on observation.

support = IndependentConstraint(Real(), 2)

4.2.22 GaussianMRF

class GaussianMRF(*args, **kwargs)

Bases: pyro.distributions.torch_distribution.TorchDistribution

Temporal Markov Random Field with Gaussian factors for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve O(log(time)) parallel complexity, however it differs in that it tracks the log normalizer to ensure log_prob() is differentiable.

The event_shape of this distribution includes time on the left:

event_shape = (num_steps,) + observation_dist.event_shape

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_dist and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing log_prob() to work with arbitrary length data:

event_shape = (1, obs_dim)  # homogeneous + homogeneous case

References:


Variables

- hidden_dim (int) – The dimension of the hidden state.
- obs_dim (int) – The dimension of the observed state.

Parameters

- initial_dist (MultivariateNormal) – A distribution over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape (hidden_dim,).

- transition_dist (MultivariateNormal) – A joint distribution factor over a pair of successive time steps. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (hidden_dim + hidden_dim,) (old+new).

- observation_dist (MultivariateNormal) – A joint distribution factor over a hidden and an observed state. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (hidden_dim + obs_dim,).
arg_constraints = {}
expand(batch_shape, _instance=None)
log_prob(value)
property support

4.2.23 GaussianScaleMixture

class GaussianScaleMixture(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

Mixture of Normal distributions with zero mean and diagonal covariance matrices.

That is, this distribution is a mixture with K components, where each component
distribution is a D-dimensional Normal distribution with zero mean and a D-dimensional diagonal covariance matrix. The K different covariance
matrices are controlled by the parameters coord_scale and component_scale. That is, the covariance matrix of
the k’th component is given by

\[ \Sigma_{ii} = (\text{component}_\text{scale}_k \times \text{coord}_\text{scale}_i)^2 \quad (i = 1, \ldots, D) \]

where component_scale_k is a positive scale factor and coord_scale_i are positive scale parameters shared be-
tween all K components. The mixture weights are controlled by a K-dimensional vector of softmax logits,
component_logits. This distribution implements pathwise derivatives for samples from the distribution. This
distribution does not currently support batched parameters.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this refer-
ence if you use the pathwise derivative in your research.

[1] Pathwise Derivatives for Multivariate Distributions, Martin Jankowiak & Theofanis Karaletsos.
arXiv:1806.01856

Note that this distribution supports both even and odd dimensions, but the former should be more a bit higher
precision, since it doesn’t use any erfs in the backward call. Also note that this distribution does not support D
= 1.

Parameters

- coord_scale (torch.tensor) – D-dimensional vector of scales
- component_logits (torch.tensor) – K-dimensional vector of logits
- component_scale (torch.tensor) – K-dimensional vector of scale multipliers

arg_constraints = {'component_logits': Real(), 'component_scale':
    GreaterThan(lower_bound=0.0), 'coord_scale': GreaterThan(lower_bound=0.0)}

has_rsample = True
log_prob(value)
rsample(sample_shape=torch.Size([]))
4.2.24 ImproperUniform

class ImproperUniform(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

Improper distribution with zero log_prob() and undefined sample().

This is useful for transforming a model from generative dag form to factor graph form for use in HMC. For example the following are equal in distribution:

```python
Version 1. a generative dag
x = pyro.sample("x", Normal(0, 1))
y = pyro.sample("y", Normal(x, 1))
z = pyro.sample("z", Normal(y, 1))

Version 2. a factor graph
xyz = pyro.sample("xyz", ImproperUniform(constraints.real, (), (3,)))
x, y, z = xyz.unbind(-1)
pyro.sample("x", Normal(0, 1), obs=x)
pyro.sample("y", Normal(x, 1), obs=y)
pyro.sample("z", Normal(y, 1), obs=z)
```

Note this distribution errors when sample() is called. To create a similar distribution that instead samples from a specified distribution consider using .mask(False) as in:

```python
xyz = dist.Normal(0, 1).expand([3]).to_event(1).mask(False)
```

Parameters

- **support** (Constraint) – The support of the distribution.
- **batch_shape** (torch.Size) – The batch shape.
- **event_shape** (torch.Size) – The event shape.

arg_constraints = {}

expand(batch_shape, _instance=None)

log_prob(value)

sample(sample_shape=torch.Size(()))

property support

4.2.25 IndependentHMM

class IndependentHMM(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

Wrapper class to treat a batch of independent univariate HMMs as a single multivariate distribution. This converts distribution shapes as follows:

<table>
<thead>
<tr>
<th>base_dist shape + (obs_dim,)</th>
<th>(duration, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>result shape</td>
<td>(duration, obs_dim)</td>
</tr>
</tbody>
</table>
Parameters base_dist (HiddenMarkovModel) – A base hidden Markov model instance.

arg_constraints = {}

property duration
    expand(batch_shape, _instance=None)

property has_rsample

log_prob(value)
    rsample(sample_shape=torch.Size([]))

property support

4.2.26 InverseGamma

class InverseGamma(*args, **kwargs)
    Bases: pyro.distributions.torch.TransformedDistribution

    Creates an inverse-gamma distribution parameterized by concentration and rate.
    
    X ~ Gamma(concentration, rate) Y = 1/X ~ InverseGamma(concentration, rate)

    Parameters
    
    • concentration (torch.Tensor) – the concentration parameter (i.e. alpha).
    • rate (torch.Tensor) – the rate parameter (i.e. beta).

    arg_constraints: Dict[str, torch.distributions.constraints.Constraint] =
        {'concentration': GreaterThan(lower_bound=0.0), 'rate':
            GreaterThan(lower_bound=0.0)}

    property concentration
        expand(batch_shape, _instance=None)

    has_rsample = True

    property rate

    support = GreaterThan(lower_bound=0.0)

4.2.27 LinearHMM

class LinearHMM(*args, **kwargs)
    Bases: pyro.distributions.hmm.HiddenMarkovModel

    Hidden Markov Model with linear dynamics and observations and arbitrary noise for initial, transition, and observation distributions. Each of those distributions can be e.g. MultivariateNormal or Independent of Normal, StudentT, or Stable. Additionally the observation distribution may be constrained, e.g. LogNormal

    This corresponds to the generative model:

    z = initial_distribution.sample()
    x = []
    for t in range(num_events):
        z = z @ transition_matrix + transition_dist.sample()
\[
y = z @ \text{observation_matrix} + \text{obs_base_dist.sample()}
\]
\[
x.\text{append}(\text{obs_transform}(y))
\]
where \(\text{observation_dist}\) is split into \(\text{obs_base_dist}\) and an optional \(\text{obs_transform}\) (defaulting to the identity).

This implements a reparameterized \(\text{rsample()}\) method but does not implement a \(\text{log_prob()}\) method. Derived classes may implement \(\text{log_prob()}\).

Inference without \(\text{log_prob()}\) can be performed using either reparameterization with \(\text{LinearHMMReparam}\) or likelihood-free algorithms such as \(\text{EnergyDistance}\). Note that while stable processes generally require a common shared stability parameter \(\alpha\), this distribution and the above inference algorithms allow heterogeneous stability parameters.

The event_shape of this distribution includes time on the left:

\[
\text{event_shape} = (\text{num_steps},) + \text{observation_dist.event_shape}
\]

This distribution supports any combination of homogeneous/heterogeneous time dependency of \(\text{transition_dist}\) and \(\text{observation_dist}\). However at least one of the distributions or matrices must be expanded to contain the time dimension.

**Variables**

- \(\text{hidden_dim}(\text{int})\) – The dimension of the hidden state.
- \(\text{obs_dim}(\text{int})\) – The dimension of the observed state.

**Parameters**

- \(\text{initial_dist}\) – A distribution over initial states. This should have batch_shape broadcastable to \(\text{self.batch_shape}\). This should have event_shape \((\text{hidden_dim},)\).
- \(\text{transition_matrix}(\text{Tensor})\) – A linear transformation of hidden state. This should have shape broadcastable to \(\text{self.batch_shape + (num_steps, hidden_dim, hidden_dim)}\) where the rightmost dims are ordered \((\text{old, new})\).
- \(\text{transition_dist}\) – A distribution over process noise. This should have batch_shape broadcastable to \(\text{self.batch_shape + (num_steps,)}\). This should have event_shape \((\text{hidden_dim},)\).
- \(\text{observation_matrix}(\text{Tensor})\) – A linear transformation from hidden to observed state. This should have shape broadcastable to \(\text{self.batch_shape + (num_steps, hidden_dim, obs_dim)}\).
- \(\text{observation_dist}\) – A observation noise distribution. This should have batch_shape broadcastable to \(\text{self.batch_shape + (num_steps,)}\). This should have event_shape \((\text{obs_dim},)\).
- \(\text{duration}(\text{int})\) – Optional size of the time axis \(\text{event_shape[0]}\). This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

\[
\text{arg_constraints} = \{
\}
\]

\[
\text{expand}(\text{batch_shape}, _\text{instance}=\text{None})
\]

\[
\text{has_rsample} = \text{True}
\]

\[
\text{log_prob}(\text{value})
\]

\[
\text{rsample}(\text{sample_shape} = \text{torch.Size([1]))}
\]
property support

4.2.28 LKJ

class LKJ(*args, **kwargs)
   Bases: pyro.distributions.torch.TransformedDistribution

   LKJ distribution for correlation matrices. The distribution is controlled by concentration parameter \( \eta \) to make the probability of the correlation matrix \( M \) proportional to \( \det(M)^{\eta-1} \). Because of that, when concentration == 1, we have a uniform distribution over correlation matrices.

   When concentration > 1, the distribution favors samples with large large determinant. This is useful when we know a priori that the underlying variables are not correlated. When concentration < 1, the distribution favors samples with small determinant. This is useful when we know a priori that some underlying variables are correlated.

   Parameters
   - dimension (int) – dimension of the matrices
   - concentration (ndarray) – concentration/shape parameter of the distribution (often referred to as eta)

   References
   [1] Generating random correlation matrices based on vines and extended onion method, Daniel Lewandowski, Dorota Kurowicka, Harry Joe

   arg_constraints: Dict[str, torch.distributions.constraints.Constraint] =
   {'concentration': GreaterThan(lower_bound=0.0)}

   expand(batch_shape, _instance=None)

   property mean
   support = CorrMatrix()

4.2.29 LKJCorrCholesky

class LKJCorrCholesky(*args, **kwargs)
   Bases: pyro.distributions.torch.LKJCholesky

4.2.30 Logistic

class Logistic(*args, **kwargs)
   Bases: pyro.distributions.torch_distribution.TorchDistribution

   Logistic distribution.

   This is a smooth distribution with symmetric asymptotically exponential tails and a concave log density. For standard loc=0, scale=1, the density is given by

   \[
p(x) = \frac{e^{-x}}{(1 + e^{-x})^2}
\]

   Like the Laplace density, this density has the heaviest possible tails (asymptotically) while still being log-convex. Unlike the Laplace distribution, this distribution is infinitely differentiable everywhere, and is thus suitable for constructing Laplace approximations.
4.2.31 MaskedDistribution

class MaskedDistribution(*args, **kwargs)
   Bases: pyro.distributions.torch_distribution.TorchDistribution

   Masks a distribution by a boolean tensor that is broadcastable to the distribution's batch_shape.
   In the special case mask is False, computation of log_prob(), score_parts(), and kl_divergence() is skipped, and constant zero values are returned instead.

   Parameters mask (torch.Tensor or bool) – A boolean or boolean-valued tensor.

   arg_constraints = {}
4.2.32 MaskedMixture

class MaskedMixture(*args, **kwargs)
   Bases: pyro.distributions.torch_distribution.TorchDistribution

   A masked deterministic mixture of two distributions.

   This is useful when the mask is sampled from another distribution, possibly correlated across the batch. Often
   the mask can be marginalized out via enumeration.

   Example:

   ```python
 change_point = pyro.sample("change_point",
 dist.Categorical(torch.ones(len(data) + 1)),
 infer={'enumerate': 'parallel'})
 mask = torch.arange(len(data), dtype=torch.long) >= changepoint
 with pyro.plate("data", len(data)):
 pyro.sample("obs", MaskedMixture(mask, dist1, dist2), obs=data)
   ```

Parameters

- **mask** (torch.Tensor) – A boolean tensor toggling between component0 and component1.
- **component0** (pyro.distributions.TorchDistribution) – a distribution for batch elements mask == False.
- **component1** (pyro.distributions.TorchDistribution) – a distribution for batch elements mask == True.

arg_constraints = {}
expand(batch_shape)

property has_rsample
log_prob(value)
mean()
rsample(sample_shape=torch.Size([]))
sample(sample_shape=torch.Size([]))
property support
variance()

4.2.33 MixtureOfDiagNormals

class MixtureOfDiagNormals(*args, **kwargs)
   Bases: pyro.distributions.torch_distribution.TorchDistribution

   Mixture of Normal distributions with arbitrary means and arbitrary diagonal covariance matrices.

   That is, this distribution is a mixture with K components, where each component distribution is a D-dimensional
   Normal distribution with a D-dimensional mean parameter and a D-dimensional diagonal covariance matrix.
   The K different component means are gathered into the K x D dimensional parameter `locs` and the K different
   scale parameters are gathered into the K x D dimensional parameter `coord_scale`. The mixture weights are con-
   trolled by a K-dimensional vector of softmax logits, `component_logits`. This distribution implements pathwise
derivatives for samples from the distribution.
See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension D = 1.


Parameters

- **locs** (*torch.Tensor*) – K x D mean matrix
- **coord_scale** (*torch.Tensor*) – K x D scale matrix
- **component_logits** (*torch.Tensor*) – K-dimensional vector of softmax logits

arg_constraints = {'component_logits': Real(), 'coord_scale':
GreaterThan(lower_bound=0.0), 'locs': Real()}

expand(*batch_shape*, _instance=None)

has_rsample = True

log_prob(*value*)

rsample(*sample_shape=torch.Size([]))

**4.2.34 MixtureOfDiagNormalsSharedCovariance**

class MixtureOfDiagNormalsSharedCovariance(*args, **kwargs)

Bases: pyro.distributions.torch_distribution.TorchDistribution

Mixture of Normal distributions with diagonal covariance matrices.

That is, this distribution is a mixture with K components, where each component distribution is a D-dimensional Normal distribution with a D-dimensional mean parameter loc and a D-dimensional diagonal covariance matrix specified by a scale parameter coord_scale. The K different component means are gathered into the parameter locs and the scale parameter is shared between all K components. The mixture weights are controlled by a K-dimensional vector of softmax logits, component_logits. This distribution implements pathwise derivatives for samples from the distribution.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension D = 1.


Parameters

- **locs** (*torch.Tensor*) – K x D mean matrix
- **coord_scale** (*torch.Tensor*) – shared D-dimensional scale vector
- **component_logits** (*torch.Tensor*) – K-dimensional vector of softmax logits

arg_constraints = {'component_logits': Real(), 'coord_scale':
GreaterThan(lower_bound=0.0), 'locs': Real()}

expand(*batch_shape*, _instance=None)

has_rsample = True

log_prob(*value*)

rsample(*sample_shape=torch.Size([]))

4.2. Pyro Distributions 99
4.2.35 MultivariateStudentT

class MultivariateStudentT(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Creates a multivariate Student's t-distribution parameterized by degree of freedom \(df\), mean \(loc\) and scale \(scale\_tril\).

    Parameters
        • \(df\) (Tensor) – degrees of freedom
        • \(loc\) (Tensor) – mean of the distribution
        • \(scale\_tril\) (Tensor) – scale of the distribution, which is a lower triangular matrix with positive diagonal entries

    arg_constraints = {'df': GreaterThan(lower_bound=0.0), 'loc': IndependentConstraint(Real(), 1), 'scale_tril': LowerCholesky()}

covariance_matrix()
expand(batch_shape, _instance=None)
has_rsample = True
static infer_shapes(df, loc, scale_tril)
log_prob(value)
property mean
precision_matrix()
rsample(sample_shape=torch.Size([]))
scale_tril()
support = IndependentConstraint(Real(), 1)
property variance

4.2.36 OMTMultivariateNormal

class OMTMultivariateNormal(*args, **kwargs)
    Bases: pyro.distributions.torch.MultivariateNormal

    Multivariate normal (Gaussian) distribution with OMT gradients w.r.t. both parameters. Note the gradient computation w.r.t. the Cholesky factor has cost O(D^3), although the resulting gradient variance is generally expected to be lower.

    A distribution over vectors in which all the elements have a joint Gaussian density.

    Parameters
        • \(loc\) (torch.Tensor) – Mean.
        • \(scale\_tril\) (torch.Tensor) – Cholesky of Covariance matrix.

    arg_constraints = {'loc': Real(), 'scale_tril': LowerTriangular()}

rsample(sample_shape=torch.Size([]))
4.2.37 OneOneMatching

class OneOneMatching(*args, **kwargs)

Random perfect matching from $N$ sources to $N$ destinations where each source matches exactly one destination and each destination matches exactly one source.

Samples are represented as long tensors of shape $(N,)$ taking values in $\{0, \ldots, N-1\}$ and satisfying the above one-one constraint. The log probability of a sample $v$ is the sum of edge logits, up to the log partition function $\log Z$:

$$\log p(v) = \sum_s \text{logits}[s, v{s}] - \log Z$$

Exact computations are expensive. To enable tractable approximations, set a number of belief propagation iterations via the `bp_iters` argument. The `log_partition_function()` and `log_prob()` methods use a Bethe approximation [1,2,3,4].

References:


Parameters

- `logits` (Tensor) – An $(N, N)$-shaped tensor of edge logits.
- `bp_iters` (int) – Optional number of belief propagation iterations. If unspecified or `None` expensive exact algorithms will be used.

arg_constraints = {'logits': Real()}

enumerate_support(expand=True)

has.enumerate_support = True

log_partition_function()

log_prob(value)

mode()

Computes a maximum probability matching.

Note: This requires the `lap` package and runs on CPU.

sample(sample_shape=torch.Size([]))

property support
4.2.38 OneTwoMatching

```python
class OneTwoMatching(*args, **kwargs):
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Random matching from 2*N sources to N destinations where each source matches exactly one destination and each destination matches exactly two sources.

 Samples are represented as long tensors of shape (2*N,) taking values in \{0, \ldots, N-1\} and satisfying the above one-two constraint. The log probability of a sample \(v \) is the sum of edge logits, up to the log partition function \(\log Z \):

 \[
 \log p(v) = \sum_s \text{logits}[s, v[s]] - \log Z
 \]

 Exact computations are expensive. To enable tractable approximations, set a number of belief propagation iterations via the `bp_iters` argument. The `log_partition_function()` and `log_prob()` methods use a Bethe approximation [1,2,3,4].

 References:

 Parameters

 - `logits` (Tensor) – An (2 * N, N)-shaped tensor of edge logits.
 - `bp_iters` (int) – Optional number of belief propagation iterations. If unspecified or None expensive exact algorithms will be used.

 `arg_constraints = {'logits': Real()}`

 `enumerate_support(expand=True)`

 `has enumerate_support = True`

 `log_partition_function()`

 `log_prob(value)`

 `mode()`

 Computes a maximum probability matching.

 Note: This requires the lap package and runs on CPU.

 `sample(sample_shape=torch.Size([]))`

 `property support`
4.2.39 OrderedLogistic

class OrderedLogistic(*args, **kwargs)

 Bases: pyro.distributions.torch.Categorical

 Alternative parametrization of the distribution over a categorical variable.

 Instead of the typical parametrization of a categorical variable in terms of the probability mass of the individual categories \(p \), this provides an alternative that is useful in specifying ordered categorical models. This accepts a vector of *cutpoints* which are an ordered vector of real numbers denoting baseline cumulative log-odds of the individual categories, and a model vector *predictor* which modifies the baselines for each sample individually.

 These cumulative log-odds are then transformed into a discrete cumulative probability distribution, that is finally differenced to return the probability mass matrix \(p \) that specifies the categorical distribution.

 Parameters

 - *predictor* (*Tensor*) – A tensor of predictor variables of arbitrary shape. The output shape of non-batched samples from this distribution will be the same shape as *predictor*.
 - *cutpoints* (*Tensor*) – A tensor of cutpoints that are used to determine the cumulative probability of each entry in *predictor* belonging to a given category. The first *cutpoints*.ndim-1 dimensions must be broadcastable to *predictor*, and the -1 dimension is monotonically increasing.

 arg_constraints = {'cutpoints': OrderedVector(), 'predictor': Real()}

 expand(batch_shape, _instance=None)

4.2.40 ProjectedNormal

class ProjectedNormal(*args, **kwargs)

 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Projected isotropic normal distribution of arbitrary dimension.

 This distribution over directional data is qualitatively similar to the von Mises and von Mises-Fisher distributions, but permits tractable variational inference via reparameterized gradients.

 To use this distribution with autoguides, use *poutine.reparam* with a *ProjectedNormalReparam* reparameterizer in the model, e.g.:

    ```python
    @poutine.reparam(config={"direction": ProjectedNormalReparam()})
    def model():
        direction = pyro.sample("direction",
            ProjectedNormal(torch.zeros(3)))
    ...
    ```

 or simply wrap in *MinimalReparam* or *AutoReparam*, e.g.:

    ```python
    @MinimalReparam()
    def model():
        ...
    ```

 Note: This implements *log_prob()* only for dimensions \{2,3\}.

4.2. Pyro Distributions
arg_constraints = {'concentration': IndependentConstraint(Real(), 1)}
expand(batch_shape, _instance=None)
has_rsample = True
static infer_shapes(concentration)
log_prob(value)
property mean
Note this is the mean in the sense of a centroid in the submanifold that minimizes expected squared geodesic distance.

property mode
rsample(sample_shape=torch.Size([]))
support = Sphere

4.2.41 RelaxedBernoulliStraightThrough

class RelaxedBernoulliStraightThrough(*args, **kwargs)
 Bases: pyro.distributions.torch.RelaxedBernoulli
 An implementation of RelaxedBernoulli with a straight-through gradient estimator.

 This distribution has the following properties:
 • The samples returned by the rsample() method are discrete/quantized.
 • The log_prob() method returns the log probability of the relaxed/unquantized sample using the Gumbel-Softmax distribution.
 • In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

 References:
 [2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

 log_prob(value)
 See pyro.distributions.torch.RelaxedBernoulli.log_prob()

 rsample(sample_shape=torch.Size([]))
 See pyro.distributions.torch.RelaxedBernoulli.rsample()
4.2.42 RelaxedOneHotCategoricalStraightThrough

class RelaxedOneHotCategoricalStraightThrough(*args, **kwargs)
 Bases: pyro.distributions.torch.RelaxedOneHotCategorical

 An implementation of RelaxedOneHotCategorical with a straight-through gradient estimator.

 This distribution has the following properties:
 • The samples returned by the rsample() method are discrete/quantized.
 • The log_prob() method returns the log probability of the relaxed/unquantized sample using the Gumbel-Softmax distribution.
 • In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

 References:
 [2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

 log_prob(value)
 See pyro.distributions.torch.RelaxedOneHotCategorical.log_prob()

 rsample(sample_shape=torch.Size([]))
 See pyro.distributions.torch.RelaxedOneHotCategorical.rsample()

4.2.43 Rejector

class Rejector(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Rejection sampled distribution given an acceptance rate function.

 Parameters
 • propose (Distribution) – A proposal distribution that samples batched proposals via propose(). rsample() supports a sample_shape arg only if propose() supports a sample_shape arg.
 • log_prob_accept (callable) – A callable that inputs a batch of proposals and returns a batch of log acceptance probabilities.
 • log_scale – Total log probability of acceptance.

 arg_constraints = {}
 has_rsample = True

 log_prob(x)
 rsample(sample_shape=torch.Size([]))
 score_parts(x)
Unimodal distribution of two dependent angles on the 2-torus ($S^1 \times S^1$) given by

$$C^{-1} \exp(\kappa_1 \cos(x - \mu_1) + \kappa_2 \cos(x_2 - \mu_2) + \rho \sin(x_1 - \mu_1) \sin(x_2 - \mu_2))$$

and

$$C = (2\pi)^2 \sum_{i=0}^{\infty} \binom{2i}{i} \left(\frac{\rho^2}{4\kappa_1\kappa_2}\right)^i I_i(\kappa_1)I_i(\kappa_2),$$

where $I_i(cdot)$ is the modified bessel function of first kind, mu’s are the locations of the distribution, kappa’s are the concentration and rho gives the correlation between angles x_1 and x_2.

This distribution is a submodel of the Bivariate von Mises distribution, called the Sine Distribution [2] in directional statistics.

This distribution is helpful for modeling coupled angles such as torsion angles in peptide chains. To infer parameters, use NUTS or HMC with priors that avoid parameterizations where the distribution becomes bimodal; see note below.

Note: Sample efficiency drops as

$$\frac{\rho}{\kappa_1\kappa_2} \rightarrow 1$$

because the distribution becomes increasingly bimodal. To avoid bimodality use the `weighted_correlation` parameter with a skew away from one (e.g., Beta(1,3)). The `weighted_correlation` should be in [0,1].

Note: The correlation and `weighted_correlation` params are mutually exclusive.

Note: In the context of SVI, this distribution can be used as a likelihood but not for latent variables.

References:

• **weighted_correlation** *(torch.Tensor)* – set correlation to weighted_corr *
 sqrt(phi_conc*psi_conc) to avoid bimodality (see note). The weighted_correlation
 should be in [0,1].

```
arg_constraints = {'correlation': Real(), 'phi_concentration': 
  GreaterThan(lower_bound=0.0), 'phi_loc': Real(), 'psi_concentration': 
  GreaterThan(lower_bound=0.0), 'psi_loc': Real()}
```

```
expand(batch_shape, _instance=None)
```

```
classmethod infer_shapes(**arg_shapes)
```

```
log_prob(value)
```

```
max_sample_iter = 1000
```

```
property mean
```

```
norm_const()
```

```
sample(sample_shape=torch.Size([]))
```

References:

1. A New Unified Approach for the Simulation of aWide Class of Directional Distributions John T.
 Kent, Asaad M. Ganeiber & Kanti V. Mardia (2018)

```
support = IndependentConstraint(Real(), 1)
```

4.2.45 SineSkewed

```
class SineSkewed(*args, **kwargs)
```

```
Bases: pyro.distributions.torch_distribution.TorchDistribution
```

Sine Skewing [1] is a procedure for producing a distribution that breaks pointwise symmetry on a torus distri-

```
Torus distributions are distributions with support on products of circles (i.e., ^d S^1 where S^1=[-pi,pi) ). So, a 
0-torus is a point, the 1-torus is a circle, and the 2-torus is commonly associated with the donut shape.
```

The Sine Skewed X distribution is parameterized by a weight parameter for each dimension of the event of X.
So, for example, with a von Mises distribution over a circle (1-torus), the Sine Skewed von Mises Distribution has
one skew parameter. The skewness parameters can be inferred using HMC or NUTS. For example, the following
will produce a uniform prior over skewness for the 2-torus:.

```
def model(obs):
    # Sine priors
    phi_loc = pyro.sample('phi_loc', VonMises(pi, 2.))
    psi_loc = pyro.sample('psi_loc', VonMises(-pi / 2, 2.))
    phi_conc = pyro.sample('phi_conc', Beta(halpha_phi, beta_prec_phi - halpha_phi))
    psi_conc = pyro.sample('psi_conc', Beta(halpha_psi, beta_prec_psi - halpha_psi))
    corr_scale = pyro.sample('corr_scale', Beta(2., 5.))

    # SS prior
    skew_phi = pyro.sample('skew_phi', Uniform(-1., 1.))
    psi_bound = 1 - skew_phi.abs()
    skew_psi = pyro.sample('skew_psi', Uniform(-1., 1.))
```

(continues on next page)
skewness = torch.stack((skew_phi, psi_bound * skew_psi), dim=-1)
assert skewness.shape == (num_mix_comp, 2)

with pyro.plate('obs_plate'):
 sine = SineBivariateVonMises(phi_loc=phi_loc, psi_loc=psi_loc,
 phi_concentration=1000 * phi_conc,
 psi_concentration=1000 * psi_conc,
 weighted_correlation=corr_scale)
 return pyro.sample('phi_psi', SineSkewed(sine, skewness), obs=obs)

To ensure the skewing does not alter the normalization constant of the (Sine Bivariate von Mises) base distribution
the skewness parameters are constraint. The constraint requires the sum of the absolute values of skewness to be
less than or equal to one. So for the above snippet it must hold that:

\[|\text{skew}_\phi| + |\text{skew}_\psi| \leq 1 \]

We handle this in the prior by computing psi_bound and use it to scale skew_psi. We do not use psi_bound as:

\[\text{skew}_\psi = \text{pyro.sample('skew_psi', Uniform(-psi_bound, psi_bound))} \]

as it would make the support for the Uniform distribution dynamic.

In the context of SVI, this distribution can freely be used as a likelihood, but use as latent variables it will lead
to slow inference for 2 and higher dim toruses. This is because the base_dist cannot be reparameterized.

References:

Parameters

- **base_dist** ([torch.distributions.Distribution](https://pyro.ai/docs/api-reference/distributions)) – base density on a d-dimensional
torus. Supported base distributions include: 1D [VonMises](https://pyro.ai/docs/api-reference/distributions/VonMises), 1D [ProjectedNormal](https://pyro.ai/docs/api-reference/distributions/ProjectedNormal), and [Uniform](https://pyro.ai/docs/api-reference/distributions/Uniform) (-pi, pi).
- **skewness** ([torch.tensor](https://pyro.ai/docs/api-reference/torch.tensor)) – skewness of the distribution.

arg_constraints = {'skewness': IndependentConstraint(Interval(lower_bound=-1.0, upper_bound=1.0), 1)}

expand(batch_shape, _instance=None)

log_prob(value)

sample(sample_shape=torch.Size([]))

support = IndependentConstraint(Real(), 1)
4.2.46 SkewLogistic

```python
class SkewLogistic(*args, **kwargs):
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Skewed generalization of the Logistic distribution (Type I in [1]).

    This is a smooth distribution with asymptotically exponential tails and a concave log density. For standard `loc=0`, `scale=1`, `asymmetry` the density is given by

    \[ p(x; \alpha) = \frac{\alpha e^{-x}}{(1 + e^{-x})^{\alpha+1}} \]

    Like the `AsymmetricLaplace` density, this density has the heaviest possible tails (asymptotically) while still being log-convex. Unlike the `AsymmetricLaplace` distribution, this distribution is infinitely differentiable everywhere, and is thus suitable for constructing Laplace approximations.

    References


    Parameters

    * loc – Location parameter.
    * scale – Scale parameter.
    * asymmetry – Asymmetry parameter (positive). The distribution skews right when asymmetry > 1 and left when asymmetry < 1. Defaults to `asymmetry = 1` corresponding to the standard Logistic distribution.

    arg_constraints = {
        'asymmetry': GreaterThan(lower_bound=0.0),
        'loc': Real(),
        'scale': GreaterThan(lower_bound=0.0)}
```

cdf(value)
expand(batch_shape, _instance=None)
has_rsample = True
icdf(value)
log_prob(value)
rsample(sample_shape=torch.Size([1]))
support = Real()

4.2.47 SoftAsymmetricLaplace

```python
class SoftAsymmetricLaplace(*args, **kwargs):
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Soft asymmetric version of the Laplace distribution.

    This has a smooth (infinitely differentiable) density with two asymmetric asymptotically exponential tails, one on the left and one on the right. In the limit of softness \( \rightarrow 0 \), this converges in distribution to the AsymmetricLaplace distribution.

    This is equivalent to the sum of three random variables \( z - u + v \) where:
This is also equivalent the sum of two random variables \( z + a \) where:

\[
\begin{align*}
\text{z} & \sim \text{Normal}(\text{loc}, \text{scale} \times \text{softness}) \\
\text{a} & \sim \text{AsymmetricLaplace}(0, \text{scale}, \text{asymmetry}) \\
\text{v} & \sim \text{Exponential}(\text{asymmetry} / \text{scale})
\end{align*}
\]

### Parameters

- **loc** – Location parameter, i.e. the mode.
- **scale** – Scale parameter = geometric mean of left and right scales.
- **asymmetry** – Square of ratio of left to right scales. Defaults to 1.
- **softness** – Scale parameter of the Gaussian smoother. Defaults to 1.

### arg_constraints

\{
'vesymmetry': GreaterThan(lower_bound=0.0),
'loc': Real(),
'scale': GreaterThan(lower_bound=0.0),
'softness': GreaterThan(lower_bound=0.0)
\}

### expand

\( \text{expand}(\text{batch\_shape}, \_\text{instance}=\text{None}) \)

### has_rsample

True

### left_scale

\()

### log_prob

\( \text{log\_prob}(\text{value}) \)

### mean

\()

### right_scale

\()

### rsample

\( \text{rsample}(\text{sample\_shape}==\text{torch\_Size}([])) \)

### soft_scale

\()

### support

Real()

### variance

\%

### 4.2.48 SoftLaplace

**class SoftLaplace(*args, **kwargs)**

* Bases: pyro.distributions.torch_distribution.TorchDistribution

Smooth distribution with Laplace-like tail behavior.

This distribution corresponds to the log-convex density:

\[
\begin{align*}
\text{z} &= (\text{value} - \text{loc}) / \text{scale} \\
\text{log\_prob} &= \log(2 / \pi) - \log(\text{scale}) - \logaddexp(\text{z}, -\text{z})
\end{align*}
\]

Like the Laplace density, this density has the heaviest possible tails (asymptotically) while still being log-convex. Unlike the Laplace distribution, this distribution is infinitely differentiable everywhere, and is thus suitable for constructing Laplace approximations.

### Parameters

- **loc** – Location parameter.
• scale – Scale parameter.

arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}

cdf(value)
expand(batch_shape, _instance=None)

has_rsample = True
icdf(value)
log_prob(value)

property mean

rsample(sample_shape=torch.Size([]))
support = Real()

property variance

4.2.49 SpanningTree

class SpanningTree(*args, **kwargs)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Distribution over spanning trees on a fixed number V of vertices.

A tree is represented as torch.LongTensor edges of shape (V-1,2) satisfying the following properties:

1. The edges constitute a tree, i.e. are connected and cycle free.
2. Each edge (v1,v2) = edges[e] is sorted, i.e. v1 < v2.
3. The entire tensor is sorted in colexicographic order.

Use validate_edges() to verify edges are correctly formed.

The edge_logits tensor has one entry for each of the V*(V-1)//2 edges in the complete graph on V vertices, where edges are each sorted and the edge order is colexicographic:

(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), (0,4), (1,4), (2,4), ...

This ordering corresponds to the size-independent pairing function:

\[ k = v1 + v2 \times (v2 - 1) / 2 \]

where k is the rank of the edge (v1,v2) in the complete graph. To convert a matrix of edge logits to the linear representation used here:

```python
assert my_matrix.shape == (V, V)
i, j = make_complete_graph(V)
edge_logits = my_matrix[i, j]
```

Parameters

• edge_logits (torch.Tensor) – A tensor of length V*(V-1)//2 containing logits (aka negative energies) of all edges in the complete graph on V vertices. See above comment for edge ordering.
• **sampler_options** (*dict*) – An optional dict of sampler options including: `mcmc_steps` defaulting to a single MCMC step (which is pretty good); `initial_edges` defaulting to a cheap approximate sample; `backend` one of “python” or “cpp”, defaulting to “python”.

```
arg_constraints = {'edge_logits': Real()}
```

**property edge_mean**
Computes marginal probabilities of each edge being active.

**Note:** This is similar to other distributions’ `.mean()` method, but with a different shape because this distribution’s values are not encoded as binary matrices.

**Returns**
A symmetric square \((V, V)\)-shaped matrix with values in \([0, 1]\) denoting the marginal probability of each edge being in a sampled value.

**Return type**
Tensor

```
enumerate_support(expand=True)
```
This is implemented for trees with up to 6 vertices (and 5 edges).

```
has.enumerate_support = True
```

```
log_partition_function()
```

```
log_prob(edges)
```

**property mode**

**Returns**
The maximum weight spanning tree.

**Return type**
Tensor

```
sample(sample_shape=torch.Size([]))
```
This sampler is implemented using MCMC run for a small number of steps after being initialized by a cheap approximate sampler. This sampler is approximate and cubic time. This is faster than the classic Aldous-Broder sampler [1,2], especially for graphs with large mixing time. Recent research [3,4] proposes samplers that run in sub-matrix-multiply time but are more complex to implement.

**References**


```
support = IntegerGreaterThan(lower_bound=0)
```

**validate_edges(edges)**
Validates a batch of `edges` tensors, as returned by `sample()` or `enumerate_support()` or as input to `log_prob()`.

**Parameters**

- `edges` (*torch.LongTensor*) – A batch of edges.

**Raises**

- `ValueError`

**Returns**

- `None`
4.2.50 Stable

```python
class Stable(*args, **kwargs):
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Levy α-stable distribution. See [1] for a review.
 This uses Nolan's parametrization [2] of the loc parameter, which is required for continuity and differentiability. This corresponds to the notation $S_0^\alpha(\beta, \sigma, \mu_0)$ of [1], where α = stability, β = skew, σ = scale, and μ_0 = loc. To instead use the S parameterization as in scipy, pass coords="S", but BEWARE this is discontinuous at $\alpha=1$ and has poor geometry for inference.

 This implements a reparametrized sampler $\text{rsample}()$, but does not implement $\text{log_prob}()$. Inference can be performed using either likelihood-free algorithms such as EnergyDistance, or reparameterization via the $\text{reparam}()$ handler with one of the reparameterizers $\text{LatentStableReparam}$, $\text{SymmetricStableReparam}$, or StableReparam e.g.:

    ```python
    with poutine.reparam(config={"x": StableReparam()}):
        pyro.sample("x", Stable(stability, skew, scale, loc))
    ```

 or simply wrap in MinimalReparam or AutoReparam e.g.:

    ```python
    @MinimalReparam()
    def model():
        ...
    ```


Parameters

- **stability (Tensor)** – Levy stability parameter $\alpha \in (0, 2]$.
- **skew (Tensor)** – Skewness $\beta \in [-1, 1]$.
- **scale (Tensor)** – Scale $\sigma > 0$. Defaults to 1.
- **loc (Tensor)** – Location μ_0 when using Nolan’s S_0 parametrization [2], or μ when using the S parameterization. Defaults to 0.
- **coords (str)** – Either “S_0” (default) to use Nolan’s continuous S_0 parametrization, or “S” to use the discontinuous parameterization.

```
arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0), 'skew': Interval(lower_bound=-1, upper_bound=1), 'stability': Interval(lower_bound=0, upper_bound=2)}
```

```
expand(batch_shape, _instance=None)
```

```
has_rsample = True
```

```
log_prob(value)
```
property mean
rsample(sample_shape=torch.Size([]))
support = Real()
property variance

4.2.51 TruncatedPolyaGamma

class TruncatedPolyaGamma(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 This is a PolyaGamma(1, 0) distribution truncated to have finite support in the interval (0, 2.5). See [1] for details. As a consequence of the truncation the log_prob method is only accurate to about six decimal places. In addition the provided sampler is a rough approximation that is only meant to be used in contexts where sample accuracy is not important (e.g. in initialization). Broadly, this implementation is only intended for usage in cases where good approximations of the log_prob are sufficient, as is the case e.g. in HMC.

 Parameters prototype (tensor) – A prototype tensor of arbitrary shape used to determine the dtype and device returned by sample and log_prob.

 References

 arg_constraints = {}
 expand(batch_shape, _instance=None)
 has_rsample = False
 log_prob(value)
 num_gamma_variates = 8
 num_log_prob_terms = 7
 sample(sample_shape=())
 support = Interval(lower_bound=0.0, upper_bound=2.5)
 truncation_point = 2.5

4.2.52 Unit

class Unit(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Trivial nonnormalized distribution representing the unit type.

 The unit type has a single value with no data, i.e. value numel() == 0.

 This is used for pyro.factor() statements.

 arg_constraints = {'log_factor': Real()}
 expand(batch_shape, _instance=None)
 log_prob(value)
 rsample(sample_shape=torch.Size([]))
```python
sample(sample_shape=torch.Size([]))
support = Real()

4.2.53 VonMises3D

class VonMises3D(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Spherical von Mises distribution.
    This implementation combines the direction parameter and concentration parameter into a single combined parameter that contains both direction and magnitude. The value `arg` is represented in cartesian coordinates: it must be a normalized 3-vector that lies on the 2-sphere.

    See VonMises for a 2D polar coordinate cousin of this distribution. See projected_normal for a qualitatively similar distribution but implementing more functionality.

    Currently only `log_prob()` is implemented.

    Parameters
    ----------
    concentration (torch.Tensor) – A combined location-and-concentration vector. The direction of this vector is the location, and its magnitude is the concentration.

    arg_constraints = {'concentration': Real()}

    expand(batch_shape)

    log_prob(value)

    support = Sphere

4.2.54 ZeroInflatedDistribution

class ZeroInflatedDistribution(*args, **kwargs)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

    Generic Zero Inflated distribution.

    This can be used directly or can be used as a base class as e.g. for ZeroInflatedPoisson and ZeroInflatedNegativeBinomial.

    Parameters
    ----------
    - base_dist (TorchDistribution) – the base distribution.
    - gate (torch.Tensor) – probability of extra zeros given via a Bernoulli distribution.
    - gate_logits (torch.Tensor) – logits of extra zeros given via a Bernoulli distribution.

    arg_constraints = {'gate': Interval(lower_bound=0.0, upper_bound=1.0), 'gate_logits': Real()}

    expand(batch_shape, _instance=None)

    gate()

    gate_logits()

    log_prob(value)

    mean()

    sample(sample_shape=torch.Size([]))
```

4.2. Pyro Distributions
4.2.55 ZeroInflatedNegativeBinomial

class ZeroInflatedNegativeBinomial(*args, **kwargs)
 Bases: pyro.distributions.zero_inflated.ZeroInflatedDistribution

 A Zero Inflated Negative Binomial distribution.

 Parameters

 • total_count (float or torch.Tensor) – non-negative number of negative Bernoulli trials.
 • probs (torch.Tensor) – Event probabilities of success in the half open interval [0, 1).
 • logits (torch.Tensor) – Event log-odds for probabilities of success.
 • gate (torch.Tensor) – probability of extra zeros.
 • gate_logits (torch.Tensor) – logits of extra zeros.

 arg_constraints = {'gate': Interval(lower_bound=0.0, upper_bound=1.0),
 'gate_logits': Real(), 'logits': Real(), 'probs':
 HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'total_count':
 GreaterThanEq(lower_bound=0)}

 property logits
 property probs
 support = IntegerGreaterThan(lower_bound=0)
 property total_count

4.2.56 ZeroInflatedPoisson

class ZeroInflatedPoisson(*args, **kwargs)
 Bases: pyro.distributions.zero_inflated.ZeroInflatedDistribution

 A Zero Inflated Poisson distribution.

 Parameters

 • rate (torch.Tensor) – rate of poisson distribution.
 • gate (torch.Tensor) – probability of extra zeros.
 • gate_logits (torch.Tensor) – logits of extra zeros.

 arg_constraints = {'gate': Interval(lower_bound=0.0, upper_bound=1.0),
 'gate_logits': Real(), 'rate': GreaterThan(lower_bound=0.0)}

 property rate
 support = IntegerGreaterThan(lower_bound=0)
4.3 Transforms

4.3.1 ConditionalTransform

class ConditionalTransform
 Bases: abc.ABC
 abstract condition(context)

 Return type torch.distributions.Transform

4.3.2 CholeskyTransform

class CholeskyTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Transform via the mapping $y = \text{cholesky}(x)$, where x is a positive definite matrix.
 bijective = True
 codomain: torch.distributions.constraints.Constraint = LowerCholesky()
 domain: torch.distributions.constraints.Constraint = PositiveDefinite()
 log_abs_det_jacobian(x, y)

4.3.3 CorrLCholeskyTransform

class CorrLCholeskyTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Transforms a vector into the cholesky factor of a correlation matrix.
 The input should have shape [batch_shape] + [d*(d-1)/2]. The output will have shape [batch_shape] + [d, d].
 References:
 bijective = True
 codomain: torch.distributions.constraints.Constraint = CorrCholesky()
 domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
 log_abs_det_jacobian(x, y)
4.3.4 CorrMatrixCholeskyTransform

class CorrMatrixCholeskyTransform(cache_size=0)
 Bases: pyro.distributions.transforms.cholesky.CholeskyTransform
 Transform via the mapping \(y = \text{cholesky}(x) \), where \(x \) is a correlation matrix.
 bijective = True
 codomain: torch.distributions.constraints.Constraint = CorrCholesky()
 domain: torch.distributions.constraints.Constraint = CorrMatrix()
 log_abs_det_jacobian(x, y)

4.3.5 DiscreteCosineTransform

class DiscreteCosineTransform(dim=-1, smooth=0.0, cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Discrete Cosine Transform of type-II.
 This uses \(\text{dct}() \) and \(\text{idct}() \) to compute orthonormal DCT and inverse DCT transforms. The jacobian is 1.
 Parameters
 • \(\text{dim} \) (int) – Dimension along which to transform. Must be negative. This is an absolute dim counting from the right.
 • \(\text{smooth} \) (float) – Smoothing parameter. When 0, this transforms white noise to white noise; when 1 this transforms Brownian noise to white noise; when -1 this transforms violet noise to white noise; etc. Any real number is allowed. https://en.wikipedia.org/wiki/Colors_of_noise.

 bijective = True
 property codomain
 property domain
 forward_shape(shape)
 inverse_shape(shape)
 log_abs_det_jacobian(x, y)
 with_cache(cache_size=1)

4.3.6 ELUTransform

class ELUTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Bijective transform via the mapping \(y = \text{ELU}(x) \).
 bijective = True
 codomain: torch.distributions.constraints.Constraint = GreaterThan(lower_bound=0.0)
 domain: torch.distributions.constraints.Constraint = Real()
 log_abs_det_jacobian(x, y)
sign = 1

4.3.7 HaarTransform

class HaarTransform(dim=-1, flip=False, cache_size=0)
 Bases: torch.distributions.transforms.Transform

Discrete Haar transform.

This uses haar_transform() and inverse_haar_transform() to compute (orthonormal) Haar and inverse Haar transforms. The jacobian is 1. For sequences with length \(T \) not a power of two, this implementation is equivalent to a block-structured Haar transform in which block sizes decrease by factors of one half from left to right.

Parameters

- \textbf{dim (int)} – Dimension along which to transform. Must be negative. This is an absolute dim counting from the right.

- \textbf{flip (bool)} – Whether to flip the time axis before applying the Haar transform. Defaults to false.

bijective = True

property codomain

property domain

forward_shape(shape)

inverse_shape(shape)

log_abs_det_jacobian(x, y)

with_cache(cache_size=1)

4.3.8 LeakyReLUTransform

class LeakyReLUTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform

Bijective transform via the mapping \(y = \text{LeakyReLU}(x) \).

bijective = True

codomain: torch.distributions.constraints.Constraint = GreaterThan(lower_bound=0.0)

domain: torch.distributions.constraints.Constraint = Real()

log_abs_det_jacobian(x, y)

sign = 1
4.3.9 LowerCholeskyAffine

class LowerCholeskyAffine(loc, scale_tril, cache_size=0)
 Bases: torch.distributions.transforms.Transform

A bijection of the form,

\[y = Lx + r \]

where \(L \) is a lower triangular matrix and \(r \) is a vector.

Parameters

- **loc** (torch.tensor) – the fixed \(D \)-dimensional vector to shift the input by.
- **scale_tril** (torch.tensor) – the \(D \times D \) lower triangular matrix used in the transformation.

bijective = True

codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

log_abs_det_jacobian(x, y)
 Calculates the elementwise determinant of the log Jacobian, i.e. \(\log(\text{abs}(dy/dx)) \).

volume_preserving = False

with_cache(cache_size=1)

4.3.10 Normalize

class Normalize(p=2, cache_size=0)
 Bases: torch.distributions.transforms.Transform

Safely project a vector onto the sphere wrt the \(p \) norm. This avoids the singularity at zero by mapping to the vector \([1, 0, 0, \ldots, 0]\).

bijective = False

codomain: torch.distributions.constraints.Constraint = Sphere
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

with_cache(cache_size=1)

4.3.11 OrderedTransform

class OrderedTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform

Transforms a real vector into an ordered vector.

Specifically, enforces monotonically increasing order on the last dimension of a given tensor via the transformation \(y_0 = x_0, y_i = \sum_{1 \leq j \leq i} \exp(x_i) \).

bijective = True
codomain: torch.distributions.constraints.Constraint = OrderedVector()
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

log_abs_det_jacobian(x, y)

4.3.12 Permute

class Permute(permutation, *, dim=- 1, cache_size=1)
Bases: torch.distributions.transforms.Transform

A bijection that reorders the input dimensions, that is, multiplies the input by a permutation matrix. This is useful in between AffineAutoregressive transforms to increase the flexibility of the resulting distribution and stabilize learning. Whilst not being an autoregressive transform, the log absolute determinant of the Jacobian is easily calculable as 0. Note that reordering the input dimension between two layers of AffineAutoregressive is not equivalent to reordering the dimension inside the MADE networks that those IAFs use; using a Permute transform results in a distribution with more flexibility.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions.transforms import AffineAutoregressive, Permute
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iaf1 = AffineAutoregressive(AutoRegressiveNN(10, [40]))
>>> ff = Permute(torch.randperm(10, dtype=torch.long))
>>> iaf2 = AffineAutoregressive(AutoRegressiveNN(10, [40]))
>>> flow_dist = dist.TransformedDistribution(base_dist, [iaf1, ff, iaf2])
>>> flow_dist.sample()
```

Parameters

• permutation (torch.LongTensor) – a permutation ordering that is applied to the inputs.

• dim (int) – the tensor dimension to permute. This value must be negative and defines the event dim as abs(dim).

bijective = True

property codomain

property domain

inv_permutation()

log_abs_det_jacobian(x, y)

Calculates the elementwise determinant of the log Jacobian, i.e. \(\log(|\frac{dy_0}{dx_0}, \ldots, \frac{dy_{N-1}}{dx_{N-1}}|) \). Note that this type of transform is not autoregressive, so the log Jacobian is not the sum of the previous expression. However, it turns out it’s always 0 (since the determinant is -1 or +1), and so returning a vector of zeros works.

volume_preserving = True

with_cache(cache_size=1)
4.3.13 PositivePowerTransform

```python
class PositivePowerTransform(exponent, *, cache_size=0, validate_args=None)
    Bases: torch.distributions.transforms.Transform

    Transform via the mapping \( y = \text{sign}(x)|x|^\text{exponent} \).

    Whereas PowerTransform allows arbitrary exponent and restricts domain and codomain to positive values, this
class restricts exponent > 0 and allows real domain and codomain.
```

Warning: The Jacobian is typically zero or infinite at the origin.

- `bijective = True`
- `codomain: torch.distributions.constraints.Constraint = Real()`
- `domain: torch.distributions.constraints.Constraint = Real()`
- `forward_shape(shape)`
- `inverse_shape(shape)`
- `log_abs_det_jacobian(x, y)`
- `sign = 1`
- `with_cache(cache_size=1)`

4.3.14 SoftplusLowerCholeskyTransform

```python
class SoftplusLowerCholeskyTransform(cache_size=0)
    Bases: torch.distributions.transforms.Transform

    Transform from unconstrained matrices to lower-triangular matrices with nonnegative diagonal entries. This is
useful for parameterizing positive definite matrices in terms of their Cholesky factorization.
```

- `codomain: torch.distributions.constraints.Constraint = LowerCholesky()`
- `domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 2)`

4.3.15 SoftplusTransform

```python
class SoftplusTransform(cache_size=0)
    Bases: torch.distributions.transforms.Transform

    Transform via the mapping Softplus\((x) = \log(1 + \exp(x))\).
```

- `bijective = True`
- `codomain: torch.distributions.constraints.Constraint = GreaterThan(lower_bound=0.0)`
- `domain: torch.distributions.constraints.Constraint = Real()`
- `log_abs_det_jacobian(x, y)`
- `sign = 1`
4.3.16 UnitLowerCholeskyTransform

class UnitLowerCholeskyTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform

 Transform from unconstrained matrices to lower-triangular matrices with all ones diagonals.
 codomain: torch.distributions.constraints.Constraint = UnitLowerCholesky()
 domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 2)

4.4 TransformModules

4.4.1 AffineAutoregressive

class AffineAutoregressive(autoregressive_nn, log_scale_min_clip=- 5.0, log_scale_max_clip=3.0, sigmoid_bias=2.0, stable=False)
 Bases: pyro.distributions.torch_transform.TransformModule

 An implementation of the bijective transform of Inverse Autoregressive Flow (IAF), using by default Eq (10)
 from Kingma Et Al., 2016,
 \[y = \mu_t + \sigma_t \odot x \]
 where \(x \) are the inputs, \(y \) are the outputs, \(\mu_t, \sigma_t \) are calculated from an autoregressive network on \(x \), and \(\sigma_t > 0 \).

 If the stable keyword argument is set to True then the transformation used is,
 \[y = \sigma_t \odot x + (1 - \sigma_t) \odot \mu_t \]
 where \(\sigma_t \) is restricted to \((0, 1)\). This variant of IAF is claimed by the authors to be more numerically stable
 than one using Eq (10), although in practice it leads to a restriction on the distributions that can be represented,
 presumably since the input is restricted to rescaling by a number on \((0, 1)\).

 Together with TransformedDistribution this provides a way to create richer variational approximations.

 Example usage:

 >>> from pyro.nn import AutoRegressiveNN
 >>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
 >>> transform = AffineAutoregressive(AutoRegressiveNN(10, [40]))
 >>> pyro.module("my_transform", transform)
 >>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
 >>> flow_dist.sample()

 The inverse of the Bijector is required when, e.g., scoring the log density of a sample with TransformedDistribution. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from TransformedDistribution. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually. Note that this is an operation that scales as \(O(D)\) where \(D\) is the input dimension, and so should be avoided for large dimensional uses. So in general, it is cheap to sample from IAF and score a value that was sampled by IAF, but expensive to score an arbitrary value.

 Parameters
 - **autoregressive_nn** (callable) – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple
• **log_scale_min_clip** (*float*) – The minimum value for clipping the log(scale) from the autoregressive NN
• **log_scale_max_clip** (*float*) – The maximum value for clipping the log(scale) from the autoregressive NN
• **sigmoid_bias** (*float*) – A term to add the logit of the input when using the stable transform.
• **stable** (*bool*) – When true, uses the alternative "stable" version of the transform (see above).

References:

```
autoregressive = True
bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
log_abs_det_jacobian(x, y)
    Calculates the elementwise determinant of the log Jacobian
sign = 1
```

4.4.2 AffineCoupling

class AffineCoupling(split_dim, hypernet, *, dim=- 1, log_scale_min_clip=- 5.0, log_scale_max_clip=3.0)

Bases: **pyro.distributions.torch_transform.TransformModule**

An implementation of the affine coupling layer of RealNVP (Dinh et al., 2017) that uses the bijective transform,

\[y_{1:d} = x_{1:d} \quad y_{(d+1):D} = \mu + \sigma \odot x_{(d+1):D} \]

where \(x\) are the inputs, \(y\) are the outputs, e.g. \(x_{1:d}\) represents the first \(d\) elements of the inputs, and \(\mu, \sigma\) are shift and translation parameters calculated as the output of a function inputting only \(x_{1:d}\).

That is, the first \(d\) components remain unchanged, and the subsequent \(D - d\) are shifted and translated by a function of the previous components.

Together with **TransformedDistribution** this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn import DenseNN
>>> input_dim = 10
>>> split_dim = 6
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [input_dim-split_dim, input_dim-split_dim]
>>> hypernet = DenseNN(split_dim, [10*input_dim], param_dims)
```
>> transform = AffineCoupling(split_dim, hypernet)
>> pyro.module("my_transform", transform)
>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>> flow_dist.sample()

The inverse of the Bijector is required when, e.g., scoring the log density of a sample with \texttt{TransformedDistribution}. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from \texttt{TransformedDistribution}. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually.

This is an operation that scales as O(1), i.e. constant in the input dimension. So in general, it is cheap to sample \textit{and} score (an arbitrary value) from \texttt{AffineCoupling}.

\textbf{Parameters}

- \texttt{split_dim} (int) – Zero-indexed dimension \(d\) upon which to perform input/ output split for transformation.
- \texttt{hypernet} (callable) – a neural network whose forward call returns a real-valued mean and logit-scale as a tuple. The input should have final dimension \(\text{split _ dim}\) and the output final dimension \(\text{input _ dim} - \text{split _ dim}\) for each member of the tuple.
- \texttt{dim} (int) – the tensor dimension on which to split. This value must be negative and defines the event dim as \(\text{abs}(\text{dim})\).
- \texttt{log_scale_min_clip} (float) – The minimum value for clipping the log(scale) from the autoregressive NN
- \texttt{log_scale_max_clip} (float) – The maximum value for clipping the log(scale) from the autoregressive NN

\textbf{References:}

\texttt{bijective = True}

\texttt{property codomain}

\texttt{property domain}

\texttt{log_abs_det_jacobian}(x, y)

Calculates the elementwise determinant of the log jacobian

\subsection*{4.4.3 \texttt{BatchNorm}}

class \texttt{BatchNorm}(input_dim, momentum=0.1, epsilon=1e-05)

\texttt{Bases: pyro.distributions.torch_transform.TransformModule}

A type of batch normalization that can be used to stabilize training in normalizing flows. The inverse operation is defined as

\[x = (y - \bar{\mu}) \otimes \sqrt{\hat{\sigma}^2} \otimes \gamma + \beta \]

that is, the standard batch norm equation, where \(x\) is the input, \(y\) is the output, \(\gamma, \beta\) are learnable parameters, and \(\bar{\mu}, \hat{\sigma}^2\) are smoothed running averages of the sample mean and variance, respectively. The constraint \(\gamma > 0\) is enforced to ease calculation of the log-det-Jacobian term.
This is an element-wise transform, and when applied to a vector, learns two parameters (γ, β) for each dimension of the input.

When the module is set to training mode, the moving averages of the sample mean and variance are updated every time the inverse operator is called, e.g., when a normalizing flow scores a minibatch with the `log_prob` method.

Also, when the module is set to training mode, the sample mean and variance on the current minibatch are used in place of the smoothed averages, $\hat{\mu}$ and $\hat{\sigma}^2$, for the inverse operator. For this reason it is not the case that $x = g(g^{-1}(x))$ during training, i.e., that the inverse operation is the inverse of the forward one.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions.transforms import AffineAutoregressive

>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))

>>> iafs = [AffineAutoregressive(AutoRegressiveNN(10, [40])) for _ in range(2)]

>>> bn = BatchNorm(10)

>>> flow_dist = dist.TransformedDistribution(base_dist, [iafs[0], bn, iafs[1]])

>>> flow_dist.sample()
```

Parameters

- `input_dim (int)` – the dimension of the input
- `momentum (float)` – momentum parameter for updating moving averages
- `epsilon (float)` – small number to add to variances to ensure numerical stability

References:


```python
bijective = True

codomain: torch.distributions.constraints.Constraint = Real()

property constrained_gamma

domain: torch.distributions.constraints.Constraint = Real()

log_abs_det_jacobian(x, y)
    Calculates the elementwise determinant of the log Jacobian, dx/dy
```
4.4.4 BlockAutoregressive

```python
class BlockAutoregressive(input_dim, hidden_factors=[8, 8], activation='tanh', residual=None)
    Bases: pyro.distributions.torch_transform.TransformModule

An implementation of Block Neural Autoregressive Flow (block-NAF) (De Cao et al., 2019) bijective transform. Block-NAF uses a similar transformation to deep dense NAF, building the autoregressive NN into the structure of the transform, in a sense.

Together with TransformedDistribution this provides a way to create richer variational approximations.

Example usage:
```n
g >> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
g >> naf = BlockAutoregressive(input_dim=10)
g >> pyro.module("my_naf", naf)
g >> naf_dist = dist.TransformedDistribution(base_dist, [naf])
g >> naf_dist.sample()
```

The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **input_dim** (*int*) – The dimensionality of the input and output variables.
- **hidden_factors** (*list*) – Hidden layer i has hidden_factors[i] hidden units per input dimension. This corresponds to both $a$ and $b$ in De Cao et al. (2019). The elements of hidden_factors must be integers.
- **activation** (*string*) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **residual** (*string*) – Type of residual connections to use. Choices are “None”, “normal” for $y + f(y)$, and “gated” for $a y + (1 - a y)$ for learnable parameter $a$.

References:


autoregressive = True
bijective = True

codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

log_abs_det_jacobian(x, y)
    Calculates the elementwise determinant of the log jacobian
### 4.4.5 ConditionalAffineAutoregressive

**class ConditionalAffineAutoregressive**

```python
class ConditionalAffineAutoregressive(autoregressive_nn, **kwargs):
 Bases: pyro.distributions.conditional.ConditionalTransformModule

 An implementation of the bijective transform of Inverse Autoregressive Flow (IAF) that conditions on an additional context variable and uses, by default, Eq (10) from Kingma Et Al., 2016,

 $y = \mu_t + \sigma_t \odot x$

 where x are the inputs, y are the outputs, μ_t, σ_t are calculated from an autoregressive network on x and context $z \in \mathbb{R}^M$, and $\sigma_t > 0$.

 If the stable keyword argument is set to True then the transformation used is,

 $y = \sigma_t \odot x + (1 - \sigma_t) \odot \mu_t$

 where σ_t is restricted to $(0, 1)$. This variant of IAF is claimed by the authors to be more numerically stable than one using Eq (10), although in practice it leads to a restriction on the distributions that can be represented, presumably since the input is restricted to rescaling by a number on $(0, 1)$.

 Together with `ConditionalTransformedDistribution` this provides a way to create richer variational approximations.

 Example usage:
    ```
    >>> from pyro.nn import ConditionalAutoRegressiveNN
    >>> input_dim = 10
    >>> context_dim = 4
    >>> batch_size = 3
    >>> hidden_dims = [10*input_dim, 10*input_dim]
    >>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
    >>> hypernet = ConditionalAutoRegressiveNN(input_dim, context_dim, hidden_dims)
    >>> transform = ConditionalAffineAutoregressive(hypernet)
    >>> pyro.module("my_transform", transform)
    >>> z = torch.rand(batch_size, context_dim)
    >>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ...
    ... [transform]).condition(z)
    >>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
    ```

 The inverse of the Bijector is required when, e.g., scoring the log density of a sample with `TransformedDistribution`. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from `TransformedDistribution`. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually. Note that this is an operation that scales as $O(D)$ where D is the input dimension, and so should be avoided for large dimensional uses. So in general, it is cheap to sample from IAF and score a value that was sampled by IAF, but expensive to score an arbitrary value.

 Parameters

 - `autoregressive_nn (nn.Module)` – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple

 - `log_scale_min_clip (float)` – The minimum value for clipping the log(scale) from the autoregressive NN

 - `log_scale_max_clip (float)` – The maximum value for clipping the log(scale) from the autoregressive NN

 - `sigmoid_bias (float)` – A term to add the logit of the input when using the stable transform.
• **stable** (*bool*) – When true, uses the alternative “stable” version of the transform (see above).

References:


```python
bijective = True
codomain = IndependentConstraint(Real(), 1)
condition(context)

    Conditions on a context variable, returning a non-conditional transform of type AffineAutoregressive.

domain = IndependentConstraint(Real(), 1)

training: bool
```

4.4.6 ConditionalAffineCoupling

```python
class ConditionalAffineCoupling(split_dim, hypernet, **kwargs)
    Bases: pyro.distributions.conditional.ConditionalTransformModule

    An implementation of the affine coupling layer of RealNVP (Dinh et al., 2017) that conditions on an additional context variable and uses the bijective transform,

    \[
    y_{1:d} = x_{1:d} \\
    y_{(d+1):D} = \mu + \sigma \odot x_{(d+1):D}
    \]

    where \(x\) are the inputs, \(y\) are the outputs, e.g. \(x_{1:d}\) represents the first \(d\) elements of the inputs, and \(\mu, \sigma\) are shift and translation parameters calculated as the output of a function input \(x_{1:d}\) and a context variable \(z \in \mathbb{R}^M\).

    That is, the first \(d\) components remain unchanged, and the subsequent \(D - d\) are shifted and translated by a function of the previous components.

    Together with **ConditionalTransformedDistribution** this provides a way to create richer variational approximations.

    Example usage:

    ```python
 >>> from pyro.nn import ConditionalDenseNN
 >>> input_dim = 10
 >>> split_dim = 6
 >>> context_dim = 4
 >>> batch_size = 3
 >>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
 >>> param_dims = [input_dim-split_dim, input_dim-split_dim]
 >>> hypernet = ConditionalDenseNN(split_dim, context_dim, [10*input_dim], ...
 ... param_dims)
 >>> transform = ConditionalAffineCoupling(split_dim, hypernet)
 >>> pyro.module("my_transform", transform)
 >>> z = torch.rand(batch_size, context_dim)
 >>> flow_dist = dist.ConditionalTransformedDistribution(base_dist,
    ```
```
The inverse of the Bijector is required when, e.g., scoring the log density of a sample with `ConditionalTransformedDistribution`. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from `ConditionalTransformedDistribution`. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually.

This is an operation that scales as $O(1)$, i.e. constant in the input dimension. So in general, it is cheap to sample and score (an arbitrary value) from `ConditionalAffineCoupling`.

Parameters

- **split_dim** (*int*) – Zero-indexed dimension d upon which to perform input/ output split for transformation.
- **hypernet** (*callable*) – A neural network whose forward call returns a real-valued mean and logit-scale as a tuple. The input should have final dimension split_dim and the output final dimension input_dim-split_dim for each member of the tuple. The network also inputs a context variable as a keyword argument in order to condition the output upon it.
- **log_scale_min_clip** (*float*) – The minimum value for clipping the log(scale) from the NN
- **log_scale_max_clip** (*float*) – The maximum value for clipping the log(scale) from the NN

References:


```python
bijective = True
codomain = IndependentConstraint(Real(), 1)
condition(context)
    See pyro.distributions.conditional.ConditionalTransformModule.condition()
domain = IndependentConstraint(Real(), 1)
training: bool
```

4.4.7 ConditionalGeneralizedChannelPermute

class `ConditionalGeneralizedChannelPermute(nn, channels=3, permutation=None)`

Bases: `pyro.distributions.conditional.ConditionalTransformModule`

A bijection that generalizes a permutation on the channels of a batch of 2D image in $[\ldots, C, H, W]$ format conditioning on an additional context variable. Specifically this transform performs the operation,

$$y = \text{torch.nn.functional.conv2d}(x, W)$$

where x are the inputs, y are the outputs, and $W \sim C \times C \times 1 \times 1$ is the filter matrix for a 1x1 convolution with C input and output channels.

Ignoring the final two dimensions, W is restricted to be the matrix product,

$$W = PLU$$
where $P \sim C \times C$ is a permutation matrix on the channel dimensions, and $LU \sim C \times C$ is an invertible product of a lower triangular and an upper triangular matrix that is the output of an NN with input $z \in \mathbb{R}^M$ representing the context variable to condition on.

The input x and output y both have shape $[\ldots, C, H, W]$, where C is the number of channels set at initialization.

This operation was introduced in [1] for Glow normalizing flow, and is also known as 1x1 invertible convolution. It appears in other notable work such as [2,3], and corresponds to the class `tfp.bijectors.MatvecLU` of TensorFlow Probability.

Example usage:

```python
>>> from pyro.nn.dense_nn import DenseNN

>>> context_dim = 5
>>> batch_size = 3
>>> channels = 3
>>> base_dist = dist.Normal(torch.zeros(channels, 32, 32),
...                            torch.ones(channels, 32, 32))
>>> hidden_dims = [context_dim*10, context_dim*10]
>>> nn = DenseNN(context_dim, hidden_dims, param_dims=[channels*channels])
>>> transform = ConditionalGeneralizedChannelPermute(nn, channels=channels)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist,
...                                                     [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

Parameters

- **nn** – a function inputting the context variable and outputting real-valued parameters of dimension C^2.
- **channels** *(int)* – Number of channel dimensions in the input.


```python
bijective = True
codomain = IndependentConstraint(Real(), 3)
condition(context)
    See pyro.distributionsconditional.ConditionalTransformModule.condition()
domain = IndependentConstraint(Real(), 3)
training: bool
```
4.4.8 ConditionalHouseholder

class ConditionalHouseholder(input_dim, nn, count_transforms=1)

Bases: pyro.distributions.conditional.ConditionalTransformModule

Represents multiple applications of the Householder bijective transformation conditioning on an additional context. A single Householder transformation takes the form,

\[y = (I - 2 \cdot \frac{uu^T}{||u||^2})x \]

where \(x \) are the inputs with dimension \(D \), \(y \) are the outputs, and \(u \in \mathbb{R}^D \) is the output of a function, e.g. a NN, with input \(z \in \mathbb{R}^M \) representing the context variable to condition on.

The transformation represents the reflection of \(x \) through the plane passing through the origin with normal \(u \).

\(D \) applications of this transformation are able to transform standard i.i.d. standard Gaussian noise into a Gaussian variable with an arbitrary covariance matrix. With \(K < D \) transformations, one is able to approximate a full-rank Gaussian distribution using a linear transformation of rank \(K \).

Together with ConditionalTransformedDistribution this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [input_dim]
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims)
>>> transform = ConditionalHouseholder(input_dim, hypernet)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ...
... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

Parameters

- **input_dim** *(int)* – the dimension of the input (and output) variable.
- **nn** *(callable)* – a function inputting the context variable and outputting a triplet of real-valued parameters of dimensions \((1, D, D)\).
- **count_transforms** *(int)* – number of applications of Householder transformation to apply.

References:

bijective = True

codomain = IndependentConstraint(Real(), 1)

condition(context)

See pyro.distributions.conditional.ConditionalTransformModule.condition()

domain = IndependentConstraint(Real(), 1)
4.4.9 ConditionalMatrixExponential

class ConditionalMatrixExponential

Bases: pyro.distributions.conditional.ConditionalTransformModule

A dense matrix exponential bijective transform (Hoogeboom et al., 2020) that conditions on an additional context variable with equation,

\[y = \exp(M)x \]

where \(x \) are the inputs, \(y \) are the outputs, \(\exp(\cdot) \) represents the matrix exponential, and \(M \in \mathbb{R}^D \times \mathbb{R}^D \) is the output of a neural network conditioning on a context variable \(z \) for input dimension \(D \). In general, \(M \) is not required to be invertible.

Due to the favourable mathematical properties of the matrix exponential, the transform has an exact inverse and a log-determinate-Jacobian that scales in time-complexity as \(O(D) \). Both the forward and reverse operations are approximated with a truncated power series. For numerical stability, the norm of \(M \) can be restricted with the `normalization` keyword argument.

Example usage:

```python
code
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [input_dim*input_dim]
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims)
>>> transform = ConditionalMatrixExponential(input_dim, hypernet)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ...
... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

Parameters

- **input_dim** (*int*) – the dimension of the input (and output) variable.
- **iterations** (*int*) – the number of terms to use in the truncated power series that approximates matrix exponentiation.
- **normalization** (*string*) – One of ['none', 'weight', 'spectral'] normalization that selects what type of normalization to apply to the weight matrix. *weight* corresponds to weight normalization (Salimans and Kingma, 2016) and *spectral* to spectral normalization (Miyato et al, 2018).
- **bound** (*float*) – a bound on either the weight or spectral norm, when either of those two types of regularization are chosen by the `normalization` argument. A lower value for this results in fewer required terms of the truncated power series to closely approximate the exact value of the matrix exponential.

References:

4.4. TransformModules
4.4.10 ConditionalNeuralAutoregressive

class ConditionalNeuralAutoregressive(autoregressive_nn, **kwargs)
 Bases: pyro.distributions.conditional.ConditionalTransformModule

An implementation of the deep Neural Autoregressive Flow (NAF) bijective transform of the “IAF flavour” conditioning on an additional context variable that can be used for sampling and scoring samples drawn from it (but not arbitrary ones).

Example usage:

```python
>>> from pyro.nn import ConditionalAutoRegressive

>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> arm = ConditionalAutoRegressiveNN(input_dim, context_dim, [40],
...   param_dims=[16]*3)
>>> transform = ConditionalNeuralAutoregressive(arm, hidden_units=16)
>>> pyro.module("my_transform", transform)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist,
...   [transform].condition(z))
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **autoregressive_nn (nn.Module)** – an autoregressive neural network whose forward call returns a tuple of three real-valued tensors, whose last dimension is the input dimension, and whose penultimate dimension is equal to hidden_units.

- **hidden_units (int)** – the number of hidden units to use in the NAF transformation (see Eq (8) in reference)

- **activation (string)** – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.

Reference:

134 Chapter 4. Distributions
4.4.11 ConditionalPlanar

class ConditionalPlanar(nn)
 Bases: pyro.distributions.conditional.ConditionalTransformModule

A conditional ‘planar’ bijective transform using the equation,
\[y = x + u \tanh(w^Tz + b) \]
where \(x \) are the inputs with dimension \(D \), \(y \) are the outputs, and the pseudo-parameters \(b \in \mathbb{R} \), \(u \in \mathbb{R}^D \), and \(w \in \mathbb{R}^D \) are the output of a function, e.g. a NN, with input \(z \in \mathbb{R}^M \) representing the context variable to condition on. For this to be an invertible transformation, the condition \(w^T u > -1 \) is enforced.

Together with \(\text{ConditionalTransformedDistribution} \) this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [1, input_dim, input_dim]
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims)
>>> transform = ConditionalPlanar(hypernet)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar transform can be scored.

Parameters
- **nn (callable)** – a function inputting the context variable and outputting a triplet of real-valued parameters of dimensions \((1, D, D)\).

References:

bijective = True

codomain = IndependentConstraint(Real(), 1)
condition(context)
 See pyro.distributions.conditional.ConditionalTransformModule.condition()

domain = IndependentConstraint(Real(), 1)

training: bool

4.4.12 ConditionalRadial

class ConditionalRadial(nn)
 Bases: pyro.distributions.conditional.ConditionalTransformModule

A conditional ‘radial’ bijective transform context using the equation,
\[y = x + \beta h(\alpha, r)(x - x_0) \]

where \(x \) are the inputs, \(y \) are the outputs, and \(\alpha \in \mathbb{R}^+, \beta \in \mathbb{R}, \) and \(x_0 \in \mathbb{R}^D \), are the output of a function, e.g. a NN, with input \(z \in \mathbb{R}^M \) representing the context variable to condition on. The input dimension is \(D \), \(r = ||x - x_0||_2 \), and \(h(\alpha, r) = 1/((\alpha + r)) \). For this to be an invertible transformation, the condition \(\beta > -\alpha \) is enforced.

Example usage:

```python
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [input_dim, 1, 1]
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims)
>>> transform = ConditionalRadial(hypernet)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the radial transform can be scored.

Parameters

- **input_dim** (int) – the dimension of the input (and output) variable.

References:

bijective = True

codomain = IndependentConstraint(Real(), 1)

condition(context)
 See pyro.distributions.conditional.ConditionalTransformModule.condition()

domain = IndependentConstraint(Real(), 1)

training: bool
4.4.13 ConditionalSpline

class `ConditionalSpline(input_dim, count_bins, bound=3.0, order='linear')`

Bases: `pyro.distributions.conditional.ConditionalTransformModule`

An implementation of the element-wise rational spline bijections of linear and quadratic order (Durkan et al., 2019; Dolatabadi et al., 2020) conditioning on an additional context variable.

Rational splines are functions that are comprised of segments that are the ratio of two polynomials. For instance, for the d-th dimension and the k-th segment on the spline, the function will take the form,

$$ y_d = \frac{\alpha(k)(x_d)}{\beta(k)(x_d)}, $$

where $\alpha(k)$ and $\beta(k)$ are two polynomials of order d whose parameters are the output of a function, e.g. a NN, with input z in \mathbb{R}^M representing the context variable to condition on. For $d = 1$, we say that the spline is linear, and for $d = 2$, quadratic. The spline is constructed on the specified bounding box, $[-K, K] \times [-K, K]$, with the identity function used elsewhere.

Rational splines offer an excellent combination of functional flexibility whilst maintaining a numerically stable inverse that is of the same computational and space complexities as the forward operation. This element-wise transform permits the accurate representation of complex univariate distributions.

Example usage:

```python
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> count_bins = 8
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [input_dim * count_bins, input_dim * count_bins, ...
... input_dim * (count_bins - 1), input_dim * count_bins]
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims)
>>> transform = ConditionalSpline(hypernet, input_dim, count_bins)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ...
... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

Parameters

- **input_dim** *(int)* – Dimension of the input vector. This is required so we know how many parameters to store.
- **count_bins** *(int)* – The number of segments comprising the spline.
- **bound** *(float)* – The quantity K determining the bounding box, $[-K, K] \times [-K, K]$, of the spline.
- **order** *(string)* – One of ['linear', 'quadratic'] specifying the order of the spline.

References:

bijective = True

codomain = Real()

condition(context)
 See pyro.distributions.conditional.ConditionalTransformModule.condition()

domain = Real()

training: bool

4.4.14 ConditionalSplineAutoregressive

class ConditionalSplineAutoregressive(input_dim, autoregressive_nn, **kwargs)
 Bases: pyro.distributions.conditional.ConditionalTransformModule

An implementation of the autoregressive layer with rational spline bijections of linear and quadratic order
(Durkan et al., 2019; Dolatabadi et al., 2020) that conditions on an additional context variable. Rational splines
are functions that are comprised of segments that are the ratio of two polynomials (see Spline).

The autoregressive layer uses the transformation,

\[y_d = g_{\theta_d}(x_d) \quad d = 1, 2, \ldots, D \]

where \(x = (x_1, x_2, \ldots, x_D) \) are the inputs, \(y = (y_1, y_2, \ldots, y_D) \) are the outputs, \(g_{\theta_d} \) is an elementwise rational
monotonic spline with parameters \(\theta_d \), and \(\theta = (\theta_1, \theta_2, \ldots, \theta_D) \) is the output of a conditional autoregressive NN
inputting \(x \) and conditioning on the context variable \(z \).

Example usage:

```python
>>> from pyro.nn import ConditionalAutoRegressiveNN
>>> input_dim = 10
>>> count_bins = 8
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> hidden_dims = [input_dim * 10, input_dim * 10]
>>> param_dims = [count_bins, count_bins, count_bins - 1, count_bins]
>>> hypernet = ConditionalAutoRegressiveNN(input_dim, context_dim, hidden_dims,
... param_dims=param_dims)
>>> transform = ConditionalSplineAutoregressive(input_dim, hypernet,
... count_bins=count_bins)
>>> pyro.module("my_transform", transform)
>>> z = torch.rand(batch_size, context_dim)
>>> flow_dist = dist.ConditionalTransformedDistribution(base_dist,
... [transform]).condition(z)
>>> flow_dist.sample(sample_shape=torch.Size([batch_size]))
```

Parameters

- **input_dim (int)** – Dimension of the input vector. Despite operating element-wise, this is
 required so we know how many parameters to store.

- **autoregressive_nn (callable)** – an autoregressive neural network whose forward call
 returns tuple of the spline parameters

- **count_bins (int)** – The number of segments comprising the spline.
• **bound (float)** – The quantity K determining the bounding box, $[-K, K] \times [-K, K]$, of the spline.

• **order (string)** – One of ['linear', 'quadratic'] specifying the order of the spline.

References:

```python
bijective = True
codomain = IndependentConstraint(Real(), 1)
condition(context)
    Conditions on a context variable, returning a non-conditional transform of of type
        SplineAutoregressive.
domain = IndependentConstraint(Real(), 1)
training: bool
```

4.4.15 ConditionalTransformModule

class ConditionalTransformModule(*args, **kwargs)

 Conditional transforms with learnable parameters such as normalizing flows should inherit from this class rather
 than ConditionalTransform so they are also a subclass of Module and inherit all the useful methods of that
 class.

 training: bool

4.4.16 GeneralizedChannelPermute

class GeneralizedChannelPermute(channels=3, permutation=None)
 Bases: pyro.distributions.transforms.generalized_channel_permute.ConditionedGeneralizedChannelPermute,
 pyro.distributions.torch_transform.TransformModule

 A bijection that generalizes a permutation on the channels of a batch of 2D image in $[\ldots, C, H, W]$ format.
 Specifically this transform performs the operation,
 $y = \text{torch.nn.functional.conv2d}(x, W)$
 where x are the inputs, y are the outputs, and $W \sim C \times C \times 1 \times 1$ is the filter matrix for a 1x1 convolution with
 C input and output channels.

 Ignoring the final two dimensions, W is restricted to be the matrix product,
 $W = PLU$
 where $P \sim C \times C$ is a permutation matrix on the channel dimensions, $L \sim C \times C$ is a lower triangular matrix
 with ones on the diagonal, and $U \sim C \times C$ is an upper triangular matrix. W is initialized to a random orthogonal
 matrix. Then, P is fixed and the learnable parameters set to L, U.

 The input x and output y both have shape $[\ldots, C, H, W]$, where C is the number of channels set at initialization.
This operation was introduced in [1] for Glow normalizing flow, and is also known as 1x1 invertible convolution. It appears in other notable work such as [2,3], and corresponds to the class `tfp.bijectors.MatvecLU` of TensorFlow Probability.

Example usage:

```python
>>> channels = 3
>>> base_dist = dist.Normal(torch.zeros(channels, 32, 32),
... torch.ones(channels, 32, 32))
>>> inv_conv = GeneralizedChannelPermute(channels=channels)
>>> flow_dist = dist.TransformedDistribution(base_dist, [inv_conv])
>>> flow_dist.sample()
```

Parameters

- **channels** *(int)* – Number of channel dimensions in the input.


```python
bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 3)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 3)
```

4.4.17 Householder

class `Householder(input_dim, count_transforms=1)`

Represents multiple applications of the Householder bijective transformation. A single Householder transformation takes the form,

\[y = (I - 2 \frac{uu^T}{||u||^2})x \]

where \(x \) are the inputs, \(y \) are the outputs, and the learnable parameters are \(u \in \mathbb{R}^D \) for input dimension \(D \).

The transformation represents the reflection of \(x \) through the plane passing through the origin with normal \(u \).

\(D \) applications of this transformation are able to transform standard i.i.d. standard Gaussian noise into a Gaussian variable with an arbitrary covariance matrix. With \(K < D \) transformations, one is able to approximate a full-rank Gaussian distribution using a linear transformation of rank \(K \).

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Householder(10, count_transforms=5)
>>> pyro.module("my_transform", p)
```
```python
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

Parameters

- `input_dim` *(int)* – the dimension of the input (and output) variable.
- `count_transforms` *(int)* – number of applications of Householder transformation to apply.

References:


```python
bijective = True
codomain = torch.distributions.constraints.Constraint =
    IndependentConstraint(Real(), 1)
domain = torch.distributions.constraints.Constraint =
    IndependentConstraint(Real(), 1)
reset_parameters()
volume_preserving = True
```

4.4.18 MatrixExponential

class MatrixExponential(input_dim, iterations=8, normalization='none', bound=None)

- **Bases:**
 - `pyro.distributions.transforms.matrix_exponential.ConditionedMatrixExponential`
 - `pyro.distributions.torch_transform.TransformModule`

A dense matrix exponential bijective transform (Hoogeboom et al., 2020) with equation,

\[y = \exp(M)x \]

where \(x \) are the inputs, \(y \) are the outputs, \(\exp(\cdot) \) represents the matrix exponential, and the learnable parameters are \(M \in \mathbb{R}^D \times \mathbb{R}^D \) for input dimension \(D \). In general, \(M \) is not required to be invertible.

Due to the favourable mathematical properties of the matrix exponential, the transform has an exact inverse and a log-determinate-Jacobian that scales in time-complexity as \(O(D) \). Both the forward and reverse operations are approximated with a truncated power series. For numerical stability, the norm of \(M \) can be restricted with the `normalization` keyword argument.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = MatrixExponential(10)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```
• **iterations** *(int)* – the number of terms to use in the truncated power series that approximates matrix exponentiation.

• **normalization** *(string)* – One of ['none', 'weight', 'spectral'] normalization that selects what type of normalization to apply to the weight matrix. *weight* corresponds to weight normalization (Salimans and Kingma, 2016) and *spectral* to spectral normalization (Miyato et al, 2018).

• **bound** *(float)* – a bound on either the weight or spectral norm, when either of those two types of regularization are chosen by the *normalization* argument. A lower value for this results in fewer required terms of the truncated power series to closely approximate the exact value of the matrix exponential.

References:


```python
bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
reset_parameters()
```

4.4.19 NeuralAutoregressive

class **NeuralAutoregressive**(autoregressive_nn, hidden_units=16, activation='sigmoid')

Bases: pyro.distributions.torch_transform.TransformModule

An implementation of the deep Neural Autoregressive Flow (NAF) bijective transform of the “IAF flavour” that can be used for sampling and scoring samples drawn from it (but not arbitrary ones).

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> arm = AutoRegressiveNN(10, [40], param_dims=[16]*3)
>>> transform = NeuralAutoregressive(arm, hidden_units=16)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **autoregressive_nn** *(nn.Module)* – an autoregressive neural network whose forward call returns a tuple of three real-valued tensors, whose last dimension is the input dimension, and whose penultimate dimension is equal to hidden_units.
• **hidden_units** (*int*) – the number of hidden units to use in the NAF transformation (see Eq (8) in reference)

• **activation** (*string*) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.

Reference:

```python
autoregressive = True
bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
eps = 1e-08
log_abs_det_jacobian(x, y)
```

Calculates the elementwise determinant of the log Jacobian

4.4.20 Planar

class Planar(*input_dim*)

A ‘planar’ bijective transform with equation,

\[y = x + u \tanh(w^T z + b) \]

where \(x \) are the inputs, \(y \) are the outputs, and the learnable parameters are \(b \in \mathbb{R}, u \in \mathbb{R}^D, w \in \mathbb{R}^D \) for input dimension \(D \). For this to be an invertible transformation, the condition \(w^T u > -1 \) is enforced.

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Planar(10)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar transform can be scored.

Parameters

- **input_dim** (*int*) – the dimension of the input (and output) variable.

References:

```python
bijective = True
```
4.4.21 Polynomial

class Polynomial(autoregressive_nn, input_dim, count_degree, count_sum)
Bases: pyro.distributions.torch_transform.TransformModule

An autoregressive bijective transform as described in Jaini et al. (2019) applying following equation element-wise,

\[y_n = c_n + \int_0^x \sum_{k=1}^K \left(\sum_{r=0}^R a_{r,k}^{(n)} u^r \right) du \]

where \(x_n \) is the \(n \) is the \(k \), \(\{a_{r,k}^{(n)} \in \mathbb{R}\} \) are learnable parameters that are the output of an autoregressive NN inputting \(x_{\prec n} = x_1, x_2, \ldots, x_{n-1} \).

Together with TransformedDistribution this provides a way to create richer variational approximations.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> input_dim = 10
>>> count_degree = 4
>>> count_sum = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [(count_degree + 1)*count_sum]
>>> arn = AutoRegressiveNN(input_dim, [input_dim*10], param_dims)
>>> transform = Polynomial(arn, input_dim=input_dim, count_degree=count_degree,
>>>                        count_sum=count_sum)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using a polynomial transform can be scored.

Parameters

- **autoregressive_nn** (*nn.Module*) – an autoregressive neural network whose forward call returns a tensor of real-valued numbers of size (batch_size, (count_degree+1)*count_sum, input_dim)

- **count_degree** (*int*) – The degree of the polynomial to use for each element-wise transformation.

- **count_sum** (*int*) – The number of polynomials to sum in each element-wise transformation.

References:

autoregressive = True

bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

log_abs_det_jacobian(x, y)
 Calculates the elementwise determinant of the log Jacobian
reset_parameters()

4.4.22 Radial

class Radial(input_dim)

A ‘radial’ bijective transform using the equation,

\[y = x + \beta h(\alpha, r)(x - x_0) \]

where \(x \) are the inputs, \(y \) are the outputs, and the learnable parameters are \(\alpha \in \mathbb{R}^+, \beta \in \mathbb{R}, x_0 \in \mathbb{R}^D \), for input dimension \(D \), \(r = \|x - x_0\|_2 \), \(h(\alpha, r) = 1/((\alpha + r)) \). For this to be an invertible transformation, the condition \(\beta > -\alpha \) is enforced.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Radial(10)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the radial transform can be scored.

Parameters input_dim (int) – the dimension of the input (and output) variable.

References:

bijective = True
codomain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
reset_parameters()
4.4.23 Spline

```python
class Spline(input_dim, count_bins=8, bound=3.0, order='linear')

An implementation of the element-wise rational spline bijections of linear and quadratic order (Durkan et al., 2019; Dolatabadi et al., 2020). Rational splines are functions that are comprised of segments that are the ratio of two polynomials. For instance, for the \( d \)-th dimension and the \( k \)-th segment on the spline, the function will take the form,

\[
y_d = \frac{\alpha^{(k)}(x_d)}{\beta^{(k)}(x_d)},
\]

where \( \alpha^{(k)} \) and \( \beta^{(k)} \) are two polynomials of order \( d \). For \( d = 1 \), we say that the spline is linear, and for \( d = 2 \), quadratic. The spline is constructed on the specified bounding box, \([-K, K] \times [-K, K]\), with the identity function used elsewhere.

Rational splines offer an excellent combination of functional flexibility whilst maintaining a numerically stable inverse that is of the same computational and space complexities as the forward operation. This element-wise transform permits the accurate representation of complex univariate distributions.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Spline(10, count_bins=4, bound=3.)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

Parameters

- **input_dim (int)** – Dimension of the input vector. This is required so we know how many parameters to store.
- **count_bins (int)** – The number of segments comprising the spline.
- **bound (float)** – The quantity \( K \) determining the bounding box, \([-K, K] \times [-K, K]\), of the spline.
- **order (string)** – One of ['linear', 'quadratic'] specifying the order of the spline.

References:


bijective = True

codomain: torch.distributions.constraints.Constraint = Real()
domain: torch.distributions.constraints.Constraint = Real()
4.4.24 SplineAutoregressive

class SplineAutoregressive(input_dim, autoregressive_nn, count_bins=8, bound=3.0, order='linear')
   Bases: pyro.distributions.torch_transform.TransformModule

An implementation of the autoregressive layer with rational spline bijections of linear and quadratic order
(Durkan et al., 2019; Dolatabadi et al., 2020). Rational splines are functions that are comprised of segments
that are the ratio of two polynomials (see Spline).

The autoregressive layer uses the transformation,

$$y_d = g_{\theta_d}(x_d) \quad d = 1, 2, \ldots, D$$

where \(x = (x_1, x_2, \ldots, x_D)\) are the inputs, \(y = (y_1, y_2, \ldots, y_D)\) are the outputs, \(g_{\theta_d}\) is an elementwise rational
monotonic spline with parameters \(\theta_d\), and \(\theta = (\theta_1, \theta_2, \ldots, \theta_D)\) is the output of an autoregressive NN inputting \(x\).

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> input_dim = 10
>>> count_bins = 8
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> hidden_dims = [input_dim * 10, input_dim * 10]
>>> param_dims = [count_bins, count_bins, count_bins - 1, count_bins]
>>> hypernet = AutoRegressiveNN(input_dim, hidden_dims, param_dims=param_dims)
>>> transform = SplineAutoregressive(input_dim, hypernet, count_bins=count_bins)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

Parameters

- **input_dim (int)** – Dimension of the input vector. Despite operating element-wise, this is
  required so we know how many parameters to store.
- **autoregressive_nn (callable)** – an autoregressive neural network whose forward call
  returns tuple of the spline parameters
- **count_bins (int)** – The number of segments comprising the spline.
- **bound (float)** – The quantity \(K\) determining the bounding box, \([-K, K] \times [-K, K]\), of
  the spline.
- **order (string)** – One of [‘linear’, ‘quadratic’] specifying the order of the spline.

References:
Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie. Invertible Generative Modeling using Linear Rational
Splines. AISTATS 2020.

autoregressive = True
bijective = True
codomain: torch.distributions.constraints.Constraint =
IndependentConstraint(Real(), 1)
domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)
\texttt{log_abs_det_jacobian}(x, y)
Calculates the elementwise determinant of the log Jacobian

### 4.4.25 SplineCoupling

**class SplineCoupling**(*input_dim*, *split_dim*, *hypernet*, *count_bins=8*, *bound=3.0*, *order='linear'*

Bases: :py:class:`pyro.distributions.torch_transform.TransformModule`

An implementation of the coupling layer with rational spline bijections of linear and quadratic order (Durkan et al., 2019; Dolatabadi et al., 2020). Rational splines are functions that are comprised of segments that are the ratio of two polynomials (see :ref:`Spline`).

The spline coupling layer uses the transformation,
\[
y_{1:d} = g_\theta(x_{1:d}) y_{(d+1):D} = h_\phi(x_{(d+1):D}; x_{1:d})
\]
where \(x\) are the inputs, \(y\) are the outputs, e.g. \(x_{1:d}\) represents the first \(d\) elements of the inputs, \(g_\theta\) is either the identity function or an elementwise rational monotonic spline with parameters \(\theta\), and \(h_\phi\) is a conditional elementwise spline spline, conditioning on the first \(d\) elements.

Example usage:

```python
>>> from pyro.nn import DenseNN
>>> input_dim = 10
>>> split_dim = 6
>>> count_bins = 8
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> param_dims = [(input_dim - split_dim) * count_bins,
... (input_dim - split_dim) * count_bins,
... (input_dim - split_dim) * (count_bins - 1),
... (input_dim - split_dim) * count_bins]
>>> hypernet = DenseNN(split_dim, [10*input_dim], param_dims)
>>> transform = SplineCoupling(input_dim, split_dim, hypernet)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
```

**Parameters**

- **input_dim** *(int)* – Dimension of the input vector. Despite operating element-wise, this is required so we know how many parameters to store.
- **split_dim** – Zero-indexed dimension \(d\) upon which to perform input/ output split for transformation.
- **hypernet** *(callable)* – a neural network whose forward call returns a tuple of spline parameters (see :class:`ConditionalSpline`).
- **count_bins** *(int)* – The number of segments comprising the spline.
- **bound** *(float)* – The quantity \(K\) determining the bounding box, \([-K, K] \times [-K, K]\), of the spline.
- **order** *(string)* – One of ['linear', 'quadratic'] specifying the order of the spline.

**References:**

bijective = True

codomain: torch.distributions.constraints.Constraint =
IndependentConstraint(Real(), 1)

domain: torch.distributions.constraints.Constraint = IndependentConstraint(Real(), 1)

log_abs_det_jacobian(x, y)
Calculates the elementwise determinant of the log jacobian

4.4.26 Sylvester

class Sylvester(input_dim, count_transforms=1)
   Bases: pyro.distributions.transforms.householder.Householder

An implementation of the Sylvester bijective transform of the Householder variety (Van den Berg Et Al., 2018),
y = x + QR \tanh(SQ^T x + b)

where x are the inputs, y are the outputs, R, S \sim D \times D are upper triangular matrices for input dimension D,
Q \sim D \times D is an orthogonal matrix, and b \sim D is learnable bias term.

The Sylvester transform is a generalization of Planar. In the Householder type of the Sylvester transform, the
orthogonality of Q is enforced by representing it as the product of Householder transformations.

Together with TransformedDistribution it provides a way to create richer variational approximations.
Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> transform = Sylvester(10, count_transforms=4)
>>> pyro.module("my_transform", transform)
>>> flow_dist = dist.TransformedDistribution(base_dist, [transform])
>>> flow_dist.sample()
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the
inverse is cached when the forward operation is called during sampling, and so samples drawn using the Sylvester
transform can be scored.

References:

Q(x)
R()
S()

bijective = True

codomain: torch.distributions.constraints.Constraint =
IndependentConstraint(Real(), 1)
domain: `torch.distributions.constraints.Constraint` = `IndependentConstraint(Real(), 1)`

dtanh_dx(x)

log_abs_det_jacobian(x, y)

Calculates the elementwise determinant of the log Jacobian

reset_parameters()

training: `bool`

### 4.4.27 TransformModule

class TransformModule(*args, **kwargs)


Transforms with learnable parameters such as normalizing flows should inherit from this class rather than `Transform` so they are also a subclass of `nn.Module` and inherit all the useful methods of that class.

codomain: `torch.distributions.constraints.Constraint`
domain: `torch.distributions.constraints.Constraint`

### 4.4.28 ComposeTransformModule

class ComposeTransformModule(parts)


This allows us to use a list of `TransformModule` in the same way as `ComposeTransform`. This is needed so that transform parameters are automatically registered by Pyro’s param store when used in `PyroModule` instances.

### 4.5 Transform Factories

Each `Transform` and `TransformModule` includes a corresponding helper function in lower case that inputs, at minimum, the input dimensions of the transform, and possibly additional arguments to customize the transform in an intuitive way. The purpose of these helper functions is to hide from the user whether or not the transform requires the construction of a hypernet, and if so, the input and output dimensions of that hypernet.

#### 4.5.1 iterated

iterated(repeats, base_fn, *args, **kwargs)

Helper function to compose a sequence of bijective transforms with potentially learnable parameters using `ComposeTransformModule`.

Parameters

- `repeats` – number of repeated transforms.
- `base_fn` – function to construct the bijective transform.
- `args` – arguments taken by `base_fn`.
- `kwargs` – keyword arguments taken by `base_fn`.
Returns instance of \textit{TransformModule}.

### 4.5.2 affine_autoregressive

\texttt{affine\_autoregressive}(\texttt{input\_dim, hidden\_dims=None, **kwargs})

A helper function to create an \textit{AffineAutoregressive} object that takes care of constructing an autoregressive network with the correct input/output dimensions.

**Parameters**

- \texttt{input\_dim (int)} – Dimension of input variable
- \texttt{hidden\_dims (list[int])} – The desired hidden dimensions of the autoregressive network. 
  Defaults to using \([3*input\_dim + 1]\]
- \texttt{log\_scale\_min\_clip (float)} – The minimum value for clipping the log(scale) from the autoregressive NN
- \texttt{log\_scale\_max\_clip (float)} – The maximum value for clipping the log(scale) from the autoregressive NN
- \texttt{sigmoid\_bias (float)} – A term to add the logit of the input when using the stable transform.
- \texttt{stable (bool)} – When true, uses the alternative “stable” version of the transform (see above).

### 4.5.3 affine_coupling

\texttt{affine\_coupling}(\texttt{input\_dim, hidden\_dims=None, split\_dim=None, dim=-1, **kwargs})

A helper function to create an \textit{AffineCoupling} object that takes care of constructing a dense network with the correct input/output dimensions.

**Parameters**

- \texttt{input\_dim (int)} – Dimension(s) of input variable to permute. Note that when \(dim < -1\)
  this must be a tuple corresponding to the event shape.
- \texttt{hidden\_dims (list[int])} – The desired hidden dimensions of the dense network. 
  Defaults to using \([10*input\_dim]\]
- \texttt{split\_dim (int)} – The dimension to split the input on for the coupling transform. 
  Defaults to using \(input\_dim \div 2\)
- \texttt{dim (int)} – the tensor dimension on which to split. This value must be negative and defines 
  the event dim as \(abs(dim)\).
- \texttt{log\_scale\_min\_clip (float)} – The minimum value for clipping the log(scale) from the 
  autoregressive NN
- \texttt{log\_scale\_max\_clip (float)} – The maximum value for clipping the log(scale) from the 
  autoregressive NN
4.5.4 batchnorm

batchnorm(input_dim, **kwargs)

A helper function to create a BatchNorm object for consistency with other helpers.

Parameters

- **input_dim** (int) – Dimension of input variable
- **momentum** (float) – momentum parameter for updating moving averages
- **epsilon** (float) – small number to add to variances to ensure numerical stability

4.5.5 block_autoregressive

block_autoregressive(input_dim, **kwargs)

A helper function to create a BlockAutoregressive object for consistency with other helpers.

Parameters

- **input_dim** (int) – Dimension of input variable
- **hidden_factors** (list) – Hidden layer i has hidden_factors[i] hidden units per input dimension. This corresponds to both $a$ and $b$ in De Cao et al. (2019). The elements of hidden_factors must be integers.
- **activation** (string) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **residual** (string) – Type of residual connections to use. Choices are “None”, “normal” for $y + f(y)$, and “gated” for $\alpha y + (1 - \alpha y)$ for learnable parameter $\alpha$.

4.5.6 conditional_affine_autoregressive

conditional_affine_autoregressive(input_dim, context_dim, hidden_dims=None, **kwargs)

A helper function to create an ConditionalAffineAutoregressive object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using $[10*input\_dim]$
- **log_scale_min_clip** (float) – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip** (float) – The maximum value for clipping the log(scale) from the autoregressive NN
- **sigmoid_bias** (float) – A term to add the logit of the input when using the stable transform.
- **stable** (bool) – When true, uses the alternative “stable” version of the transform (see above).
4.5.7 conditional_affine_coupling

conditional_affine_coupling(input_dim, context_dim, hidden_dims=None, split_dim=None, dim=-1, **kwargs)

A helper function to create a ConditionalAffineCoupling object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using [10*input_dim]
- **split_dim** (int) – The dimension to split the input on for the coupling transform. Defaults to using input_dim // 2
- **dim** (int) – the tensor dimension on which to split. This value must be negative and defines the event dim as abs(dim).
- **log_scale_min_clip** (float) – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip** (float) – The maximum value for clipping the log(scale) from the autoregressive NN

4.5.8 conditional_generalized_channel_permute

conditional_generalized_channel_permute(context_dim, channels=3, hidden_dims=None)

A helper function to create a ConditionalGeneralizedChannelPermute object for consistency with other helpers.

Parameters **channels** (int) – Number of channel dimensions in the input.

4.5.9 conditional_householder

conditional_householder(input_dim, context_dim, hidden_dims=None, count_transforms=1)

A helper function to create a ConditionalHouseholder object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10]
4.5.10 conditional_matrix_exponential

**conditional_matrix_exponential**(*input_dim, context_dim, hidden_dims=None, iterations=8, normalization='none', bound=None*)

A helper function to create a *ConditionalMatrixExponential* object for consistency with other helpers.

**Parameters**

- **input_dim** *(int)* – Dimension of input variable
- **context_dim** *(int)* – Dimension of context variable
- **hidden_dims** *(list[int])* – The desired hidden dimensions of the dense network. Defaults to using `[input_dim * 10, input_dim * 10]`
- **iterations** *(int)* – the number of terms to use in the truncated power series that approximates matrix exponentiation.
- **normalization** *(string)* – One of ['none', 'weight', 'spectral'] normalization that selects what type of normalization to apply to the weight matrix. *weight* corresponds to weight normalization (Salimans and Kingma, 2016) and *spectral* to spectral normalization (Miyato et al, 2018).
- **bound** *(float)* – a bound on either the weight or spectral norm, when either of those two types of regularization are chosen by the *normalization* argument. A lower value for this results in fewer required terms of the truncated power series to closely approximate the exact value of the matrix exponential.

4.5.11 conditional_neural_autoregressive

**conditional_neural_autoregressive**(*input_dim, context_dim, hidden_dims=None, activation='sigmoid', width=16*)

A helper function to create a *ConditionalNeuralAutoregressive* object that takes care of constructing an autoregressive network with the correct input/output dimensions.

**Parameters**

- **input_dim** *(int)* – Dimension of input variable
- **context_dim** *(int)* – Dimension of context variable
- **hidden_dims** *(list[int])* – The desired hidden dimensions of the autoregressive network. Defaults to using `[3*input_dim + 1]`
- **activation** *(string)* – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **width** *(int)* – The width of the “multilayer perceptron” in the transform (see paper). Defaults to 16
4.5.12 conditional_planar

conditional_planar(input_dim, context_dim, hidden_dims=None)
A helper function to create a ConditionalPlanar object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10]

4.5.13 conditional_radial

conditional_radial(input_dim, context_dim, hidden_dims=None)
A helper function to create a ConditionalRadial object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10]

4.5.14 conditional_spline

conditional_spline(input_dim, context_dim, hidden_dims=None, count_bins=8, bound=3.0, order='linear')
A helper function to create a ConditionalSpline object that takes care of constructing a dense network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **context_dim** (int) – Dimension of context variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10]
- **count_bins** (int) – The number of segments comprising the spline.
- **bound** (float) – The quantity $K$ determining the bounding box, $[-K, K] \times [-K, K]$, of the spline.
- **order** (string) – One of ['linear', 'quadratic'] specifying the order of the spline.
4.5.15 conditional_spline_autoregressive

conditional_spline_autoregressive(input_dim, context_dim, hidden_dims=None, count_bins=8, bound=3.0, order='linear')

A helper function to create a ConditionalSplineAutoregressive object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- input_dim (int) – Dimension of input variable
- context_dim (int) – Dimension of context variable
- hidden_dims (list[int]) – The desired hidden dimensions of the autoregressive network. Defaults to using [input_dim * 10, input_dim * 10]
- count_bins (int) – The number of segments comprising the spline.
- bound (float) – The quantity \( K \) determining the bounding box, \([-K, K] \times [-K, K]\), of the spline.
- order (string) – One of ['linear', 'quadratic'] specifying the order of the spline.

4.5.16 elu

elu()

A helper function to create an ELUTransform object for consistency with other helpers.

4.5.17 generalized_channel_permute

generalized_channel_permute(**kwargs)

A helper function to create a GeneralizedChannelPermute object for consistency with other helpers.

Parameters

- channels (int) – Number of channel dimensions in the input.

4.5.18 householder

householder(input_dim, count_transforms=None)

A helper function to create a Householder object for consistency with other helpers.

Parameters

- input_dim (int) – Dimension of input variable
- count_transforms (int) – number of applications of Householder transformation to apply.
4.5.19 leaky_relu

leaky_relu()

A helper function to create a LeakyReLUTransform object for consistency with other helpers.

4.5.20 matrix_exponential

matrix_exponential(input_dim, iterations=8, normalization='none', bound=None)

A helper function to create a MatrixExponential object for consistency with other helpers.

Parameters

- **input_dim** (int) – Dimension of input variable
- **iterations** (int) – the number of terms to use in the truncated power series that approximates matrix exponentiation.
- **normalization** (string) – One of ['none', 'weight', 'spectral'] normalization that selects what type of normalization to apply to the weight matrix. weight corresponds to weight normalization (Salimans and Kingma, 2016) and spectral to spectral normalization (Miyato et al, 2018).
- **bound** (float) – a bound on either the weight or spectral norm, when either of those two types of regularization are chosen by the normalization argument. A lower value for this results in fewer required terms of the truncated power series to closely approximate the exact value of the matrix exponential.

4.5.21 neural_autoregressive

neural_autoregressive(input_dim, hidden_dims=None, activation='sigmoid', width=16)

A helper function to create a NeuralAutoregressive object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- **input_dim** (int) – Dimension of input variable
- **hidden_dims** (list[int]) – The desired hidden dimensions of the autoregressive network. Defaults to using [3*input_dim + 1]
- **activation** (string) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **width** (int) – The width of the “multilayer perceptron” in the transform (see paper). Defaults to 16

4.5.22 permute

permute(input_dim, permutation=None, dim=-1)

A helper function to create a Permute object for consistency with other helpers.

Parameters

- **input_dim** (int) – Dimension(s) of input variable to permute. Note that when dim < -1 this must be a tuple corresponding to the event shape.
• **permutation** (*torch.LongTensor*) – Torch tensor of integer indices representing permutation. Defaults to a random permutation.
• **dim** (*int*) – the tensor dimension to permute. This value must be negative and defines the event dim as $abs(dim)$.

### 4.5.23 planar

**planar**(*input_dim*)

A helper function to create a **Planar** object for consistency with other helpers.

Parameters

- **input_dim** (*int*) – Dimension of input variable

### 4.5.24 polynomial

**polynomial**(*input_dim*, *hidden_dims=None*)

A helper function to create a **Polynomial** object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- **input_dim** (*int*) – Dimension of input variable
- **hidden_dims** – The desired hidden dimensions of of the autoregressive network. Defaults to using $[input_dim \times 10]$

### 4.5.25 radial

**radial**(*input_dim*)

A helper function to create a **Radial** object for consistency with other helpers.

Parameters

- **input_dim** (*int*) – Dimension of input variable

### 4.5.26 spline

**spline**(*input_dim*, **kwargs*)

A helper function to create a **Spline** object for consistency with other helpers.

Parameters

- **input_dim** (*int*) – Dimension of input variable

### 4.5.27 spline_autoregressive

**spline_autoregressive**(*input_dim*, *hidden_dims=None*, *count_bins=8*, *bound=3.0*, *order='linear'*)

A helper function to create a **SplineAutoregressive** object that takes care of constructing an autoregressive network with the correct input/output dimensions.

Parameters

- **input_dim** (*int*) – Dimension of input variable
- **hidden_dims** (*list[int]*) – The desired hidden dimensions of the autoregressive network. Defaults to using $[3*input_dim + 1]$
- **count_bins** (*int*) – The number of segments comprising the spline.
- **bound** (*float*) – The quantity $K$ determining the bounding box, $[-K, K] \times [-K, K]$, of the spline.
- **order** (*string*) – One of ['linear', 'quadratic'] specifying the order of the spline.

### 4.5.28 spline_coupling

`spline_coupling(input_dim, split_dim=None, hidden_dims=None, count_bins=8, bound=3.0)`

A helper function to create a `SplineCoupling` object for consistency with other helpers.

**Parameters**

- **input_dim** (*int*) – Dimension of input variable

### 4.5.29 sylvester

`sylvester(input_dim, count_transforms=None)`

A helper function to create a `Sylvester` object for consistency with other helpers.

**Parameters**

- **input_dim** (*int*) – Dimension of input variable
- **count_transforms** – Number of Sylvester operations to apply. Defaults to `input_dim // 2 + 1`.
  :type count_transforms: int

### 4.6 Constraints

Pyro’s constraints library extends `torch.distributions.constraints`.

#### 4.6.1 Constraint

alias of `torch.distributions.constraints.Constraint`

#### 4.6.2 boolean

alias of `torch.distributions.constraints.boolean`

#### 4.6.3 cat

alias of `torch.distributions.constraints.cat`

#### 4.6.4 corr_cholesky

alias of `torch.distributions.constraints.corr_cholesky`
4.6.5 corr_cholesky_constraint

alias of torch.distributions.constraints.corr_cholesky_constraint

4.6.6 corr_matrix

class _CorrMatrix
    Constrains to a correlation matrix.

4.6.7 dependent

alias of torch.distributions.constraints.dependent

4.6.8 dependent_property

alias of torch.distributions.constraints.dependent_property

4.6.9 greater_than

alias of torch.distributions.constraints.greater_than

4.6.10 greater_than_eq

alias of torch.distributions.constraints.greater_than_eq

4.6.11 half_open_interval

alias of torch.distributions.constraints.half_open_interval

4.6.12 independent

alias of torch.distributions.constraints.independent

4.6.13 integer

class _Integer
    Constrain to integers.
4.6.14 integer_interval
alias of torch.distributions.constraints.integer_interval

4.6.15 interval
alias of torch.distributions.constraints.interval

4.6.16 is_dependent
alias of torch.distributions.constraints.is_dependent

4.6.17 less_than
alias of torch.distributions.constraints.less_than

4.6.18 lower_cholesky
alias of torch.distributions.constraints.lower_cholesky

4.6.19 lower_triangular
alias of torch.distributions.constraints.lower_triangular

4.6.20 multinomial
alias of torch.distributions.constraints.multinomial

4.6.21 nonnegative_integer
alias of torch.distributions.constraints.nonnegative_integer

4.6.22 ordered_vector

class _OrderedVector
Constrains to a real-valued tensor where the elements are monotonically increasing along the event_shape dimension.
4.6.23 positive
alias of torch.distributions.constraints.positive

4.6.24 positive_definite
alias of torch.distributions.constraints.positive_definite

4.6.25 positive_integer
alias of torch.distributions.constraints.positive_integer

4.6.26 positive_ordered_vector

```python
class _PositiveOrderedVector
 Constrains to a positive real-valued tensor where the elements are monotonically increasing along the event_shape dimension.
```

4.6.27 real
alias of torch.distributions.constraints.real

4.6.28 real_vector
alias of torch.distributions.constraints.real_vector

4.6.29 simplex
alias of torch.distributions.constraints.simplex

4.6.30 softplus_lower_cholesky

```python
class _SoftplusLowerCholesky
```

4.6.31 softplus_positive

```python
class _SoftplusPositive
```
4.6.32 sphere

class _Sphere
    Constrain to the Euclidean sphere of any dimension.

4.6.33 stack

alias of torch.distributions.constraints.stack

4.6.34 unit_interval

alias of torch.distributions.constraints.unit_interval

4.6.35 unit_lower_cholesky

class _UnitLowerCholesky
    Constrain to lower-triangular square matrices with all ones diagonals.
Parameters in Pyro are basically thin wrappers around PyTorch Tensors that carry unique names. As such Parameters are the primary stateful objects in Pyro. Users typically interact with parameters via the Pyro primitive `pyro.param`. Parameters play a central role in stochastic variational inference, where they are used to represent point estimates for the parameters in parameterized families of models and guides.

### 5.1 ParamStore

```python
class ParamStoreDict
 Bases: object

 Global store for parameters in Pyro. This is basically a key-value store. The typical user interacts with the ParamStore primarily through the primitive `pyro.param`.

 See [Introduction](#) for further discussion and [SVI Part I](#) for some examples.

Some things to bear in mind when using parameters in Pyro:

- parameters must be assigned unique names
- the `init_tensor` argument to `pyro.param` is only used the first time that a given (named) parameter is registered with Pyro.
- for this reason, a user may need to use the `clear()` method if working in a REPL in order to get the desired behavior. this method can also be invoked with `pyro.clear_param_store()`.
- the internal name of a parameter within a PyTorch `nn.Module` that has been registered with Pyro is prepended with the Pyro name of the module. so nothing prevents the user from having two different modules each of which contains a parameter named `weight`. by contrast, a user can only have one top-level parameter named `weight` (outside of any module).
- parameters can be saved and loaded from disk using `save` and `load`.
- in general parameters are associated with both constrained and unconstrained values. for example, under the hood a parameter that is constrained to be positive is represented as an unconstrained tensor in log space.

`clear()`
Clear the ParamStore

`items()`
Iterate over `(name, constrained_param)` pairs. Note that `constrained_param` is in the constrained (i.e. user-facing) space.

`keys()`
Iterate over param names.
```
values()
Iterate over constrained parameter values.

setdefault(name, init_constrained_value, constraint=Real())
Retrieve a constrained parameter value from the if it exists, otherwise set the initial value. Note that this is a little fancier than dict.setdefault().

If the parameter already exists, init_constrained_tensor will be ignored. To avoid expensive creation of init_constrained_tensor you can wrap it in a lambda that will only be evaluated if the parameter does not already exist:

```python
param_store.get("foo", lambda: (0.001 * torch.randn(1000, 1000)).exp(),
constraint=constraints.positive)
```

**Parameters**
- **name** (str) – parameter name
- **init_constrained_value** (torch.Tensor or callable returning a torch.Tensor) – initial constrained value
- **constraint** (Constraint) – torch constraint object

**Returns** constrained parameter value

**Return type** torch.Tensor

named_parameters()
Returns an iterator over (name, unconstrained_value) tuples for each parameter in the ParamStore. Note that, in the event the parameter is constrained, unconstrained_value is in the unconstrained space implicitly used by the constraint.

get_all_param_names()

replace_param(param_name, new_param, old_param)

get_param(name, init_tensor=None, constraint=Real(), event_dim=None)
Get parameter from its name. If it does not yet exist in the ParamStore, it will be created and stored. The Pyro primitive pyro.param dispatches to this method.

**Parameters**
- **name** (str) – parameter name
- **init_tensor** (torch.Tensor) – initial tensor
- **constraint** (torch.distributions.constraints.Constraint) – torch constraint
- **event_dim** (int) – (ignored)

**Returns** parameter

**Return type** torch.Tensor

match(name)
Get all parameters that match regex. The parameter must exist.

**Parameters** name (str) – regular expression

**Returns** dict with key param name and value torch Tensor

param_name(p)
Get parameter name from parameter

**Parameters** p – parameter
Returns parameter name

get_state() \(\rightarrow\) dict
Get the ParamStore state.

set_state(state: dict)
Set the ParamStore state using state from a previous get_state() call

save(filename)
Save parameters to file

Parameters filename (str) – file name to save to

load(filename, map_location=None)
Loads parameters from file

Note: If using pyro.module() on parameters loaded from disk, be sure to set the update_module_params flag:

```python
pyro.get_param_store().load('saved_params.save')
pyro.module('module', nn, update_module_params=True)
```

Parameters

- filename (str) – file name to load from
- map_location (function, torch.device, string or a dict) – specifies how to remap storage locations

scope(state=None) \(\rightarrow\) dict
Context manager for using multiple parameter stores within the same process.

This is a thin wrapper around get_state(), clear(), and set_state(). For large models where memory space is limiting, you may want to instead manually use save(), clear(), and load().

Example usage:

```python
param_store = pyro.get_param_store()

Train multiple models, while avoiding param name conflicts.
with param_store.scope() as scope1:
 # ...Train one model, guide pair...
with param_store.scope() as scope2:
 # ...Train another model, guide pair...

Now evaluate each, still avoiding name conflicts.
with param_store.scope(scope1):
 # loads the first model's scope
 # ...evaluate the first model...
with param_store.scope(scope2):
 # loads the second model's scope
 # ...evaluate the second model...
```

param_with_module_name(pyro_name, param_name)

module_from_param_with_module_name(param_name)

user_param_name(param_name)

normalize_param_name(name)
The module `pyro.nn` provides implementations of neural network modules that are useful in the context of deep probabilistic programming.

### 6.1 Pyro Modules

Pyro includes a class `PyroModule`, a subclass of `torch.nn.Module`, whose attributes can be modified by Pyro effects. To create a poutine-aware attribute, use either the `PyroParam` struct or the `PyroSample` struct:

```python
my_module = PyroModule()
my_module.x = PyroParam(torch.tensor(1.), constraint=constraints.positive)
my_module.y = PyroSample(dist.Normal(0, 1))
```

```python
class PyroParam(init_value=None, constraint=Real(), event_dim=None)
 Bases: pyro.nn.module.PyroParam

 Declares a Pyro-managed learnable attribute of a PyroModule, similar to pyro.param.

 This can be used either to set attributes of PyroModule instances:

    ```
    assert isinstance(my_module, PyroModule)
    my_module.x = PyroParam(torch.zeros(4))  # eager
    my_module.y = PyroParam(lambda: torch.randn(4))  # lazy
    my_module.z = PyroParam(torch.ones(4),
                             constraint=constraints.positive,
                             event_dim=1)  # eager
    ```
```

or EXPERIMENTALLY as a decorator on lazy initialization properties:

```python
class MyModule(PyroModule):
 @PyroParam
 def x(self):
 return torch.zeros(4)

 @PyroParam
 def y(self):
 return torch.randn(4)

 @PyroParam(constraint=constraints.real, event_dim=1)
 def z(self):
 return torch.ones(4)
```

def forward(self):
    return self.x + self.y + self.z  # accessed like a @property

Parameters

- **init_value** *(torch.Tensor or callable returning a torch.Tensor or None)*
  - Either a tensor for eager initialization, a callable for lazy initialization, or None for use as a decorator.

- **constraint** *(Constraint)* – torch constraint, defaults to constraints.real.

- **event_dim** *(int)* – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

class PyroSample(prior)
Bases: pyro.nn.module.PyroSample

Declares a Pyro-managed random attribute of a PyroModule, similar to pyro.sample.

This can be used either to set attributes of PyroModule instances:

```python
assert isinstance(my_module, PyroModule)
my_module.x = PyroSample(Normal(0, 1)) # independent
my_module.y = PyroSample(lambda self: Normal(self.x, 1)) # dependent
```

or EXPERIMENTALLY as a decorator on lazy initialization methods:

```python
class MyModule(PyroModule):
 @PyroSample
 def x(self):
 return Normal(0, 1) # independent

 @PyroSample
 def y(self):
 return Normal(self.x, 1) # dependent

 def forward(self):
 return self.y # accessed like a @property

Parameters prior – distribution object or function that inputs the PyroModule instance self and returns a distribution object.

class PyroModule(name="
Bases: torch.nn.modules.module.Module

Subclass of torch.nn.Module whose attributes can be modified by Pyro effects. Attributes can be set using helpers PyroParam and PyroSample, and methods can be decorated by pyro_method().

Parameters
To create a Pyro-managed parameter attribute, set that attribute using either `torch.nn.Parameter` (for unconstrained parameters) or `PyroParam` (for constrained parameters). Reading that attribute will then trigger a `pyro.param` statement. For example:

```python
# Create Pyro-managed parameter attributes.
my_module = PyroModule()
my_module.loc = nn.Parameter(torch.tensor(0.))
my_module.scale = PyroParam(torch.tensor(1.),
                           constraint=constraints.positive)

# Read the attributes.
loc = my_module.loc  # Triggers a pyro.param statement.
scale = my_module.scale # Triggers another pyro.param statement.
```

Note that, unlike normal `torch.nn.Module`s, `PyroModule`s should not be registered with `pyro.module` statements. `PyroModule`s can contain other `PyroModule`s and normal `torch.nn.Module`s. Accessing a normal `torch.nn.Module` attribute of a `PyroModule` triggers a `pyro.module` statement. If multiple `PyroModule`s appear in a single Pyro model or guide, they should be included in a single root `PyroModule` for that model.

`PyroModule`s synchronize data with the param store at each `setattr`, `getattr`, and `delattr` event, based on the nested name of an attribute:

- Setting `mod.x = x_init` tries to read `x` from the param store. If a value is found in the param store, that value is copied into `mod` and `x_init` is ignored; otherwise `x_init` is copied into both `mod` and the param store.
- Reading `mod.x` tries to read `x` from the param store. If a value is found in the param store, that value is copied into `mod`; otherwise `mod`'s value is copied into the param store. Finally `mod` and the param store agree on a single value to return.
- Deleting `del mod.x` removes a value from both `mod` and the param store.

Note two `PyroModule` of the same name will both synchronize with the global param store and thus contain the same data. When creating a `PyroModule`, then deleting it, then creating another with the same name, the latter will be populated with the former's data from the param store. To avoid this persistence, either `pyro.clear_param_store()` or call `clear()` before deleting a `PyroModule`.

`PyroModule`s can be saved and loaded either directly using `torch.save()` / `torch.load()` or indirectly using the param store's `save()` / `load()`. Note that `torch.load()` will be overridden by any values in the param store, so it is safest to `pyro.clear_param_store()` before loading.

Samples

To create a Pyro-managed random attribute, set that attribute using the `PyroSample` helper, specifying a prior distribution. Reading that attribute will then trigger a `pyro.sample` statement. For example:

```python
# Create Pyro-managed random attributes.
my_module.x = PyroSample(dist.Normal(0, 1))
my_module.y = PyroSample(lambda self: dist.Normal(self.loc, self.scale))

# Sample the attributes.
x = my_module.x  # Triggers a pyro.sample statement.
y = my_module.y  # Triggers one pyro.sample + two pyro.param statements.
```

Sampling is cached within each invocation of `__call__()` or method decorated by `pyro_method()`. Because sample statements can appear only once in a Pyro trace, you should ensure that traced access to sample attributes is wrapped in a single invocation of `__call__()` or method decorated by `pyro_method()`.

To make an existing module probabilistic, you can create a subclass and overwrite some parameters with `PyroSample`s:
class RandomLinear(nn.Linear, PyroModule):
 # used as a mixin
 def __init__(self, in_features, out_features):
 super().__init__(in_features, out_features)
 self.weight = PyroSample(
 lambda self: dist.Normal(0, 1)
 .expand([self.out_features, self.in_features])
 .to_event(2))

Mixin classes

PyroModule can be used as a mixin class, and supports simple syntax for dynamically creating mixins, for example the following are equivalent:

Version 1. create a named mixin class
class PyroLinear(nn.Linear, PyroModule):
 pass

m.linear = PyroLinear(m, n)

Version 2. create a dynamic mixin class
m.linear = PyroModule[nn.Linear](m, n)

This notation can be used recursively to create Bayesian modules, e.g.:

model = PyroModule[nn.Sequential](
 PyroModule[nn.Linear](28 * 28, 100),
 PyroModule[nn.Linear](100, 100),
 PyroModule[nn.Linear](100, 100),
 PyroModule[nn.Linear](100, 10),
)

assert isinstance(model, nn.Sequential)
assert isinstance(model, PyroModule)

Now we can be Bayesian about weights in the first layer.
model[0].weight = PyroSample(
 prior=dist.Normal(0, 1).expand([28 * 28, 100]).to_event(2))
guide = AutoDiagonalNormal(model)

Note that PyroModule[...] does not recursively mix in PyroModule to submodules of the input Module; hence we needed to wrap each submodule of the nn.Sequential above.

Parameters

name (str) – Optional name for a root PyroModule. This is ignored in sub-
PyroModules of another PyroModule.

add_module(name, module)

Adds a child module to the current module.

named_pyro_params(prefix='', recurse=True)

Returns an iterator over PyroModule parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters

• prefix (str) – prefix to prepend to all parameter names.
• **recurse** *(bool)* – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Returns a generator which yields tuples containing the name and parameter

```python
training: bool
```

pyro_method(fn)

Decorator for top-level methods of a *PyroModule* to enable pyro effects and cache `pyro.sample` statements. This should be applied to all public methods that read Pyro-managed attributes, but is not needed for `forward()`.

clear(mod)

Removes data from both a *PyroModule* and the param store.

Parameters `mod` *(PyroModule)* – A module to clear.

to_pyro_module_(m, recurse=True)

Converts an ordinary `torch.nn.Module` instance to a *PyroModule* in-place.

This is useful for adding Pyro effects to third-party modules: no third-party code needs to be modified. For example:

```python
model = nn.Sequential(  
    nn.Linear(28 * 28, 100),  
    nn.Sigmoid(),  
    nn.Linear(100, 100),  
    nn.Sigmoid(),  
    nn.Linear(100, 10),  
)

to_pyro_module_(model)  
assert isinstance(model, PyroModule[nn.Sequential])  
assert isinstance(model[0], PyroModule[nn.Linear])

# Now we can attempt to be fully Bayesian:  
for m in model.modules():  
    for name, value in list(m.named_parameters(recurse=False)):  
        setattr(m, name, PyroSample(prior=dist.Normal(0, 1)  
            .expand(value.shape)  
            .to_event(value.dim())))

guide = AutoDiagonalNormal(model)
```

Parameters

• `m` *(torch.nn.Module)* – A module instance.

• **recurse** *(bool)* – Whether to convert submodules to *PyroModules*.
6.2 AutoRegressiveNN

class AutoRegressiveNN(input_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())

Bases: pyro.nn.auto_reg_nn.ConditionalAutoRegressiveNN

An implementation of a MADE-like auto-regressive neural network.

Example usage:

```python
>>> x = torch.randn(100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1])
>>> p = arn(x)  # 1 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 1])
>>> m, s = arn(x)  # 2 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 5, 3])
>>> a, b, c = arn(x)  # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)
```

Parameters

- **input_dim** (int) – the dimensionality of the input variable
- **hidden_dims** (list[int]) – the dimensionality of the hidden units per layer
- **param_dims** (list[int]) – shape the output into parameters of dimension (p_n, input_dim) for p_n in param_dims when p_n > 1 and dimension (input_dim) when p_n == 1. The default is [1, 1], i.e. output two parameters of dimension (input_dim), which is useful for inverse autoregressive flow.
- **permutation** (torch.LongTensor) – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. in particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.
- **skip_connections** (bool) – Whether to add skip connections from the input to the output.
- **nonlinearity** (torch.nn.module) – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:

forward(x)

training: bool
6.3 DenseNN

class DenseNN(input_dim, hidden_dims, param_dims=[1, 1], nonlinearity=ReLU()):
 Bases: pyro.nn.dense_nn.ConditionalDenseNN

 An implementation of a simple dense feedforward network, for use in, e.g., some conditional flows such as
 pyro.distributions.transforms.ConditionalPlanarFlow and other unconditional flows such as pyro.
 distributions.transforms.AffineCoupling that do not require an autoregressive network.

 Example usage:

 >>> input_dim = 10
 >>> context_dim = 5
 >>> z = torch.rand(100, context_dim)
 >>> nn = DenseNN(context_dim, [50], param_dims=[1, input_dim, input_dim])
 >>> a, b, c = nn(z) # parameters of size (100, 1), (100, 10), (100, 10)

 Parameters
 • input_dim (int) – the dimensionality of the input
 • hidden_dims (list[int]) – the dimensionality of the hidden units per layer
 • param_dims (list[int]) – shape the output into parameters of dimension (p_n,) for p_n
 in param_dims when p_n > 1 and dimension () when p_n == 1. The default is [1, 1], i.e.
 output two parameters of dimension ()
 • nonlinearity (torch.nn.module) – The nonlinearity to use in the feedforward network
 such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so
 the output is an unbounded real number.

 forward(x)
 training: bool

6.4 ConditionalAutoRegressiveNN

class ConditionalAutoRegressiveNN(input_dim, context_dim, hidden_dims, param_dims=[1, 1],
 permutation=None, skip_connections=False, nonlinearity=ReLU()):
 Bases: torch.nn.modules.module.Module

 An implementation of a MADE-like auto-regressive neural network that can input an additional context variable.
 (See Reference [2] Section 3.3 for an explanation of how the conditional MADE architecture works.)

 Example usage:

 >>> x = torch.randn(100, 10)
 >>> y = torch.randn(100, 5)
 >>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1])
 >>> p = arn(x, context=y) # 1 parameters of size (100, 10)
 >>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 1])
 >>> m, s = arn(x, context=y) # 2 parameters of size (100, 10)
 >>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 5, 3])
 >>> a, b, c = arn(x, context=y) # 3 parameters of sizes, (100, 1, 10), (100, 5, 10),
 \(\rightarrow\) (100, 3, 10)
Parameters

- **input_dim** *(int)* – the dimensionality of the input variable
- **context_dim** *(int)* – the dimensionality of the context variable
- **hidden_dims** *(list[int]*) – the dimensionality of the hidden units per layer
- **param_dims** *(list[int]*) – shape the output into parameters of dimension (p_n, input_dim) for p_n in param_dims when p_n > 1 and dimension (input_dim) when p_n == 1. The default is [1, 1], i.e. output two parameters of dimension (input_dim), which is useful for inverse autoregressive flow.
- **permutation** *(torch.LongTensor)* – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. In particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.
- **skip_connections** *(bool)* – Whether to add skip connections from the input to the output.
- **nonlinearity** *(torch.nn.module)* – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:


```python
forward(x, context=None)

get_permutation()

training: bool
```

6.5 ConditionalDenseNN

class `ConditionalDenseNN(input_dim, context_dim, hidden_dims, param_dims=[1, 1], nonlinearity=ReLU())`

Bases: `torch.nn.modules.module.Module`

An implementation of a simple dense feedforward network taking a context variable, for use in, e.g., some conditional flows such as `pyro.distributions.transforms.ConditionalAffineCoupling`.

Example usage:

```python
>>> input_dim = 10
>>> context_dim = 5
>>> x = torch.rand(100, input_dim)
>>> z = torch.rand(100, context_dim)
>>> nn = ConditionalDenseNN(input_dim, context_dim, [50], param_dims=[1, input_dim, input_dim])
>>> a, b, c = nn(x, context=z)  # parameters of size (100, 1), (100, 10), (100, 10)
```

Parameters
• **input_dim** (*int*) – the dimensionality of the input

• **context_dim** (*int*) – the dimensionality of the context variable

• **hidden_dims** (*list[int]*) – the dimensionality of the hidden units per layer

• **param_dims** (*list[int]*) – shape the output into parameters of dimension \((p_n,) \) for \(p_n \) in `param_dims` when \(p_n > 1 \) and dimension () when \(p_n == 1 \). The default is [1, 1], i.e. output two parameters of dimension ()..

• **nonlinearity** (*torch.nn.Module*) – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

```python
forward(x, context)
training: bool
```
The module `pyro.optim` provides support for optimization in Pyro. In particular it provides `PyroOptim`, which is used to wrap PyTorch optimizers and manage optimizers for dynamically generated parameters (see the tutorial SVI Part I for a discussion). Any custom optimization algorithms are also to be found here.

7.1 Pyro Optimizers

`is_scheduler(optimizer) → bool`
Helper method to determine whether a PyTorch object is either a PyTorch optimizer (return false) or a optimizer wrapped in an LRScheduler e.g. a `ReduceLROnPlateau` or subclasses of `_LRScheduler` (return true).

```python
class PyroOptim(optim_constructor: Union[Callable, torch.optim.optimizer.Optimizer, Type[torch.optim.optimizer.Optimizer]], optim_args: Union[Dict, Callable[[..., Dict]], clip_args: Optional[Union[Dict, Callable[[..., Dict]]]] = None]
Bases: object
A wrapper for torch.optim.Optimizer objects that helps with managing dynamically generated parameters.
```

Parameters

- **optim_constructor** – a torch.optim.Optimizer
- **optim_args** – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries
- **clip_args** – a dictionary of clip_norm and/or clip_value args or a callable that returns such dictionaries

`__call__(params: Union[List, ValuesView], *args, **kwargs) → None`

- **params** (an iterable of strings) – a list of parameters
 Do an optimization step for each param in params. If a given param has never been seen before, initialize an optimizer for it.

`get_state() → Dict`
Get state associated with all the optimizers in the form of a dictionary with key-value pairs (parameter name, optim state dicts)

`set_state(state_dict: Dict) → None`
Set the state associated with all the optimizers using the state obtained from a previous call to get_state()

`save(filename: str) → None`

- **filename** (str) – file name to save to
Save optimizer state to disk

```
load(filename: str, map_location=None) → None
```

Parameters

- `filename` (*str*) – file name to load from
- `map_location` (*function, torch.device, string or a dict*) – torch.load() map_location parameter

Load optimizer state from disk

```
AdagradRMSProp(optim_args: Dict) → pyro.optim.optim.PyroOptim
```

Wraps `pyro.optim.adagrad_rmsprop.AdagradRMSProp` with `PyroOptim`.

```
ClippedAdam(optim_args: Dict) → pyro.optim.optim.PyroOptim
```

Wraps `pyro.optim.clipped_adam.ClippedAdam` with `PyroOptim`.

```
DCTAdam(optim_args: Dict) → pyro.optim.optim.PyroOptim
```

Wraps `pyro.optim.dct_adam.DCTAdam` with `PyroOptim`.

```
class PyroLRScheduler(scheduler_constructor, optim_args: Dict, clip_args: Optional[Dict] = None)
```

A wrapper for `lr_scheduler` objects that adjusts learning rates for dynamically generated parameters.

Parameters

- `scheduler_constructor` – a `lr_scheduler`
- `optim_args` – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries. must contain the key ‘optimizer’ with pytorch optimizer value
- `clip_args` – a dictionary of clip_norm and/or clip_value args or a callable that returns such dictionaries.

Example:

```python
optimizer = torch.optim.SGD
scheduler = pyro.optim.ExponentialLR({'optimizer': optimizer, 'optim_args': {'lr': 0.01}, 'gamma': 0.1})
svi = SVI(model, guide, scheduler, loss=TraceGraph_ELBO())
for i in range(epochs):
    for minibatch in DataLoader(dataset, batch_size):
        svi.step(minibatch)
        scheduler.step()
```

```
__call__(params: Union[List, ValuesView], *args, **kwargs) → None
```

```
step(*args, **kwargs) → None
```

Takes the same arguments as the PyTorch scheduler (e.g. optional loss for ReduceLROnPlateau)

```
class AdagradRMSProp(params, eta: float = 1.0, delta: float = 1e-16, t: float = 0.1)
```

Bases: `torch.optim.optimizer.Optimizer`

Implements a mash-up of the Adagrad algorithm and RMSProp. For the precise update equation see equations 10 and 11 in reference [1].

References:
[2] ‘Lecture 6.5 RmsProp: Divide the gradient by a running average of its recent magnitude’, Tieleman, T. and Hinton, G., COURSERA:

Arguments:

Parameters

• **params** – iterable of parameters to optimize or dicts defining parameter groups
• **eta (float)** – sets the step size scale (optional; default: 1.0)
• **t (float)** – t, optional): momentum parameter (optional; default: 0.1)
• **delta (float)** – modulates the exponent that controls how the step size scales (optional: default: 1e-16)

share_memory() → None

step(closure: Optional[Callable] = None) → Optional[Any]

Performs a single optimization step.

Parameters closure – A (optional) closure that reevaluates the model and returns the loss.

class** ClippedAdam**(params, lr: float = 0.001, betas: Tuple = (0.9, 0.999), eps: float = 1e-08, weight_decay=0, clip_norm: float = 10.0, lrd: float = 1.0)

Bases: torch.optim.optimizer.Optimizer

Parameters

• **params** – iterable of parameters to optimize or dicts defining parameter groups
• **lr** – learning rate (default: 1e-3)
• **betas** (Tuple) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
• **eps** – term added to the denominator to improve numerical stability (default: 1e-8)
• **weight_decay** – weight decay (L2 penalty) (default: 0)
• **clip_norm** – magnitude of norm to which gradients are clipped (default: 10.0)
• **lrd** – rate at which learning rate decays (default: 1.0)

Small modification to the Adam algorithm implemented in torch.optim.Adam to include gradient clipping and learning rate decay.

Reference

step(closure: Optional[Callable] = None) → Optional[Any]

Parameters closure – An optional closure that reevaluates the model and returns the loss.

Performs a single optimization step.

class HorovodOptimizer(pyro_optim: pyro.optim.optim.PyroOptim, **horovod_kwargs)

Bases: pyro.optim.optim.PyroOptim

Distributed wrapper for a PyroOptim optimizer.

This class wraps a PyroOptim object similar to the way horovod.torch.DistributedOptimizer() wraps a torch.optim.Optimizer.
Note: This requires `horovod.torch` to be installed, e.g. via `pip install pyro[horovod]`. For details see https://horovod.readthedocs.io/en/stable/install.html

Param A Pyro optimizer instance.

Parameters

horovod_kwargs – Extra parameters passed to `horovod.torch.DistributedOptimizer()`.

__call__(params: Union[List, ValuesView], *args, **kwargs) → None

7.2 PyTorch Optimizers

Adadelta *(optim_args, clip_args=None)*
Wraps `torch.optim.Adadelta` with `PyroOptim`.

Adagrad *(optim_args, clip_args=None)*
Wraps `torch.optim.Adagrad` with `PyroOptim`.

Adam *(optim_args, clip_args=None)*
Wraps `torch.optim.Adam` with `PyroOptim`.

AdamW *(optim_args, clip_args=None)*
Wraps `torch.optim.AdamW` with `PyroOptim`.

SparseAdam *(optim_args, clip_args=None)*
Wraps `torch.optim.SparseAdam` with `PyroOptim`.

Adamax *(optim_args, clip_args=None)*
Wraps `torch.optim.Adamax` with `PyroOptim`.

ASGD *(optim_args, clip_args=None)*
Wraps `torch.optim.ASGD` with `PyroOptim`.

SGD *(optim_args, clip_args=None)*
Wraps `torch.optim.SGD` with `PyroOptim`.

Rprop *(optim_args, clip_args=None)*
Wraps `torch.optim.Rprop` with `PyroOptim`.

RMSprop *(optim_args, clip_args=None)*
Wraps `torch.optim.RMSprop` with `PyroOptim`.

LambdaLR *(optim_args, clip_args=None)*
Wraps `torch.optim.LambdaLR` with `PyroLRScheduler`.

MultiplicativeLR *(optim_args, clip_args=None)*
Wraps `torch.optim.MultiplicativeLR` with `PyroLRScheduler`.

StepLR *(optim_args, clip_args=None)*
Wraps `torch.optim.StepLR` with `PyroLRScheduler`.

MultiStepLR *(optim_args, clip_args=None)*
Wraps `torch.optim.MultiStepLR` with `PyroLRScheduler`.

ExponentialLR *(optim_args, clip_args=None)*
Wraps `torch.optim.ExponentialLR` with `PyroLRScheduler`.
CosineAnnealingLR(optim_args, clip_args=None)
Wraps torch.optim.CosineAnnealingLR with PyroLRScheduler.

ReduceLROnPlateau(optim_args, clip_args=None)
Wraps torch.optim.ReduceLROnPlateau with PyroLRScheduler.

CyclicLR(optim_args, clip_args=None)
Wraps torch.optim.CyclicLR with PyroLRScheduler.

CosineAnnealingWarmRestarts(optim_args, clip_args=None)
Wraps torch.optim.CosineAnnealingWarmRestarts with PyroLRScheduler.

OneCycleLR(optim_args, clip_args=None)
Wraps torch.optim.OneCycleLR with PyroLRScheduler.

7.3 Higher-Order Optimizers

class MultiOptimizer
Bases: object

Base class of optimizers that make use of higher-order derivatives.

Higher-order optimizers generally use torch.autograd.grad() rather than torch.Tensor.backward(), and therefore require a different interface from usual Pyro and PyTorch optimizers. In this interface, the step() method inputs a loss tensor to be differentiated, and backpropagation is triggered one or more times inside the optimizer.

Derived classes must implement step() to compute derivatives and update parameters in-place.

Example:

```python
tr = poutine.trace(model).get_trace(*args, **kwargs)
loss = -tr.log_prob_sum()
params = {name: site['value'].unconstrained()
    for name, site in tr.nodes.items()}
    if site['type'] == 'param'}
optim.step(loss, params)
```

step(loss: torch.Tensor, params: Dict) → None
Performs an in-place optimization step on parameters given a differentiable loss tensor.

Note that this detaches the updated tensors.

Parameters

- **loss** (torch.Tensor) – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.
- **params** (dict) – A dictionary mapping param name to unconstrained value as stored in the param store.

get_step(loss: torch.Tensor, params: Dict) → Dict
Computes an optimization step of parameters given a differentiable loss tensor, returning the updated values.

Note that this preserves derivatives on the updated tensors.

Parameters
- **loss** (*torch.Tensor*) – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.

- **params** (*dict*) – A dictionary mapping param name to unconstrained value as stored in the param store.

Returns A dictionary mapping param name to updated unconstrained value.

Return type *dict*

class PyroMultiOptimizer(*optim: pyro.optim.optim.PyroOptim*)

Bases: *pyro.optim.multi.MultiOptimizer*

Facade to wrap *PyroOptim* objects in a *MultiOptimizer* interface.

step(*loss: torch.Tensor, params: Dict*) → *None*

class TorchMultiOptimizer(*optim_constructor: torch.optim.optimizer.Optimizer, optim_args: Dict*)

Bases: *pyro.optim.multi.PyroMultiOptimizer*

Facade to wrap *Optimizer* objects in a *MultiOptimizer* interface.

class MixedMultiOptimizer(*parts: List*)

Bases: *pyro.optim.multi.MultiOptimizer*

Container class to combine different *MultiOptimizer* instances for different parameters.

Parameters

- **parts** (*list*) – A list of (names, optim) pairs, where each names is a list of parameter names, and each optim is a *MultiOptimizer* or *PyroOptim* object to be used for the named parameters. Together the names should partition up all desired parameters to optimize.

Raises *ValueError* – if any name is optimized by multiple optimizers.

step(*loss: torch.Tensor, params: Dict*)

get_step(*loss: torch.Tensor, params: Dict*) → *Dict*

class Newton(*trust_radii: Dict = {}*)

Bases: *pyro.optim.multi.MultiOptimizer*

Implementation of *MultiOptimizer* that performs a Newton update on batched low-dimensional variables, optionally regularizing via a per-parameter trust_radius. See *newton_step()* for details.

The result of *get_step()* will be differentiable, however the updated values from *step()* will be detached.

Parameters

- **trust_radii** (*dict*) – A dict mapping parameter name to radius of trust region. Missing names will use unregularized Newton update, equivalent to infinite trust radius.

get_step(*loss: torch.Tensor, params: Dict*)
POUTINE (EFFECT HANDLERS)

Beneath the built-in inference algorithms, Pyro has a library of composable effect handlers for creating new inference algorithms and working with probabilistic programs. Pyro's inference algorithms are all built by applying these handlers to stochastic functions. In order to get a general understanding what effect handlers are and what problem they solve, read An Introduction to Algebraic Effects and Handlers by Matija Pretnar.

8.1 Handlers

Poutine is a library of composable effect handlers for recording and modifying the behavior of Pyro programs. These lower-level ingredients simplify the implementation of new inference algorithms and behavior.

Handlers can be used as higher-order functions, decorators, or context managers to modify the behavior of functions or blocks of code:

For example, consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can mark sample sites as observed using `condition`, which returns a callable with the same input and output signatures as `model`:

```python
>>> conditioned_model = poutine.condition(model, data={"z": 1.0})
```

We can also use handlers as decorators:

```python
>>> @pyro.condition(data={"z": 1.0})
... def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

Or as context managers:

```python
>>> with pyro.condition(data={"z": 1.0}):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(0., s))
...     y = z ** 2
```

Handlers compose freely:
conditioned_model = poutine.condition(model, data={"z": 1.0})
traced_model = poutine.trace(conditioned_model)

Many inference algorithms or algorithmic components can be implemented in just a few lines of code:

```
guide_tr = poutine.trace(guide).get_trace(...)
model_tr = poutine.trace(poutine.replay(conditioned_model, trace=guide_tr)).get_trace(...)
monte_carlo_elbo = model_tr.log_prob_sum() - guide_tr.log_prob_sum()
```

```
block(fn=None, *args, **kwargs)
  Convenient wrapper of BlockMessenger
```
This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

- 0. `hide_fn(msg)` is `True` or `(not expose_fn(msg))` is `True`
- 1. `msg["name"]` in `hide`
- 2. `msg["type"]` in `hide_types`
- 3. `msg["name"]` not in `expose` and `msg["type"]` not in `expose_types`
- 4. `hide`, `hide_types`, and `expose_types` are all `None`

For example, suppose the stochastic function `fn` has two sample sites “a” and “b”. Then any effect outside of `BlockMessenger(fn, hide=['a'])` will not be applied to site “a” and will only see site “b”:

```
>> def fn():
...     a = pyro.sample("a", dist.Normal(0., 1.))
...     return pyro.sample("b", dist.Normal(a, 1.))
>> fn_inner = pyro.poutine.trace(fn)
>> fn_outer = pyro.poutine.trace(pyro.poutine.block(fn_inner, hide=['a']))
>> trace_inner = fn_inner.get_trace()
>> trace_outer = fn_outer.get_trace()
>> "a" in trace_inner
True
>> "a" in trace_outer
False
>> "b" in trace_inner
True
>> "b" in trace_outer
True
```

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `hide_fn` – function that takes a site and returns `True` to hide the site or `False/None` to expose it. If specified, all other parameters are ignored. Only specify one of `hide_fn` or `expose_fn`, not both.
- `expose_fn` – function that takes a site and returns `True` to expose the site or `False/None` to hide it. If specified, all other parameters are ignored. Only specify one of `hide_fn` or `expose_fn`, not both.
- `hide_all` (`bool`) – hide all sites
• **expose_all** (*bool*) – expose all sites normally
• **hide** (*list*) – list of site names to hide
• **expose** (*list*) – list of site names to be exposed while all others hidden
• **hide_types** (*list*) – list of site types to be hidden
• **expose_types** (*list*) – list of site types to be exposed while all others hidden

Returns stochastic function decorated with a `BlockMessenger`

broadcast (*fn=None, *args, **kwargs*)

Convenient wrapper of `BroadcastMessenger`

Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing `batch_shape` must be broadcastable with the size of the plate contexts installed in the `cond_indep_stack`.

Notice how `model_automatic_broadcast` below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping plate contexts.

```python
>>> def model_broadcast_by_hand():
...     with IndepMessenger("batch", 100, dim=-2):
...         with IndepMessenger("components", 3, dim=-1):
...             sample = pyro.sample("sample", dist.Bernoulli(torch.ones(3) * 0.5).expand_by(100))
...             assert sample.shape == torch.Size((100, 3))
...     return sample

>>> @poutine.broadcast
...     def model_automatic_broadcast():
...         with IndepMessenger("batch", 100, dim=-2):
...             with IndepMessenger("components", 3, dim=-1):
...                 sample = pyro.sample("sample", dist.Bernoulli(torch.tensor(0.5)))
...                 assert sample.shape == torch.Size((100, 3))
...         return sample
```

collapse (*fn=None, *args, **kwargs*)

Convenient wrapper of `CollapseMessenger`

EXPERIMENTAL. Collapses all sites in the context by lazily sampling and attempting to use conjugacy relations. If no conjugacy is known this will fail. Code using the results of sample sites must be written to accept Funsors rather than Tensors. This requires `funsor` to be installed.

Warning: This is not compatible with automatic guessing of `max_plate_nesting`. If any plates appear within the collapsed context, you should manually declare `max_plate_nesting` to your inference algorithm (e.g. `Trace_ELBO(max_plate_nesting=1)`).

condition (*fn=None, *args, **kwargs*)

Convenient wrapper of `ConditionMessenger`

Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2

To observe a value for site z, we can write

>>> conditioned_model = pyro.poutine.condition(model, data={"z": torch.tensor(1.)})

This is equivalent to adding $obs=value$ as a keyword argument to $pyro.sample("z", \ldots)$ in $model$.

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **data** – a dict or a $Trace$

Returns stochastic function decorated with a $ConditionMessenger$

do($fn=\text{None}, *\text{args}, **\text{kwargs})$

Convenient wrapper of $Do\text{Messenger}$

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values as if they were hard-coded to those values and introduce fresh sample sites with the same names whose values do not propagate.

Composes freely with $condition()$ to represent counterfactual distributions over potential outcomes. See Single World Intervention Graphs [1] for additional details and theory.

Consider the following Pyro program:

>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2

To intervene with a value for site z, we can write

>>> intervened_model = pyro.poutine.do(model, data={"z": torch.tensor(1.)})

This is equivalent to replacing $z = pyro.sample("z", \ldots)$ with $z = torch.tensor(1.)$ and introducing a fresh sample site $pyro.sample("z", \ldots)$ whose value is not used elsewhere.

References

[1] Single World Intervention Graphs: A Primer, Thomas Richardson, James Robins

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **data** – a dict mapping sample site names to interventions

Returns stochastic function decorated with a $Do\text{Messenger}$

enum($fn=\text{None}, *\text{args}, **\text{kwargs})$

Convenient wrapper of $Enum\text{Messenger}$

Enumerates in parallel over discrete sample sites marked $infer=\text{"enumerate": \"parallel\"}$.
Parameters

`first_available_dim` *(int)* – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer or None.

escape *(fn=None, *args, **kwargs)*

Convenient wrapper of `EscapeMessenger`

Messenger that does a nonlocal exit by raising a `util.NonlocalExit` exception

infer_config *(fn=None, *args, **kwargs)*

Convenient wrapper of `InferConfigMessenger`

Given a callable `fn` that contains Pyro primitive calls and a callable `config_fn` taking a trace site and returning a dictionary, updates the value of the infer kwarg at a sample site to `config_fn(site)`.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `config_fn` – a callable taking a site and returning an infer dict

Returns stochastic function decorated with `InferConfigMessenger`

lift *(fn=None, *args, **kwargs)*

Convenient wrapper of `LiftMessenger`

Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
>>> lifted_model = pyro.poutine.lift(model, prior={"s": dist.Exponential(0.3)})
```

`lift` makes param statements behave like sample statements using the distributions in prior. In this example, site `s` will now behave as if it was replaced with `s = pyro.sample("s", dist.Exponential(0.3))`:

```python
>>> tr = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> tr.nodes["s"]["type"] == "sample"
True
>>> tr2 = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
False
```

Parameters

- `fn` – function whose parameters will be lifted to random values
- `prior` – prior function in the form of a Distribution or a dict of stochastic fns

Returns fn decorated with a `LiftMessenger`

markov *(fn=None, history=1, keep=False, dim=None, name=None)*

Markov dependency declaration.

This can be used in a variety of ways:

- as a context manager
• as a decorator for recursive functions
• as an iterator for markov chains

Parameters

• **history** (int) – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.

• **keep** (bool) – If true, frames are replayable. This is important when branching: if `keep=True`, neighboring branches at the same level can depend on each other; if `keep=False`, neighboring branches are independent (conditioned on their share

• **dim** (int) – An optional dimension to use for this independence index. Interface stub, behavior not yet implemented.

• **name** (str) – An optional unique name to help inference algorithms match `pyro.markov()` sites between models and guides. Interface stub, behavior not yet implemented.

```python
mask(fn=None, *args, **kwargs)
```

Convenient wrapper of `MaskMessenger`

Given a stochastic function with some batched sample statements and masking tensor, mask out some of the sample statements elementwise.

Parameters

• **fn** – a stochastic function (callable containing Pyro primitive calls)

• **mask** (torch.BoolTensor) – a \{0, 1\}-valued masking tensor (1 includes a site, 0 excludes a site)

Returns stochastic function decorated with a `MaskMessenger`

```python
queue(fn=None, queue=None, max_tries=None, extend_fn=None, escape_fn=None, num_samples=None)
```

Used in sequential enumeration over discrete variables.

Given a stochastic function and a queue, return a return value from a complete trace in the queue.

Parameters

• **fn** – a stochastic function (callable containing Pyro primitive calls)

• **queue** – a queue data structure like multiprocessing.Queue to hold partial traces

• **max_tries** – maximum number of attempts to compute a single complete trace

• **extend_fn** – function (possibly stochastic) that takes a partial trace and a site, and returns a list of extended traces

• **escape_fn** – function (possibly stochastic) that takes a partial trace and a site, and returns a boolean value to decide whether to exit

• **num_samples** – optional number of extended traces for extend_fn to return

Returns stochastic function decorated with poutine logic

```python
reparam(fn=None, *args, **kwargs)
```

Convenient wrapper of `ReparamMessenger`

Reparametrizes each affected sample site into one or more auxiliary sample sites followed by a deterministic transformation [1].

To specify reparameterizers, pass a `config` dict or callable to the constructor. See the `pyro.infer.reparam` module for available reparameterizers.
Note some reparameterizers can examine the *args, **kwargs inputs of functions they affect; these reparameterizers require using poutine.reparam as a decorator rather than as a context manager.

Parameters

config (dict or callable) – Configuration, either a dict mapping site name to Reparameterizer, or a function mapping site to Reparameterizer or None. See pyro.infer.reparam.strategies for built-in configuration strategies.

replay

Convenient wrapper of ReplayMessenger

Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

replay makes sample statements behave as if they had sampled the values at the corresponding sites in the trace:

```python
>>> old_trace = pyro.poutine.trace(model).get_trace(1.0)
>>> replayed_model = pyro.poutine.replay(model, trace=old_trace)
>>> bool(replayed_model(0.0) == old_trace.nodes[_RETURN]['value'])
True
```

Parameters

- fn – a stochastic function (callable containing Pyro primitive calls)
- trace – a Trace data structure to replay against
- params – dict of names of param sites and constrained values in fn to replay against

Returns

a stochastic function decorated with a ReplayMessenger

scale

Convenient wrapper of ScaleMessenger

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     pyro.sample("z", dist.Normal(x, s), obs=torch.tensor(1.0))
```

scale multiplicatively scales the log-probabilities of sample sites:

```python
>>> scaled_model = pyro.poutine.scale(model, scale=0.5)
>>> scaled_tr = pyro.poutine.trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = pyro.poutine.trace(model).get_trace(0.0)
```
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `scale` – a positive scaling factor

Returns stochastic function decorated with a `ScaleMessenger`

seed *(fn=None, *args, **kwargs)*

Convenient wrapper of `SeedMessenger`

Handler to set the random number generator to a pre-defined state by setting its seed. This is the same as calling `pyro.set_rng_seed()` before the call to `fn`. This handler has no additional effect on primitive statements on the standard Pyro backend, but it might intercept `pyro.sample` calls in other backends. E.g., the NumPy backend.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls).
- `rng_seed` *(int)* – rng seed.

trace *(fn=None, *args, **kwargs)*

Convenient wrapper of `TraceMessenger`

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

uncondition *(fn=None, *args, **kwargs)*

Convenient wrapper of `UnconditionMessenger`

Messenger to force the value of observed nodes to be sampled from their distribution, ignoring observations.
config_enumerate(guide=None, default='parallel', expand=False, num_samples=None, tmc='diagonal')

Configures enumeration for all relevant sites in a guide. This is mainly used in conjunction with TraceEnum_ELBO.

When configuring for exhaustive enumeration of discrete variables, this configures all sample sites whose distribution satisfies .has_enumerate_support == True. When configuring for local parallel Monte Carlo sampling via default="parallel", num_samples=n, this configures all sample sites. This does not overwrite existing annotations infer={"enumerate": ...}.

This can be used as either a function:

```python
guide = config_enumerate(guide)
```

or as a decorator:

```python
@config_enumerate
def guide1(*args, **kwargs):
    ...
@config_enumerate(default="sequential", expand=True)
def guide2(*args, **kwargs):
    ...
```

Parameters

- `guide (callable)` – a pyro model that will be used as a guide in SVI.
- `default (str)` – Which enumerate strategy to use, one of “sequential”, “parallel”, or None. Defaults to “parallel”.
- `expand (bool)` – Whether to expand enumerated sample values. See enumerate_support() for details. This only applies to exhaustive enumeration, where num_samples=None. If num_samples is not None, then this samples will always be expanded.
- `num_samples (int or None)` – if not None, use local Monte Carlo sampling rather than exhaustive enumeration. This makes sense for both continuous and discrete distributions.
- `tmc (string or None)` – “mixture” or “diagonal” strategies to use in Tensor Monte Carlo

Returns
an annotated guide

Return type
callable

8.2 Trace

class Trace(graph_type='flat')

Bases: object

Graph data structure denoting the relationships amongst different pyro primitives in the execution trace.

An execution trace of a Pyro program is a record of every call to pyro.sample() and pyro.param() in a single execution of that program. Traces are directed graphs whose nodes represent primitive calls or input/output, and whose edges represent conditional dependence relationships between those primitive calls. They are created and populated by poutine.trace.
Each node (or site) in a trace contains the name, input and output value of the site, as well as additional metadata added by inference algorithms or user annotation. In the case of `pyro.sample`, the trace also includes the stochastic function at the site, and any observed data added by users.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `pyro.poutine.trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

We can also inspect or manipulate individual nodes in the trace. `trace.nodes` contains a `collections.OrderedDict` of site names and metadata corresponding to `x`, `s`, `z`, and the return value:

```
>>> list(name for name in trace.nodes.keys())
["_INPUT", "s", "z", "_RETURN"]
```

Values of `trace.nodes` are dictionaries of node metadata:

```python
>>> trace.nodes["z"]
{'type': 'sample', 'name': 'z', 'is_observed': False, 'fn': Normal(), 'value': tensor(0.6480), 'args': (), 'kwargs': {}, 'infer': {}, 'scale': 1.0, 'cond_indep_stack': (), 'done': True, 'stop': False, 'continuation': None}
```

'`infer`' is a dictionary of user- or algorithm-specified metadata. 'args' and 'kwargs' are the arguments passed via `pyro.sample` to `fn.__call__` or `fn.log_prob`. 'scale' is used to scale the log-probability of the site when computing the log-joint. 'cond_indep_stack' contains data structures corresponding to `pyro.plate` contexts appearing in the execution. 'done', 'stop', and 'continuation' are only used by Pyro's internals.

Parameters

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add_edge(site1, site2)</code></td>
<td>Adds an edge between two sites of the trace graph.</td>
</tr>
<tr>
<td><code>add_node(site_name, **kwargs)</code></td>
<td>Adds a node to the trace graph.</td>
</tr>
<tr>
<td><code>compute_log_prob(site_filter=<function Trace.<lambda>>)</code></td>
<td>Computes the site-wise log probabilities of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. Both computations are memoized.</td>
</tr>
<tr>
<td><code>compute_score_parts()</code></td>
<td>Computes the batched local score parts at each site of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. All computations are memoized.</td>
</tr>
</tbody>
</table>
copy()
 Makes a shallow copy of self with nodes and edges preserved.

detach()
 Detach values (in-place) at each sample site of the trace.

property edges
format_shapes(title='Trace Shapes:', lastSite=None)
 Returns a string showing a table of the shapes of all sites in the trace.

iter_stochastic_nodes()
 Returns an iterator over stochastic nodes in the trace.

log_prob_sum(site_filter=<function Trace.<lambda>>)
 Computes the site-wise log probabilities of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. The computation of log_prob_sum is memoized.

 Returns total log probability.
 Return type torch.Tensor

property nonreparam_stochastic_nodes
 Returns a list of names of sample sites whose stochastic functions are not reparameterizable primitive distributions

property observation_nodes
 Returns a list of names of observe sites

pack_tensors(plate_to_symbol=None)
 Computes packed representations of tensors in the trace. This should be called after compute_log_prob() or compute_score_parts().

property param_nodes
 Returns a list of names of param sites

predecessors(site_name)
remove_node(site_name)

property reparameterized_nodes
 Returns a list of names of sample sites whose stochastic functions are reparameterizable primitive distributions

property stochastic_nodes
 Returns a list of names of sample sites

successors(site_name)

symbolize_dims(plate_to_symbol=None)
 Assign unique symbols to all tensor dimensions.

topological_sort(reverse=False)
 Return a list of nodes (site names) in topologically sorted order.

 Parameters reverse (bool) – Return the list in reverse order.
 Returns list of topologically sorted nodes (site names).
8.3 Runtime

exception NonlocalExit(*site, *args, **kwargs*)

 Bases: Exception

 Exception for exiting nonlocally from poutine execution.

 Used by poutine.EscapeMessenger to return site information.

 reset_stack()

 Resetthestateoftheframesremaininginthestack. Necessaryformultiplere-executionsinpoutine.queue.

am_i_wrapped()

 Checks whether the current computation is wrapped in a poutine. :returns: bool

apply_stack(initial_msg)

 Execute the effect stack at a single site according to the following scheme:

 1. For each Messenger in the stack from bottom to top, execute Messenger._process_message with the message; if the message field “stop” is True, stop; otherwise, continue
 2. Apply default behavior (default_process_message) to finish remaining site execution
 3. For each Messenger in the stack from top to bottom, execute _postprocess_message to update the message and internal messenger state with the site results
 4. If the message field “continuation” is not None, call it with the message

 Parameters initial_msg (dict) – the starting version of the trace site
 Returns None

default_process_message(msg)

 Default method for processing messages in inference.

 Parameters msg – a message to be processed
 Returns None

effectful(fn=None, type=None)

 Wrapper for calling apply_stack() to apply any active effects.

get_mask()

 Records the effects of enclosing poutine.mask handlers.

 This is useful for avoiding expensive pyro.factor() computations during prediction, when the log density need not be computed, e.g.:

    ```python
    def model():
        # ...
        if poutine.get_mask() is not False:
            log_density = my_expensive_computation()
            pyro.factor("foo", log_density)
        # ...
    ```
Returns The mask.

Return type None, bool, or torch.Tensor

def get_plates() → tuple
Records the effects of enclosing pyro.plate contexts.

Returns A tuple of pyro.poutine.indep_messenger.CondIndepStackFrame objects.

Return type tuple

8.4 Utilities

all_escape(trace, msg)

Parameters
- **trace** – a partial trace
- **msg** – the message at a Pyro primitive site

Returns boolean decision value

Utility function that checks if a site is not already in a trace.

Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for approximately integrating out variables for variance reduction.

discrete_escape(trace, msg)

Parameters
- **trace** – a partial trace
- **msg** – the message at a Pyro primitive site

Returns boolean decision value

Utility function that checks if a sample site is discrete and not already in a trace.

Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for integrating out discrete variables for variance reduction.

enable_validation(is_validate)

enum_extend(trace, msg, num_samples=None)

Parameters
- **trace** – a partial trace
- **msg** – the message at a Pyro primitive site
- **num_samples** – maximum number of extended traces to return.

Returns a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are enumerated from the support of the input site’s distribution.

Used for exact inference and integrating out discrete variables.
is_validation_enabled()

mc_extend(trace, msg, num_samples=None)

Parameters

- `trace` – a partial trace
- `msg` – the message at a Pyro primitive site
- `num_samples` – maximum number of extended traces to return.

Returns a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are sampled from the input site’s function.

Used for Monte Carlo marginalization of individual sample sites.

prune_subsample_sites(trace)

Copies and removes all subsample sites from a trace.

site_is_factor(site)

Determines whether a trace site originated from a factor statement.

site_is_subsample(site)

Determines whether a trace site originated from a subsample statement inside an `plate`.

8.5 Messengers

Messenger objects contain the implementations of the effects exposed by handlers. Advanced users may modify the implementations of messengers behind existing handlers or write new messengers that implement new effects and compose correctly with the rest of the library.

8.5.1 Messenger

class Messenger

Context manager class that modifies behavior and adds side effects to stochastic functions i.e. callables containing Pyro primitive statements.

This is the base `Messenger` class. It implements the default behavior for all Pyro primitives, so that the joint distribution induced by a stochastic function `fn` is identical to the joint distribution induced by `Messenger() (fn)`.

Class of transformers for messages passed during inference. Most inference operations are implemented in subclasses of this.

classmethod register(fn=None, type=None, post=None)

Parameters

- `fn` – function implementing operation
- `type` (`str`) – name of the operation (also passed to `effectful()`)
- `post` (`bool`) – if `True`, use this operation as postprocess
Dynamically add operations to an effect. Useful for generating wrappers for libraries.

Example:
```py
@SomeMessengerClass.register
def some_function(msg):
    ...
do_something...
    return msg
```

```py
classmethod unregister(fn=None, type=None)
```

Parameters
- `fn` – function implementing operation
- `type (str)` – name of the operation (also passed to `effectful()`)

Dynamically remove operations from an effect. Useful for removing wrappers from libraries.

Example:
```py
SomeMessengerClass.unregister(some_function, "name")
```

```py
block_messengers(predicate)
```

Parameters
- `predicate` (callable) – A predicate mapping messenger instance to boolean. This mutes all messengers m for which `bool(predicate(m))` is True.

Yields
A list of matched messengers that are blocked.

```py
unwrap(fn)
```

Recursively unwraps poutines.

8.5.2 BlockMessenger

```py
class BlockMessenger(hide_fn=None, expose_fn=None, hide_all=True, expose_all=False, hide=None, expose=None, hide_types=None, expose_types=None)
```

Bases: `pyro.poutine.messenger.Messenger`

This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

0. `hide_fn(msg)` is True or (not `expose_fn(msg)`) is True
1. `msg["name"]` in `hide`
2. `msg["type"]` in `hide_types`
3. `msg["name"]` not in `expose` and `msg["type"]` not in `expose_types`
4. `hide`, `hide_types`, and `expose_types` are all None

For example, suppose the stochastic function `fn` has two sample sites “a” and “b”. Then any effect outside of `BlockMessenger(fn, hide=["a"])` will not be applied to site “a” and will only see site “b”:

8.5. Messengers
```python
def fn():
    a = pyro.sample("a", dist.Normal(0., 1.))
    return pyro.sample("b", dist.Normal(a, 1.))

fn_inner = pyro.poutine.trace(fn)
fn_outer = pyro.poutine.trace(pyro.poutine.block(fn_inner, hide=["a"]))
trace_inner = fn_inner.get_trace()
trace_outer = fn_outer.get_trace()
"a" in trace_inner
True
"a" in trace_outer
False
"b" in trace_inner
True
"b" in trace_outer
True
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **hide_fn** – function that takes a site and returns True to hide the site or False/None to expose it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.
- **expose_fn** – function that takes a site and returns True to expose the site or False/None to hide it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.
- **hide_all** *(bool)* – hide all sites
- **expose_all** *(bool)* – expose all sites normally
- **hide** *(list)* – list of site names to hide
- **expose** *(list)* – list of site names to be exposed while all others hidden
- **hide_types** *(list)* – list of site types to be hidden
- **expose_types** *(lists)* – list of site types to be exposed while all others hidden

Returns

stochastic function decorated with a `BlockMessenger`

8.5.3 BroadcastMessenger

class BroadcastMessenger

Bases: `pyro.poutine.messenger.Messenger`

Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing `batch_shape` must be broadcastable with the size of the `plate` contexts installed in the `cond_indep_stack`.

Notice how `model_automatic_broadcast` below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping `plate` contexts.

```python
def model_broadcast_by_hand():
    with IndepMessenger("batch", 100, dim=-2):
        with IndepMessenger("components", 3, dim=-1):
```
8.5.4 CollapseMessenger

class CollapseMessenger(*args, **kwargs)
 Bases: pyro.poutine.trace_messenger.TraceMessenger

 EXPERIMENTAL Collapses all sites in the context by lazily sampling and attempting to use conjugacy relations.
 If no conjugacy is known this will fail. Code using the results of sample sites must be written to accept Funsors
 rather than Tensors. This requires funsor to be installed.

 Warning: This is not compatible with automatic guessing of max_plate_nesting. If any plates appear
 within the collapsed context, you should manually declare max_plate_nesting to your inference algorithm
 (e.g. Trace_ELBO(max_plate_nesting=1)).

8.5.5 ConditionMessenger

class ConditionMessenger(data)
 Bases: pyro.poutine.messenger.Messenger

 Given a stochastic function with some sample statements and a dictionary of observations at names, change the
 sample statements at those names into observes with those values.

 Consider the following Pyro program:

 >>> def model(x):
 ... s = pyro.param("s", torch.tensor(0.5))
 ... z = pyro.sample("z", dist.Normal(x, s))
 ... return z ** 2

 To observe a value for site z, we can write

 >>> conditioned_model = pyro.poutine.condition(model, data={"z": torch.tensor(1.)})

 This is equivalent to adding obs=value as a keyword argument to pyro.sample("z", ...) in model.

 Parameters
 * fn – a stochastic function (callable containing Pyro primitive calls)
 * data – a dict or a Trace
8.5.6 DoMessenger

class DoMessenger(data)
 Bases: pyro.poutine.messenger.Messenger

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values as if they were hard-coded to those values and introduce fresh sample sites with the same names whose values do not propagate.

Composes freely with condition() to represent counterfactual distributions over potential outcomes. See Single World Intervention Graphs [1] for additional details and theory.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

To intervene with a value for site \(z\), we can write

```python
>>> intervened_model = pyro.poutine.do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing \(z = \text{pyro.sample("z", ...)}\) with \(z = \text{torch.tensor(1.)}\) and introducing a fresh sample site \(\text{pyro.sample("z", ...)}\) whose value is not used elsewhere.

References

[1] Single World Intervention Graphs: A Primer, Thomas Richardson, James Robins

Parameters

• \(\text{fn}\) – a stochastic function (callable containing Pyro primitive calls)
• \(\text{data}\) – a dict mapping sample site names to interventions

Returns stochastic function decorated with a DoMessenger

8.5.7 EnumMessenger

class EnumMessenger(first_available_dim=None)
 Bases: pyro.poutine.messenger.Messenger

Enumerates in parallel over discrete sample sites marked infer={"enumerate": "parallel"}.

Parameters first_available_dim \((\text{int})\) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer or None.

enumerate_site(msg)
8.5.8 EscapeMessenger

class EscapeMessenger(escape_fn)
 Bases: pyro.poutine.messenger.Messenger
 Messenger that does a nonlocal exit by raising a util.NonlocalExit exception

8.5.9 IndepMessenger

class CondIndepStackFrame(name, dim, size, counter)
 Bases: pyro.poutine.indep_messenger.CondIndepStackFrame
 property vectorized

class IndepMessenger(name=None, size=None, dim=None, device=None)
 Bases: pyro.poutine.messenger.Messenger
 This messenger keeps track of stack of independence information declared by nested plate contexts. This information is stored in a cond_indep_stack at each sample/observe site for consumption by TraceMessenger.

Example:

```python
x_axis = IndepMessenger('outer', 320, dim=-1)
y_axis = IndepMessenger('inner', 200, dim=-2)
with x_axis:
    x_noise = sample("x_noise", dist.Normal(loc, scale).expand_by([320]))
with y_axis:
    y_noise = sample("y_noise", dist.Normal(loc, scale).expand_by([200, 1]))
with x_axis, y_axis:
    xy_noise = sample("xy_noise", dist.Normal(loc, scale).expand_by([200, 320]))
```

property indices

next_context()
 Increments the counter.

8.5.10 InferConfigMessenger

class InferConfigMessenger(config_fn)
 Bases: pyro.poutine.messenger.Messenger
 Given a callable fn that contains Pyro primitive calls and a callable config_fn taking a trace site and returning a dictionary, updates the value of the infer kwarg at a sample site to config_fn(site).

Parameters
 * fn – a stochastic function (callable containing Pyro primitive calls)
 * config_fn – a callable taking a site and returning an infer dict

Returns stochastic function decorated with InferConfigMessenger
8.5.11 LiftMessenger

class LiftMessenger(prior)

Bases: pyro.poutine.messenger.Messenger

Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2

>>> lifted_model = pyro.poutine.lift(model, prior={"s": dist.Exponential(0.3)})
```

`lift` makes param statements behave like sample statements using the distributions in `prior`. In this example, site `s` will now behave as if it was replaced with `s = pyro.sample("s", dist.Exponential(0.3))`:

```python
>>> tr = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> tr.nodes["s"]["type"] == "sample"
True
>>> tr2 = pyro.poutine.trace(lifted_model).get_trace(0.0)
>>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
False
```

Parameters

- **fn** – function whose parameters will be lifted to random values
- **prior** – prior function in the form of a Distribution or a dict of stochastic fns

Returns fn decorated with a LiftMessenger

8.5.12 MarkovMessenger

class MarkovMessenger(history=1, keep=False, dim=None, name=None)

Bases: pyro.poutine.reentrant_messenger.ReentrantMessenger

Markov dependency declaration.

This is a statistical equivalent of a memory management arena.

Parameters

- **history** (int) – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to pyro.plate.
- **keep** (bool) – If true, frames are replayable. This is important when branching: if `keep=True`, neighboring branches at the same level can depend on each other; if `keep=False`, neighboring branches are independent (conditioned on their shared ancestors).
- **dim** (int) – An optional dimension to use for this independence index. Interface stub, behavior not yet implemented.
- **name** (str) – An optional unique name to help inference algorithms match pyro.markov() sites between models and guides. Interface stub, behavior not yet implemented.

`generator` (iterable)
8.5.13 MaskMessenger

class MaskMessenger(mask)
Bases: pyro.poutine.messenger.Messenger

Given a stochastic function with some batched sample statements and masking tensor, mask out some of the sample statements elementwise.

Parameters

• fn – a stochastic function (callable containing Pyro primitive calls)

• mask (torch.BoolTensor) – a {0,1}-valued masking tensor (1 includes a site, 0 excludes a site)

Returns stochastic function decorated with a MaskMessenger

8.5.14 PlateMessenger

class PlateMessenger(name=None, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)
Bases: pyro.poutine.subsample_messenger.SubsampleMessenger

Swiss army knife of broadcasting amazingness: combines shape inference, independence annotation, and subsampling

block_plate(name=None, dim=None, *, strict=True)

EXPERIMENTAL Context manager to temporarily block a single enclosing plate.

This is useful for sampling auxiliary variables or lazily sampling global variables that are needed in a plated context. For example the following models are equivalent:

Example:

```python
def model_1(data):
    loc = pyro.sample("loc", dist.Normal(0, 1))
    with pyro.plate("data", len(data)):
        with block_plate("data"):
            scale = pyro.sample("scale", dist.LogNormal(0, 1))
            pyro.sample("x", dist.Normal(loc, scale))

def model_2(data):
    loc = pyro.sample("loc", dist.Normal(0, 1))
    scale = pyro.sample("scale", dist.LogNormal(0, 1))
    with pyro.plate("data", len(data)):
        pyro.sample("x", dist.Normal(loc, scale))
```

Parameters

• name (str) – Optional name of plate to match.

• dim (int) – Optional dim of plate to match. Must be negative.

• strict (bool) – Whether to error if no matching plate is found. Defaults to True.

Raises ValueError if no enclosing plate was found and strict=True.
8.5.15 ReentrantMessenger

class ReentrantMessenger
 Bases: pyro.poutine.messenger.Messenger

8.5.16 ReparamMessenger

class ReparamHandler(msngr, fn)
 Bases: object

 Reparameterization poutine.

class ReparamMessenger(config: Union[Dict[str, object], Callable])
 Bases: pyro.poutine.messenger.Messenger

 Reparametrizes each affected sample site into one or more auxiliary sample sites followed by a deterministic transformation [1].

 To specify reparameterizers, pass a config dict or callable to the constructor. See the pyro.infer.reparam module for available reparameterizers.

 Note some reparameterizers can examine the *args, **kwargs inputs of functions they affect; these reparameterizers require using poutine.reparam as a decorator rather than as a context manager.

 Parameters
 config (dict or callable) – Configuration, either a dict mapping site name to Reparameterizer, or a function mapping site to Reparameterizer or None. See pyro.infer.reparam.strategies for built-in configuration strategies.

8.5.17 ReplayMessenger

class ReplayMessenger(trace=None, params=None)
 Bases: pyro.poutine.messenger.Messenger

 Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace.

 Consider the following Pyro program:

 >>> def model(x):
 ... s = pyro.param("s", torch.tensor(0.5))
 ... z = pyro.sample("z", dist.Normal(x, s))
 ... return z ** 2

 replay makes sample statements behave as if they had sampled the values at the corresponding sites in the trace:

 >>> old_trace = pyro.poutine.trace(model).get_trace(1.0)
 >>> replayed_model = pyro.poutine.replay(model, trace=old_trace)
 >>> bool(replayed_model(0.0) == old_trace.nodes["_RETURN"]['value'])
 True

 Parameters
• **fn** – a stochastic function (callable containing Pyro primitive calls)
• **trace** – a **Trace** data structure to replay against
• **params** – dict of names of param sites and constrained values in fn to replay against

Returns a stochastic function decorated with a **ReplayMessenger**

8.5.18 ScaleMessenger

class **ScaleMessenger**(scale)
 Bases: *pyro.poutine.messenger.Messenger*

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     pyro.sample("z", dist.Normal(x, s), obs=torch.tensor(1.0))
```

scale multiplicatively scales the log-probabilities of sample sites:

```python
>>> scaled_model = pyro.poutine.scale(model, scale=0.5)
>>> scaled_tr = pyro.poutine.trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = pyro.poutine.trace(model).get_trace(0.0)
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **scale** – a positive scaling factor

Returns stochastic function decorated with a **ScaleMessenger**

8.5.19 SeedMessenger

class **SeedMessenger**(rng_seed)
 Bases: *pyro.poutine.messenger.Messenger*

Handler to set the random number generator to a pre-defined state by setting its seed. This is the same as calling `pyro.set_rng_seed()` before the call to `fn`. This handler has no additional effect on primitive statements on the standard Pyro backend, but it might intercept `pyro.sample` calls in other backends, e.g. the NumPy backend.

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls).
- **rng_seed**(int) – rng seed.
8.5.20 SubsampleMessenger

class SubsampleMessenger(name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)

Bases: pyro.poutine.indep_messenger.IndepMessenger

Extension of IndepMessenger that includes subsampling.

8.5.21 TraceMessenger

class TraceHandler(msngr, fn)

Bases: object

Execution trace poutine.

A TraceHandler records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)

We can also use this for visualization.

get_trace(*args, **kwargs)

Returns data structure

Return type pyro.poutine.Trace

Helper method for a very common use case. Calls this poutine and returns its trace instead of the function’s return value.

property trace

class TraceMessenger(graph_type=None, param_only=None)

Bases: pyro.poutine.messenger.Messenger

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using trace and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **graph_type** – string that specifies the kind of graph to construct
- **param_only** – if true, only records params and not samples
Returns stochastic function decorated with a `TraceMessenger`

get_trace()

 Returns data structure

 Return type `pyro.poutine.Trace`

 Helper method for a very common use case. Returns a shallow copy of `self.trace`.

identify_dense_edges(trace)

 Modifies a trace in-place by adding all edges based on the `cond_indep_stack` information stored at each site.

8.5.22 UnconditionMessenger

class UnconditionMessenger

 Bases: `pyro.poutine.messenger.Messenger`

 Messenger to force the value of observed nodes to be sampled from their distribution, ignoring observations.

8.5.23 GuideMessenger

class GuideMessenger(model: Callable)

 Bases: `pyro.poutine.trace_messenger.TraceMessenger`, `abc.ABC`

 Abstract base class for effect-based guides.

 Derived classes must implement the `get_posterior()` method.

 property model

 __call__(*args, **kwargs) → Dict[str, torch.Tensor]

 Draws posterior samples from the guide and replays the model against those samples.

 Returns A dict mapping sample site name to sample value. This includes latent, deterministic, and observed values.

 Return type dict

 abstract get_posterior(name: str, prior: pyro.distributions.distribution.Distribution) →

 Union[pyro.distributions.distribution.Distribution, torch.Tensor]

 Abstract method to compute a posterior distribution or sample a posterior value given a prior distribution conditioned on upstream posterior samples.

 Implementations may use `pyro.param` and `pyro.sample` inside this function, but `pyro.sample` statements should set `infer={"is_auxiliary": True"}`.

 Implementations may access further information for computations:

 • `value = self.upstream_value(name)` is the value of an upstream sample or deterministic site.

 • `self.trace` is a trace of upstream sites, and may be useful for other information such as `self.trace.nodes["my_site"]["fn"]` or `self.trace.nodes["my_site"]["cond_indep_stack"]`.

 • `args, kwargs = self.args_kwargs` are the inputs to the model, and may be useful for amortization.

Parameters
• **name** *(str)* – The name of the sample site to sample.

• **prior** *(Distribution)* – The prior distribution of this sample site (conditioned on upstream samples from the posterior).

Returns A posterior distribution or sample from the posterior distribution.

Return type *Distribution* or *torch.Tensor*

upstream_value *(name: str) → torch.Tensor*

For use in *get_posterior()*.

Returns The value of an upstream sample or deterministic site

Return type *torch.Tensor*

**get_traces() → Tuple*[pyro.poutine.trace_struct.Trace, pyro.poutine.trace_struct.Trace]*

This can be called after running *__call__()* to extract a pair of traces.

In contrast to the trace-replay pattern of generating a pair of traces, *GuideMessenger* interleaves model and guide computations, so only a single *guide(*args, **kwargs)* call is needed to create both traces. This function merely extract the relevant information from this guide’s .trace attribute.

Returns a pair (model_trace, guide_trace)

Return type *tuple*
The `pyro.ops` module implements tensor utilities that are mostly independent of the rest of Pyro.

9.1 Utilities for HMC

```python
class DualAveraging(prox_center=0, t0=10, kappa=0.75, gamma=0.05)
    Bases: object

Dual Averaging is a scheme to solve convex optimization problems. It belongs to a class of subgradient methods which uses subgradients to update parameters (in primal space) of a model. Under some conditions, the averages of generated parameters during the scheme are guaranteed to converge to an optimal value. However, a counter-intuitive aspect of traditional subgradient methods is “new subgradients enter the model with decreasing weights” (see [1]). Dual Averaging scheme solves that phenomenon by updating parameters using weights equally for subgradients (which lie in a dual space), hence we have the name “dual averaging”.

This class implements a dual averaging scheme which is adapted for Markov chain Monte Carlo (MCMC) algorithms. To be more precise, we will replace subgradients by some statistics calculated during an MCMC trajectory. In addition, introducing some free parameters such as $t_0$ and $\kappa$ is helpful and still guarantees the convergence of the scheme.

**Parameters**

- **prox_center (float)** – A “prox-center” parameter introduced in [1] which pulls the primal sequence towards it.
- **t0 (float)** – A free parameter introduced in [2] that stabilizes the initial steps of the scheme.
- **kappa (float)** – A free parameter introduced in [2] that controls the weights of steps of the scheme. For a small $\kappa$, the scheme will quickly forget states from early steps. This should be a number in $(0.5, 1]$.
- **gamma (float)** – A free parameter which controls the speed of the convergence of the scheme.

**reset()**

Updates states of the scheme given a new statistic/subgradient $g$.

**Parameters** $g$ (float) – A statistic calculated during an MCMC trajectory or subgradient.
get_state()
Returns the latest $x_t$ and average of $\{x_i\}_{i=1}^t$ in primal space.

velocity_verlet($z, r, potential\_fn, kinetic\_grad, step\_size, num\_steps=1, z\_grads=None$)
Second order symplectic integrator that uses the velocity verlet algorithm.

Parameters
- $z$ (dict) – dictionary of sample site names and their current values (type Tensor).
- $r$ (dict) – dictionary of sample site names and corresponding momenta (type Tensor).
- potential_fn (callable) – function that returns potential energy given $z$ for each sample site. The negative gradient of the function with respect to $z$ determines the rate of change of the corresponding sites’ momenta $r$.
- kinetic_grad (callable) – a function calculating gradient of kinetic energy w.r.t. momentum variable.
- step_size (float) – step size for each time step iteration.
- num_steps (int) – number of discrete time steps over which to integrate.
- $z\_grads$ (torch.Tensor) – optional gradients of potential energy at current $z$.

Return tuple ($z\_next, r\_next, z\_grads, potential\_energy$) next position and momenta, together with the potential energy and its gradient w.r.t. $z\_next$.

potential_grad($potential\_fn, z$)
Gradient of $potential\_fn$ w.r.t. parameters $z$.

Parameters
- potential_fn – python callable that takes in a dictionary of parameters and returns the potential energy.
- $z$ (dict) – dictionary of parameter values keyed by site name.

Returns tuple of ($z\_grads, potential\_energy$), where $z\_grads$ is a dictionary with the same keys as $z$ containing gradients and potential_energy is a torch scalar.

class WelfordCovariance(diagonal=True)
Bases: object
Implements Welford’s online scheme for estimating (co)variance (see [1]). Useful for adapting diagonal and dense mass structures for HMC.

References
[1] The Art of Computer Programming, Donald E. Knuth
reset()
update(sample)
get_covariance(regularize=True)

class WelfordArrowheadCovariance(head_size=0)
Bases: object
Likes WelfordCovariance but generalized to the arrowhead structure.
reset()
update(sample)
get_covariance\( (\text{regularize=\text{True}}) \)

Gets the covariance in arrowhead form: (top, bottom_diag) where top = cov[:\text{head_size}] and bottom_diag = cov.diag()[:\text{head_size}].

### 9.2 Newton Optimizers

**newton_step\( (\text{loss, x, \text{trust_radius=\text{None}}}) \)**

Performs a Newton update step to minimize loss on a batch of variables, optionally constraining to a trust region [1].

This is especially useful because the final solution of newton iteration is differentiable wrt the inputs, even when all but the final x is detached, due to this method’s quadratic convergence [2]. \text{loss} must be twice-differentiable as a function of x. If \text{loss} is 2+d-times differentiable, then the return value of this function is d-times differentiable.

When \text{loss} is interpreted as a negative log probability density, then the return values mode, \text{cov} of this function can be used to construct a Laplace approximation MultivariateNormal\( (\text{mode}, \text{cov}) \).

### Warning

Take care to detach the result of this function when used in an optimization loop. If you forget to detach the result of this function during optimization, then backprop will propagate through the entire iteration process, and worse will compute two extra derivatives for each step.

Example use inside a loop:

```python
x = torch.zeros(1000, 2) # arbitrary initial value
for step in range(100):
 x = x.detach() # block gradients through previous steps
 x.requires_grad = True # ensure loss is differentiable wrt x
 loss = my_loss_function(x)
 x = newton_step(loss, x, trust_radius=1.0)
the final x is still differentiable
```


#### Parameters

- **loss** (torch.Tensor) – A scalar function of x to be minimized.
- **x** (torch.Tensor) – A dependent variable of shape \((N, D)\) where \(N\) is the batch size and \(D\) is a small number.
- **trust_radius** (float) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

#### Returns

A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an estimate of the covariance DxD matrix with cov.shape == x. shape[:\text{-1}] + (D,D).

#### Return type
tuple
newton_step_1d(loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 1-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters
- loss (torch.Tensor) – A scalar function of x to be minimized.
- x (torch.Tensor) – A dependent variable with rightmost size of 1.
- trust_radius (float) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an esitmate of the covariance 1x1 matrix with cov.shape == x. shape[:,-1] + (1,1).

Return type tuple

newton_step_2d(loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 2-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters
- loss (torch.Tensor) – A scalar function of x to be minimized.
- x (torch.Tensor) – A dependent variable with rightmost size of 2.
- trust_radius (float) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an esitmate of the covariance 2x2 matrix with cov.shape == x. shape[:,-1] + (2,2).

Return type tuple

newton_step_3d(loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 3-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters
- loss (torch.Tensor) – A scalar function of x to be minimized.
- x (torch.Tensor) – A dependent variable with rightmost size of 2.
- trust_radius (float) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an esitmate of the covariance 3x3 matrix with cov.shape == x. shape[:,-1] + (3,3).

Return type tuple
9.3 Special Functions

safe_log(x)
Like torch.log() but avoids infinite gradients at log(0) by clamping them to at most 1 / finfo.eps.

log_beta(x, y, tol=0.0)
Computes log Beta function.
When tol >= 0.02 this uses a shifted Stirling’s approximation to the log Beta function. The approximation adapts Stirling’s approximation of the log Gamma function:

\[
\log\gamma(z) = (z - 1/2) \log(z) - z + \log(2 * \pi) / 2
\]
to approximate the log Beta function:

\[
\log\beta(x, y) = (x-1/2) \log(x) + (y-1/2) \log(y) - (x+y-1/2) \log(x+y) + \log(2*\pi)/2
\]

The approximation additionally improves accuracy near zero by iteratively shifting the log Gamma approximation using the recursion:

\[
\log\gamma(x) = \log\gamma(x + 1) - \log(x)
\]
If this recursion is applied n times, then absolute error is bounded by error < 0.082 / n < tol, thus we choose n based on the user provided tol.

Parameters
- x (torch.Tensor) – A positive tensor.
- y (torch.Tensor) – A positive tensor.
- tol (float) – Bound on maximum absolute error. Defaults to 0.1. For very small tol, this function simply defers to log_beta().

Return type torch.Tensor

log_binomial(n, k, tol=0.0)
Computes log binomial coefficient.
When tol >= 0.02 this uses a shifted Stirling’s approximation to the log Beta function via log_beta().

Parameters
- n (torch.Tensor) – A nonnegative integer tensor.
- k (torch.Tensor) – An integer tensor ranging in [0, n].

Return type torch.Tensor

log_I1(orders: int, value: torch.Tensor, terms=250)
Compute first n log modified bessel function of first kind .. math

\[
\log(I_v(z)) = v \log(z/2) + \log(\sum_{k=0}^{\infty} \exp(2k^2 \log(z/2)) - \sum_{k} \log(kk) - \log(\gamma(v + k + 1))
\]

Parameters
- orders – orders of the log modified bessel function.
• **value** – values to compute modified bessel function for
• **terms** – truncation of summation

Returns 0 to orders modified bessel function

### 9.4 Tensor Utilities

**as_complex(x)**

Similar to `torch.view_as_complex()` but copies data in case strides are not multiples of two.

**block_diag_embed(mat)**

Takes a tensor of shape (..., B, M, N) and returns a block diagonal tensor of shape (..., B x M, B x N).

Parameters

- **mat** (`torch.Tensor`) – an input tensor with 3 or more dimensions

Returns `torch.Tensor` a block diagonal tensor with dimension \( m \cdot \text{dim}() - 1 \)

**block_diagonal(mat, block_size)**

Takes a block diagonal tensor of shape (..., B x M, B x N) and returns a tensor of shape (..., B, M, N).

Parameters

- **mat** (`torch.Tensor`) – an input tensor with 2 or more dimensions
- **block_size** (`int`) – the number of blocks B.

Returns `torch.Tensor` a tensor with dimension \( m \cdot \text{dim}() + 1 \)

**periodic_repeat(tensor, size, dim)**

Repeat a period-sized tensor up to given size. For example:

```
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> periodic_repeat(x, 4, 0)
tensor([[1, 2, 3],
 [4, 5, 6],
 [1, 2, 3],
 [4, 5, 6]])
```

This is useful for computing static seasonality in time series models.

Parameters

- **tensor** (`torch.Tensor`) – A tensor of differences.
- **size** (`int`) – Desired size of the result along dimension `dim`.
- **dim** (`int`) – The tensor dimension along which to repeat.

**periodic_cumsum(tensor, period, dim)**

Compute periodic cumsum along a given dimension. For example if `dim=0`:

```python
for t in range(period):
 assert result[t] == tensor[t]
for t in range(period, len(tensor)):
 assert result[t] == tensor[t] + result[t - period]
```

This is useful for computing drifting seasonality in time series models.
Parameters

- **tensor** *(torch.Tensor)* – A tensor of differences.
- **period** *(int)* – The period of repetition.
- **dim** *(int)* – The tensor dimension along which to accumulate.

`periodic_features(duration, max_period=None, min_period=None, **options)`

Create periodic (sin, cos) features from `max_period` down to `min_period`.

This is useful in time series models where long uneven seasonality can be treated via regression. When only `max_period` is specified this generates periodic features at all length scales. When also `min_period` is specified this generates periodic features at large length scales, but omits high frequency features. This is useful when combining regression for long seasonality with other techniques like `periodic_repeat()` and `periodic_cumsum()` for short time scales. For example, to combine regress yearly seasonality down to the scale of one week one could set `max_period=365.25` and `min_period=7`.

Parameters

- **duration** *(int)* – Number of discrete time steps.
- **max_period** *(float)* – Optional max period, defaults to `duration`.
- **min_period** *(float)* – Optional min period (exclusive), defaults to $2 = $Nyquist$ cutoff$.
- **options** – Tensor construction options, e.g. `dtype` and `device`.

Returns A `(duration, 2 * ceil(max_period / min_period) - 2)`-shaped tensor of features normalized to lie in $[-1,1]$.

Return type `Tensor`

`next_fast_len(size)`

Returns the next largest number $n \geq size$ whose prime factors are all 2, 3, or 5. These sizes are efficient for fast fourier transforms. Equivalent to `scipy.fftpack.next_fast_len()`.

Parameters **size** *(int)* – A positive number.

Returns A possibly larger number.

Return type int

`convolve(signal, kernel, mode='full')`

Computes the 1-d convolution of signal by kernel using FFTs. The two arguments should have the same rightmost dim, but may otherwise be arbitrarily broadcastable.

Parameters

- **signal** *(torch.Tensor)* – A signal to convolve.
- **kernel** *(torch.Tensor)* – A convolution kernel.

Returns A tensor with broadcasted shape. Letting $m = signal.size(-1)$ and $n = kernel.size(-1)$, the rightmost size of the result will be: $m + n - 1$ if mode is ‘full’; $max(m, n) - min(m, n) + 1$ if mode is ‘valid’; or $max(m, n)$ if mode is ‘same’.

Return type torch.Tensor

`repeated_matmul(M, n)`

Takes a batch of matrices $M$ as input and returns the stacked result of doing the $n$-many matrix multiplications $M, M^2, \ldots, M^n$. Parallel cost is logarithmic in $n$.

Parameters

---

9.4. Tensor Utilities
Pyro Documentation

- **M (torch.Tensor)** – A batch of square tensors of shape (... , N , N).
- **n (int)** – The order of the largest product $M^n$

Returns `torch.Tensor` A batch of square tensors of shape (n , ... , N , N)

dct(x, dim=-1)
Discrete cosine transform of type II, scaled to be orthonormal.
This is the inverse of `idct_ii()` , and is equivalent to `scipy.fftpack.dct()` with norm="ortho".

Parameters
- **x (Tensor)** – The input signal.
- **dim (int)** – Dimension along which to compute DCT.

Return type Tensor

idct(x, dim=-1)
Inverse discrete cosine transform of type II, scaled to be orthonormal.
This is the inverse of `dct_ii()` , and is equivalent to `scipy.fftpack.idct()` with norm="ortho".

Parameters
- **x (Tensor)** – The input signal.
- **dim (int)** – Dimension along which to compute DCT.

Return type Tensor

haar_transform(x)
Discrete Haar transform.
Performs a Haar transform along the final dimension. This is the inverse of `inverse_haar_transform()`.

Parameters **x (Tensor)** – The input signal.

Return type Tensor

inverse_haar_transform(x)
Performs an inverse Haar transform along the final dimension. This is the inverse of `haar_transform()`.

Parameters **x (Tensor)** – The input signal.

Return type Tensor

cholesky(x)

cholesky_solve(x, y)

matmul(x, y)

matvecmul(x, y)

triangular_solve(x, y, upper=False, transpose=False)

precision_to_scale_tril(P)

safe_normalize(x, *, p=2)
Safely project a vector onto the sphere wrt the p-norm. This avoids the singularity at zero by mapping zero to the vector [1, 0, 0, ..., 0].

Parameters
- **x (torch.Tensor)** – A vector
- **p (float)** – The norm exponent, defaults to 2 i.e. the Euclidean norm.
Returns A normalized version \( x / \|x\|_p \).

Return type Tensor

### 9.5 Tensor Indexing

**index(tensor, args)**

Indexing with nested tuples.

See also the convenience wrapper `Index`.

This is useful for writing indexing code that is compatible with multiple interpretations, e.g. scalar evaluation, vectorized evaluation, or reshaping.

For example suppose \( x \) is a parameter with \( x\.\text{dim}() == 2 \) and we wish to generalize the expression \( x[\ldots, t] \) where \( t \) can be any of:

- a scalar \( t=1 \) as in \( x[\ldots, 1] \);
- a slice \( t=\text{slice}(\text{None}) \) equivalent to \( x[\ldots, :] \); or
- a reshaping operation \( t=(\text{Ellipsis}, \text{None}) \) equivalent to \( x\.\text{unsqueeze}(-1) \).

While naive indexing would work for the first two, the third example would result in a nested tuple \((\text{Ellipsis}, (\text{Ellipsis}, \text{None}))\). This helper flattens that nested tuple and combines consecutive \text{Ellipsis}.

**Parameters**

- `tensor` (*torch.Tensor*) – A tensor to be indexed.
- `args` (*tuple*) – An index, as args to `__getitem__`.

**Returns** A flattened interpretation of `tensor[args]`.

**Return type** `torch.Tensor`

**class Index(tensor)**

Bases: `object`

Convenience wrapper around `index()`.

The following are equivalent:

```python
Index(x)[..., i, j, :]
index(x, (Ellipsis, i, j, slice(None)))
```

**Parameters**

- `tensor` (*torch.Tensor*) – A tensor to be indexed.

**Returns** An object with a special `__getitem__()` method.

**vindex(tensor, args)**

Vectorized advanced indexing with broadcasting semantics.

See also the convenience wrapper `Vindex`.

This is useful for writing indexing code that is compatible with batching and enumeration, especially for selecting mixture components with discrete random variables.

For example suppose \( x \) is a parameter with \( x\.\text{dim}() == 3 \) and we wish to generalize the expression \( x[i, :, j] \) from integer \( i, j \) to tensors \( i, j \) with batch dims and enum dims (but no event dims). Then we can write the generalize version using `Vindex`
\[ x_{ij} = \text{Vindex}(x)[i, :, j] \]

\[ \text{batch\_shape} = \text{broadcast\_shape}(i.\text{shape}, j.\text{shape}) \]
\[ \text{event\_shape} = (x.\text{size}(1),) \]
\[ \text{assert} \ x_{ij}.\text{shape} == \text{batch\_shape} + \text{event\_shape} \]

To handle the case when \( x \) may also contain batch dimensions (e.g. if \( x \) was sampled in a plated context as when using vectorized particles), \text{vindex()} uses the special convention that \text{Ellipsis} denotes batch dimensions (hence \( \ldots \) can appear only on the left, never in the middle or in the right). Suppose \( x \) has event dim 3. Then we can write:

\[ \text{old\_batch\_shape} = x.\text{shape}[:-3] \]
\[ \text{old\_event\_shape} = x.\text{shape}[-3:] \]
\[ x_{ij} = \text{Vindex}(x)[\ldots, i, :, j] \quad \# \text{ The } \ldots \text{ denotes unknown batch shape.} \]
\[ \text{new\_batch\_shape} = \text{broadcast\_shape}(\text{old\_batch\_shape}, i.\text{shape}, j.\text{shape}) \]
\[ \text{new\_event\_shape} = (x.\text{size}(1),) \]
\[ \text{assert} \ x_{ij}.\text{shape} = \text{new\_batch\_shape} + \text{new\_event\_shape} \]

Note that this special handling of \text{Ellipsis} differs from the NEP [1].

Formally, this function assumes:

1. Each arg is either \text{Ellipsis}, \text{slice(None)}, an integer, or a batched torch.LongTensor (i.e. with empty event shape). This function does not support Nontrivial slices or torch.BoolTensor masks. \text{Ellipsis} can only appear on the left as \text{args}[0].

2. If \text{args}[0] is not \text{Ellipsis} then \text{tensor} is not batched, and its event dim is equal to \text{len(args)}.

3. If \text{args}[0] is \text{Ellipsis} then \text{tensor} is batched and its event dim is equal to \text{len(args[1:])}. Dims of \text{tensor} to the left of the event dims are considered batch dims and will be broadcasted with dims of \text{tensor} args.

Note that if none of the args is a tensor with .dim() > 0, then this function behaves like standard indexing:

```python
if not any(isinstance(a, torch.Tensor) and a.dim() for a in args):
 assert Vindex(x)[args] == x[args]
```

References

[1] https://www.numpy.org/neps/nep-0021-advanced-indexing.html introduces vindex as a helper for vectorized indexing. The Pyro implementation is similar to the proposed notation \( x.\text{vindex[]} \) except for slightly different handling of \text{Ellipsis}.

Parameters

- tensor (torch.Tensor) – A tensor to be indexed.
- args (tuple) – An index, as args to \text{__getitem__}.  

Returns

A nonstandard interpretation of tensor[args].

Return type

torch.Tensor

class Vindex(tensor)

Bases: object

Convenience wrapper around \text{vindex()}.
The following are equivalent:

```python
Vindex(x)[..., i, j, :]
vindex(x, (Ellipsis, i, j, slice(None)))
```

**Parameters** `tensor` (*torch.Tensor*) – A tensor to be indexed.

**Returns** An object with a special `__getitem__` method.

### 9.6 Tensor Contraction

**contract**(`equation, *operands, **kwargs`)  
Wrapper around `opt_einsum.contract()` that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

**Parameters** `cache_path` (*bool*) – whether to cache the contraction path. Defaults to `True`.

**contract_expression**(`equation, *shapes, **kwargs`)  
Wrapper around `opt_einsum.contract_expression()` that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

**Parameters** `cache_path` (*bool*) – whether to cache the contraction path. Defaults to `True`.

**einsum**(`equation, *operands, **kwargs`)  
Generalized plated sum-product algorithm via tensor variable elimination.

This generalizes `contract()` in two ways:

1. Multiple outputs are allowed, and intermediate results can be shared.
2. Inputs and outputs can be plated along symbols given in `plates`; reductions along `plates` are product reductions.

The best way to understand this function is to try the examples below, which show how `einsum()` calls can be implemented as multiple calls to `contract()` (which is generally more expensive).

To illustrate multiple outputs, note that the following are equivalent:

```python
z1, z2, z3 = einsum('ab,bc->a,b,c', x, y) # multiple outputs
z1 = contract('ab,bc->a', x, y)
z2 = contract('ab,bc->b', x, y)
z3 = contract('ab,bc->c', x, y)
```

To illustrate plated inputs, note that the following are equivalent:

```python
assert len(x) == 3 and len(y) == 3
z = einsum('ab,ai,bi->b', w, x, y, plates='i')
z = contract('ab,a,a,b,b,b->b', w, *x, *y)
```

When a sum dimension `a` always appears with a plate dimension `i`, then `a` corresponds to a distinct symbol for each slice of `a`. Thus the following are equivalent:

```python
assert len(x) == 3 and len(y) == 3
z = einsum('ai,ai->', x, y, plates='i')
```

(continues on next page)
When such a sum dimension appears in the output, it must be accompanied by all of its plate dimensions, e.g. the following are equivalent:

```python
assert len(x) == 3 and len(y) == 3
z = einsum('abi,abi->bi', x, y, plates='i')
```

```python
z0 = contract('ab,ac,ad,ab,ac,ad->b', *x, *y)
z1 = contract('ab,ac,ad,ab,ac,ad->c', *x, *y)
z2 = contract('ab,ac,ad,ab,ac,ad->d', *x, *y)
z = torch.stack([z0, z1, z2])
```

Note that each plate slice through the output is multilinear in all plate slices through all inputs, thus e.g. batch matrix multiply would be implemented without plates, so the following are all equivalent:

```python
xy = einsum('abc,acd->abd', x, y, plates='')
xy = torch.stack([xa.mm(ya) for xa, ya in zip(x, y)])
xy = torch.bmm(x, y)
```

Among all valid equations, some computations are polynomial in the sizes of the input tensors and other computations are exponential in the sizes of the input tensors. This function raises `NotImplementedError` whenever the computation is exponential.

**Parameters**

- `equation` (`str`) – An einsum equation, optionally with multiple outputs.
- `operands` (`torch.Tensor`) – A collection of tensors.
- `plates` (`str`) – An optional string of plate symbols.
- `backend` (`str`) – An optional einsum backend, defaults to ‘torch’.
- `cache` (`dict`) – An optional `shared_intermediates()` cache.
- `modulo_total` (`bool`) – Optionally allow einsum to arbitrarily scale each result plate, which can significantly reduce computation. This is safe to set whenever each result plate denotes a nonnormalized probability distribution whose total is not of interest.

**Returns** a tuple of tensors of requested shape, one entry per output.

**Return type** `tuple`

**Raises**

- `ValueError` – if tensor sizes mismatch or an output requests a plated dim without that dim’s plates.
- `NotImplementedError` – if contraction would have cost exponential in the size of any input tensor.

`ubersum(equation, *operands, **kwargs)`

Deprecated, use `einsum()` instead.
9.7 Gaussian Contraction

class Gaussian(log_normalizer, info_vec, precision)
    Bases: object

Non-normalized Gaussian distribution.
This represents an arbitrary semidefinite quadratic function, which can be interpreted as a rank-deficient scaled Gaussian distribution. The precision matrix may have zero eigenvalues, thus it may be impossible to work directly with the covariance matrix.

Parameters

- **log_normalizer** (*torch.Tensor*) – a normalization constant, which is mainly used to keep track of normalization terms during contractions.

- **info_vec** (*torch.Tensor*) – information vector, which is a scaled version of the mean info_vec = precision @ mean. We use this representation to make gaussian contraction fast and stable.

- **precision** (*torch.Tensor*) – precision matrix of this gaussian.

**dim()**

**batch_shape()**

**expand(batch_shape)**

**reshape(batch_shape)**

**__getitem__(index)**

Index into the batch_shape of a Gaussian.

**static cat(parts, dim=0)**

Concatenate a list of Gaussians along a given batch dimension.

**event_pad(left=0, right=0)**

Pad along event dimension.

**event_permute(perm)**

Permute along event dimension.

**__add__(other)**

Adds two Gaussians in log-density space.

**log_density(value)**

Evaluate the log density of this Gaussian at a point value:

-0.5 * value.T @ precision @ value + value.T @ info_vec + log_normalizer

This is mainly used for testing.

**rsample(sample_shape=torch.Size([]))**

Reparameterized sampler.

**condition(value)**

Condition this Gaussian on a trailing subset of its state. This should satisfy:

g.condition(y).dim() == g.dim() - y.size(-1)

Note that since this is a non-normalized Gaussian, we include the density of y in the result. Thus condition() is similar to a functools.partial binding of arguments:
left = x[...,:n]
right = x[...,:n]
g.log_density(x) == g.condition(right).log_density(left)

left_condition(value)
Condition this Gaussian on a leading subset of its state. This should satisfy:

g.condition(y).dim() == g.dim() - y.size(-1)

Note that since this is a non-normalized Gaussian, we include the density of y in the result. Thus condition() is similar to a functools.partial binding of arguments:

left = x[...,:n]
right = x[...,:n]
g.log_density(x) == g.left_condition(left).log_density(right)

marginalize(left=0, right=0)
Marginalizing out variables on either side of the event dimension:

```
g.marginalize(left=n).event_logsumexp() = g.logsumexp()
g.marginalize(right=n).event_logsumexp() = g.logsumexp()
```

and for data x:

```
g.condition(x).event_logsumexp() = g.marginalize(left=g.dim() - x.size(-1)).log_density(x)
```

event_logsumexp()
Integrates out all latent state (i.e. operating on event dimensions).

class AffineNormal(matrix, loc, scale)
Bases: object

Represents a conditional diagonal normal distribution over a random variable $Y$ whose mean is an affine function of a random variable $X$. The likelihood of $X$ is thus:

```
AffineNormal(matrix, loc, scale).condition(y).log_density(x)
```

which is equivalent to:

```
Normal(x @ matrix + loc, scale).to_event(1).log_prob(y)
```

Parameters
- **matrix** (*torch.Tensor*) – A transformation from $X$ to $Y$. Should have rightmost shape ($x\_dim$, $y\_dim$).
- **loc** (*torch.Tensor*) – A constant offset for $Y$’s mean. Should have rightmost shape ($y\_dim,$).
- **scale** (*torch.Tensor*) – Standard deviation for $Y$. Should have rightmost shape ($y\_dim,$).

batch_shape()
condition(value)
left_condition(value)
If value.size(-1) == $x\_dim$, this returns a Normal distribution with event_dim=1. After applying this method, the cost to draw a sample is $O(y\_dim)$ instead of $O(y\_dim ** 3)$.
\texttt{rsample}(\texttt{sample_shape=torch.Size([])})
Reparameterized sampler.

\texttt{to_gaussian}()

\texttt{expand}(\texttt{batch_shape})

\texttt{reshape}(\texttt{batch_shape})

\texttt{__getitem__}(\texttt{index})

\texttt{event_permute}(\texttt{perm})

\texttt{__add__}(\texttt{other})

\texttt{marginalize}(\texttt{left=0, right=0})

\texttt{mvn\_to\_gaussian}(\texttt{mvn})
Convert a MultivariateNormal distribution to a Gaussian.

\textbf{Parameters} \texttt{mvn} (\texttt{MultivariateNormal}) – A multivariate normal distribution.

\textbf{Returns} An equivalent Gaussian object.

\textbf{Return type} \texttt{Gaussian}

\texttt{matrix\_and\_mvn\_to\_gaussian}(\texttt{matrix, mvn})
Convert a noisy affine function to a Gaussian. The noisy affine function is defined as:

\begin{equation}
y = x @ matrix + \text{mvn}.\text{sample}()
\end{equation}

\textbf{Parameters}

- \texttt{matrix} (\texttt{Tensor}) – A matrix with rightmost shape (x_dim, y_dim).
- \texttt{mvn} (\texttt{MultivariateNormal}) – A multivariate normal distribution.

\textbf{Returns} A Gaussian with broadcasted batch shape and .\texttt{dim}() == x_dim + y_dim.

\textbf{Return type} \texttt{Gaussian}

\texttt{gaussian\_tensordot}(\texttt{x, y, dims=0})
Computes the integral over two Gaussians:

\begin{equation}
(x @ y)(a,c) = \log(\text{integral(exp}(x(a,b) + y(b,c)), b)),
\end{equation}

where x is a gaussian over variables (a,b), y is a gaussian over variables (b,c), (a,b,c) can each be sets of zero or more variables, and \texttt{dims} is the size of b.

\textbf{Parameters}

- \texttt{x} – a Gaussian instance
- \texttt{y} – a Gaussian instance
- \texttt{dims} – number of variables to contract
9.8 Statistical Utilities

gelman_rubin(input, chain_dim=0, sample_dim=1)
Computes R-hat over chains of samples. It is required that input.size(sample_dim) >= 2 and input.size(chain_dim) >= 2.

Parameters
- input (torch.Tensor) – the input tensor.
- chain_dim (int) – the chain dimension.
- sample_dim (int) – the sample dimension.

Returns torch.Tensor R-hat of input.

split_gelman_rubin(input, chain_dim=0, sample_dim=1)
Computes R-hat over chains of samples. It is required that input.size(sample_dim) >= 4.

Parameters
- input (torch.Tensor) – the input tensor.
- chain_dim (int) – the chain dimension.
- sample_dim (int) – the sample dimension.

Returns torch.Tensor split R-hat of input.

autocorrelation(input, dim=0)
Computes the autocorrelation of samples at dimension dim.

Reference: https://en.wikipedia.org/wiki/Autocorrelation#Efficient_computation

Parameters
- input (torch.Tensor) – the input tensor.
- dim (int) – the dimension to calculate autocorrelation.

Returns torch.Tensor autocorrelation of input.

autocovariance(input, dim=0)
Computes the autocovariance of samples at dimension dim.

Parameters
- input (torch.Tensor) – the input tensor.
- dim (int) – the dimension to calculate autocorrelation.

Returns torch.Tensor autocorrelation of input.

effective_sample_size(input, chain_dim=0, sample_dim=1)
Computes effective sample size of input.

Reference:
[1] Introduction to Markov Chain Monte Carlo, Charles J. Geyer

Parameters
- input (torch.Tensor) – the input tensor.
- chain_dim (int) – the chain dimension.
• **sample_dim** (*int*) – the sample dimension.

**Returns torch.Tensor**  
effective sample size of input.

**resample**(*input, num_samples, dim=0, replacement=False*)  
Draws num_samples samples from input at dimension dim.

**Parameters**
- **input** (*torch.Tensor*) – the input tensor.
- **num_samples** (*int*) – the number of samples to draw from input.
- **dim** (*int*) – dimension to draw from input.

**Returns torch.Tensor**  
samples drawn randomly from input.

**quantile**(*input, probs, dim=0*)  
Computes quantiles of input at probs. If probs is a scalar, the output will be squeezed at dim.

**Parameters**
- **input** (*torch.Tensor*) – the input tensor.
- **probs** (*list*) – quantile positions.
- **dim** (*int*) – dimension to take quantiles from input.

**Returns torch.Tensor**  
quantiles of input at probs.

**pi**(*input, prob, dim=0*)  
Computes percentile interval which assigns equal probability mass to each tail of the interval.

**Parameters**
- **input** (*torch.Tensor*) – the input tensor.
- **prob** (*float*) – the probability mass of samples within the interval.
- **dim** (*int*) – dimension to calculate percentile interval from input.

**Returns torch.Tensor**  
quantiles of input at probs.

**hpdi**(*input, prob, dim=0*)  
Computes “highest posterior density interval” which is the narrowest interval with probability mass prob.

**Parameters**
- **input** (*torch.Tensor*) – the input tensor.
- **prob** (*float*) – the probability mass of samples within the interval.
- **dim** (*int*) – dimension to calculate percentile interval from input.

**Returns torch.Tensor**  
quantiles of input at probs.

**waic**(*input, log_weights=None, pointwise=False, dim=0*)  
Computes “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and its corresponding effective number of parameters.

**Reference:**
[1] **WAIC and cross-validation in Stan**, Aki Vehtari, Andrew Gelman

**Parameters**
- **input** (*torch.Tensor*) – the input tensor, which is log likelihood of a model.
- **log_weights** (*torch.Tensor*) – weights of samples along dim.
• **dim** (*int*) – the sample dimension of *input*.

Returns tuple tuple of WAIC and effective number of parameters.

**fit_generalized_pareto**(*X*)

Given a dataset *X* assumed to be drawn from the Generalized Pareto Distribution, estimate the distributional parameters *k*, *sigma* using a variant of the technique described in reference [1], as described in reference [2].


Parameters `torch.Tensor` – the input data *X*

Returns tuple tuple of floats (*k*, *sigma*) corresponding to the fit parameters

**crps_empirical**(*pred*, *truth*)

Computes negative Continuous Ranked Probability Score CRPS* [1] between a set of samples *pred* and true data *truth*. This uses an n log(n) time algorithm to compute a quantity equal that would naively have complexity quadratic in the number of samples n:

\[
\text{CRPS}^* = \mathbb{E}|\text{pred} - \text{truth}| - \frac{1}{2} \mathbb{E}|\text{pred} - \text{pred}'|
\]

\[
= (\text{pred} - \text{truth}).abs().mean(0)
\]

\[
- (\text{pred} - \text{pred}.unsqueeze(1)).abs().mean([0, 1]) / 2
\]

Note that for a single sample this reduces to absolute error.

References


Parameters

• **pred** (*torch.Tensor*) – A set of sample predictions batched on rightmost dim. This should have shape (num_samples,) + *truth*.shape.

• **truth** (*torch.Tensor*) – A tensor of true observations.

Returns A tensor of shape *truth*.shape.

Return type `torch.Tensor`

## 9.9 Streaming Statistics

**class StreamingStats**

Bases: `abc.ABC`

Abstract base class for streamable statistics of trees of tensors.

Derived classes must implement `update()`, `merge()`, and `get()`.

**abstract update**(sample) → None

Update state from a single sample.

This mutates self and returns nothing. Updates should be independent of order, i.e. samples should be exchangeable.

Parameters sample – A sample value which is a nested dictionary of `torch.Tensor` leaves.

This can have arbitrary nesting and shape shape, but assumes shape is constant across calls to .update().
abstract merge(other) → pyro.ops.streaming.StreamingStats
Select two aggregate statistics, e.g. from different MCMC chains.

This is a pure function: it returns a new StreamingStats object and does not modify either self or other.

Parameters
other – Another streaming stats instance of the same type.

abstract get() → Any
Return the aggregate statistic.

class StatsOfDict(types: Dict[collections.abc.Hashable, Callable[pyro.ops.streaming.StreamingStats]] = {},
default: Callable[pyro.ops.streaming.StreamingStats] = <class
'pyro.ops.streaming.CountStats'>)
Bases: pyro.ops.streaming.StreamingStats
Statistics of samples that are dictionaries with constant set of keys.

For example the following are equivalent:

```python
>>> a_stats = CountStats()
>>> b_stats = CountMeanStats()
>>> a_stats.update(torch.tensor(0.))
>>> b_stats.update(torch.tensor([1., 2.]))
>>> summary = {
 "a": a_stats.get(),
 "b": b_stats.get()
}

Version 2. Collect samples into dictionaries.
>>> stats = StatsOfDict({"a": CountStats, "b": CountMeanStats})
>>> stats.update({"a": torch.tensor(0.), "b": torch.tensor([1., 2.])})
>>> summary = stats.get()
>>> summary
{'a': {'count': 1}, 'b': {
 'count': 1,
 'mean': torch.tensor([1., 2.])}}
```

Parameters

- **default** – Default type of statistics of values of the dictionary. Defaults to the inexpensive CountStats.
- **types (dict)** – Dictionary mapping key to type of statistic that should be recorded for values corresponding to that key.

update(sample: Dict[collections.abc.Hashable, Any]) → None
merge(other: pyro.ops.streaming.StatsOfDict) → pyro.ops.streaming.StatsOfDict
get() → Dict[collections.abc.Hashable, Any]

Returns A dictionary of statistics. The keys of this dictionary are the same as the keys of the samples from which this object is updated.

Return type dict
class StackStats
Bases: pyro.ops.streaming.StreamingStats
Statistic collecting a stream of tensors into a single stacked tensor.
update(sample: torch.Tensor) → None
merge(other: pyro.ops.streaming.StackStats) → pyro.ops.streaming.StackStats
get() \rightarrow \text{Dict[str, Union[int, torch.Tensor]]}

Returns A dictionary with keys count: int and (if any samples have been collected) samples: torch.Tensor.

Return type dict

class CountStats
Bases: \texttt{pyro.ops.streaming.StreamingStats}

Statistic tracking only the number of samples.

For example:

```
>>> stats = CountStats()
>>> stats.update(torch.randn(3, 3))
>>> stats.get()
{'count': 1}
```

update(sample) \rightarrow None

merge(other: \texttt{pyro.ops.streaming.CountStats}) \rightarrow \texttt{pyro.ops.streaming.CountStats}

get() \rightarrow \text{Dict[str, int]}

Returns A dictionary with keys count: int.

Return type dict

class CountMeanStats
Bases: \texttt{pyro.ops.streaming.StreamingStats}

Statistic tracking the count and mean of a single torch.Tensor.

update(sample: torch.Tensor) \rightarrow None

merge(other: \texttt{pyro.ops.streaming.CountMeanStats}) \rightarrow \texttt{pyro.ops.streaming.CountMeanStats}

get() \rightarrow \text{Dict[str, Union[int, torch.Tensor]]}

Returns A dictionary with keys count: int and (if any samples have been collected) mean: torch.Tensor.

Return type dict

class CountMeanVarianceStats
Bases: \texttt{pyro.ops.streaming.StreamingStats}

Statistic tracking the count, mean, and (diagonal) variance of a single torch.Tensor.

update(sample: torch.Tensor) \rightarrow None

merge(other: \texttt{pyro.ops.streaming.CountMeanVarianceStats}) \rightarrow \texttt{pyro.ops.streaming.CountMeanVarianceStats}

get() \rightarrow \text{Dict[str, Union[int, torch.Tensor]]}

Returns A dictionary with keys count: int and (if any samples have been collected) mean: torch.Tensor and variance: torch.Tensor.

Return type dict
9.10 State Space Model and GP Utilities

class MaternKernel(nu=1.5, num_gps=1, length_scale_init=None, kernel_scale_init=None)
Bases: pyro.nn.module.PyroModule

Provides the building blocks for representing univariate Gaussian Processes (GPs) with Matern kernels as state space models.

Parameters

• nu (float) – The order of the Matern kernel (one of 0.5, 1.5 or 2.5)
• num_gps (int) – the number of GPs
• length_scale_init (torch.Tensor) – optional num_gps-dimensional vector of initializers for the length scale
• kernel_scale_init (torch.Tensor) – optional num_gps-dimensional vector of initializers for the kernel scale

References


transition_matrix(dt)
Compute the (exponentiated) transition matrix of the GP latent space. The resulting matrix has layout (num_gps, old_state, new_state), i.e. this matrix multiplies states from the right.

Parameters dt (float) – the time interval over which the GP latent space evolves.

Returns torch.Tensor a 3-dimensional tensor of transition matrices of shape (num_gps, state_dim, state_dim).

stationary_covariance()
Compute the stationary state covariance. See Eqn. 3.26 in reference [2].

Returns torch.Tensor a 3-dimensional tensor of covariance matrices of shape (num_gps, state_dim, state_dim).

process_covariance(A)
Given a transition matrix A computed with transition_matrix compute the the process covariance as described in Eqn. 3.11 in reference [2].

Returns torch.Tensor a batched covariance matrix of shape (num_gps, state_dim, state_dim)

transition_matrix_and_covariance(dt)
Get the transition matrix and process covariance corresponding to a time interval dt.

Parameters dt (float) – the time interval over which the GP latent space evolves.

Returns tuple (transition_matrix, process_covariance) both 3-dimensional tensors of shape (num_gps, state_dim, state_dim)

training: bool
10.1 Goodness of Fit Testing

This module implements goodness of fit tests for checking agreement between distributions’ `.sample()` and `.log_prob()` methods. The main functions return a goodness of fit p-value `gof` which for good data should be Uniform(0, 1) distributed and for bad data should be close to zero. To use this returned number in tests, set a global variable `TEST_FAILURE_RATE` to something smaller than 1 / number of tests in your suite, then in each test assert `gof > TEST_FAILURE_RATE`. For example:

```python
def test_my_distribution():
 d = MyDistribution()
 samples = d.sample([10000])
 probs = d.log_prob(samples).exp()
 gof = auto_goodness_of_fit(samples, probs)
 assert gof > TEST_FAILURE_RATE
```

This module is a port of the goftests library.

`multinomial_goodness_of_fit(probs, counts, *, total_count=None, plot=False)`
Pearson’s chi^2 test, on possibly truncated data. https://en.wikipedia.org/wiki/Pearson’s_chi-squared_test

**Parameters**

- **probs** (`torch.Tensor`) – Vector of probabilities.
- **counts** (`torch.Tensor`) – Vector of counts.
- **total_count** (`int`) – Optional total count in case data is truncated, otherwise None.
- **plot** (`bool`) – Whether to print a histogram. Defaults to False.

**Returns** p-value of truncated multinomial sample.

**Return type** float

`unif01_goodness_of_fit(samples, *, plot=False)`
Bin uniformly distributed samples and apply Pearson’s chi^2 test.

**Parameters**

- **samples** (`torch.Tensor`) – A vector of real-valued samples from a candidate distribution that should be Uniform(0, 1)-distributed.
- **plot** (`bool`) – Whether to print a histogram. Defaults to False.

**Returns** Goodness of fit, as a p-value.
Return type  float

\texttt{exp_goodness_of_fit}({\texttt{samples}, \texttt{plot}=False})

Transform exponentially distributed samples to Uniform(0,1) distribution and assess goodness of fit via binned Pearson’s chi^2 test.

Parameters

- \texttt{samples} (torch.Tensor) – A vector of real-valued samples from a candidate distribution that should be Exponential(1)-distributed.
- \texttt{plot} (bool) – Whether to print a histogram. Defaults to False.

Returns  Goodness of fit, as a p-value.

Return type  float

\texttt{density_goodness_of_fit}({\texttt{samples}, \texttt{probs}, \texttt{plot}=False})

Transform arbitrary continuous samples to Uniform(0,1) distribution and assess goodness of fit via binned Pearson’s chi^2 test.

Parameters

- \texttt{samples} (torch.Tensor) – A vector list of real-valued samples from a distribution.
- \texttt{probs} (torch.Tensor) – A vector of probability densities evaluated at those samples.
- \texttt{plot} (bool) – Whether to print a histogram. Defaults to False.

Returns  Goodness of fit, as a p-value.

Return type  float

\texttt{vector_density_goodness_of_fit}({\texttt{samples}, \texttt{probs}, *, \texttt{dim}=None, \texttt{plot}=False})

Transform arbitrary multivariate continuous samples to Univariate(0,1) distribution via nearest neighbor distribution [1,2,3] and assess goodness of fit via binned Pearson’s chi^2 test.


Parameters

- \texttt{samples} (torch.Tensor) – A tensor of real-vector-valued samples from a distribution.
- \texttt{probs} (torch.Tensor) – A vector of probability densities evaluated at those samples.
- \texttt{dim} (int) – Optional dimension of the submanifold on which data lie. Defaults to \texttt{samples}.shape[-1].
- \texttt{plot} (bool) – Whether to print a histogram. Defaults to False.

Returns  Goodness of fit, as a p-value.

Return type  float

\texttt{auto_goodness_of_fit}({\texttt{samples}, \texttt{probs}, *, \texttt{dim}=None, \texttt{plot}=False})

Dispatch on sample dimension and delegate to either \texttt{density_goodness_of_fit()} or \texttt{vector_density_goodness_of_fit()}.

Parameters
• **samples** *(torch.Tensor)* – A tensor of samples stacked on their leftmost dimension.
• **probs** *(torch.Tensor)* – A vector of probabilities evaluated at those samples.
• **dim** *(int)* – Optional manifold dimension, defaults to `samples.shape[1:].numel()`.
• **plot** *(bool)* – Whether to print a histogram. Defaults to False.
The `pyro.contrib.autoname` module provides tools for automatically generating unique, semantically meaningful names for sample sites.

**scope** *(fn=None, prefix=None, inner=None)*

**Parameters**
- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **prefix** – a string to prepend to sample names (optional if fn is provided)
- **inner** – switch to determine where duplicate name counters appear

**Returns** fn decorated with a `ScopeMessenger`

`scope` prepends a prefix followed by a / to the name at a Pyro sample site. It works much like TensorFlow’s `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

`scope` is very useful for aligning compositional models with guides or data.

Example:

```python
>>> @scope(prefix="a")
... def model():
... return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> def model():
... with scope(prefix="a"):
... return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:

```python
>>> @scope(prefix="b")
... def model():
... with scope(prefix="a"):
... return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "b/a/x" in poutine.trace(model).get_trace()
```
When used as a decorator or higher-order function, `scope` will use the name of the input function as the prefix if no user-specified prefix is provided.

Example:

```python
>>> @scope
def model():
 return pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "model/x" in poutine.trace(model).get_trace()
```

`name_count(fn=None)`

`name_count` is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

Example:

```python
>>> @name_count
def model():
 for i in range(3):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "x" in poutine.trace(model).get_trace()
>>> assert "x__1" in poutine.trace(model).get_trace()
>>> assert "x__2" in poutine.trace(model).get_trace()
```

`name_count` also composes with `scope()` by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
def model():
 for i in range(3):
 with pyro.contrib.autoname.scope(prefix="a"):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> @name_count
def model():
 with pyro.contrib.autoname.scope(prefix="a"):
 for i in range(3):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

`autoname(fn=None, *args, **kwargs)`

Convenient wrapper of `AutonameMessenger`

Assign unique names to random variables.
1. For a new variable use its declared name if given, otherwise use the distribution name:

```python
sample("x", dist.Bernoulli ...) # -> x
sample(dist.Bernoulli ...) # -> Bernoulli
```

2. For repeated variables names append the counter as a suffix:

```python
sample(dist.Bernoulli ...) # -> Bernoulli
sample(dist.Bernoulli ...) # -> Bernoulli1
sample(dist.Bernoulli ...) # -> Bernoulli2
```

3. Functions and iterators can be used as a name scope:

```python
@autoname
def f1():
 sample(dist.Bernoulli ...)

@autoname
def f2():
 f1() # -> f2/f1/Bernoulli
 f1() # -> f2/f1__1/Bernoulli
 sample(dist.Bernoulli ...) # -> f2/Bernoulli

@autoname(name="model")
def f3():
 for i in autoname(range(3), name="time"):
 # model/time/Bernoulli .. model/time__1/Bernoulli .. model/time__2/
 sample(dist.Bernoulli ...) # model/time/f1/Bernoulli .. model/time__1/f1/Bernoulli .. model/time__2
 f1()
```

4. Or scopes can be added using the with statement:

```python
@autoname(name="prefix")
def f4():
 with autoname(name="prefix"):
 f1() # -> prefix/f1/Bernoulli
 f1() # -> prefix/f1__1/Bernoulli
 sample(dist.Bernoulli ...) # -> prefix/Bernoulli
```

```python
sample(*args)
sample(name: str, fn, *args, **kwargs)
sample(fn: pyro.distributions.distribution.Distribution, *args, **kwargs)
```
11.1 Named Data Structures

The `pyro.contrib.named` module is a thin syntactic layer on top of Pyro. It allows Pyro models to be written to look like programs with operating on Python data structures like `latent.x.sample_(...)`, rather than programs with string-labeled statements like `x = pyro.sample("x", ...)`. This module provides three container data structures `named.Object`, `named.List`, and `named.Dict`. These data structures are intended to be nested in each other. Together they track the address of each piece of data in each data structure, so that this address can be used as a Pyro site. For example:

```python
>>> state = named.Object("state")
>>> print(str(state))
state

>>> z = state.x.y.z # z is just a placeholder.
>>> print(str(z))
state.x.y.z

>>> state.xs = named.List() # Create a contained list.
>>> x0 = state.xs.add()
>>> print(str(x0))
state.xs[0]

>>> state.ys = named.Dict()
>>> foo = state.ys["foo"]
>>> print(str(foo))
state.ys["foo"]
```

These addresses can now be used inside sample, observe and param statements. These named data structures even provide in-place methods that alias Pyro statements. For example:

```python
>>> state = named.Object("state")
>>> loc = state.loc.param_(torch.zeros(1, requires_grad=True))
>>> scale = state.scale.param_(torch.ones(1, requires_grad=True))
>>> z = state.z.sample_(dist.Normal(loc, scale))
>>> obs = state.x.sample_(dist.Normal(loc, scale), obs=z)
```

For deeper examples of how these can be used in model code, see the Tree Data and Mixture examples.

Authors: Fritz Obermeyer, Alexander Rush

class Object(name)
Bases: object

Object to hold immutable latent state.

This object can serve either as a container for nested latent state or as a placeholder to be replaced by a tensor via a named.sample, named.observe, or named.param statement. When used as a placeholder, Object objects take the place of strings in normal pyro.sample statements.

Parameters

- **name** *(str)* – The name of the object.

Example:

```python
state = named.Object("state")
state.x = 0
state.ys = named.List()
```
state.zs = named.Dict()
state.a.b.c.d.e.f.g = 0  # Creates a chain of named.Objects.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

sample_(fn, *args, **kwargs)
Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Introduction to Pyro for a discussion.

Parameters
- name – name of sample
- fn – distribution class or function
- obs – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
- obs_mask (bool or Tensor) – Optional boolean tensor mask of shape broadcastable with fn.batch_shape. If provided, events with mask=True will be conditioned on obs and remaining events will be imputed by sampling. This introduces a latent sample site named name + "_unobserved" which should be used by guides.
- infer (dict) – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

param_(init_tensor=None, constraint=Real(), event_dim=None)
Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

Parameters
- name (str) – name of parameter
- init_tensor (torch.Tensor or callable) – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
- constraint (torch.distributions.constraints.Constraint) – torch constraint, defaults to constraints.real.
- event_dim (int) – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

Returns A constrained parameter. The underlying unconstrained parameter is accessible via pyro.param(...).unconstrained(), where .unconstrained is a weakref attribute.

Return type torch.Tensor

class List(name=None)
Bases: list
List-like object to hold immutable latent state.
This must either be given a name when constructed:

```python
latent = named.List("root")
```
or must be immediately stored in a `named.Object`:

```python
latent = named.Object("root")
latent.xs = named.List() # Must be bound to a Object before use.
```

**Warning:** This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

```python
add()
```
Append one new `named.Object`.

**Returns** a new latent object at the end

**Return type** `named.Object`

class `Dict`

```python
dict
```

Dict-like object to hold immutable latent state.

This must either be given a name when constructed:

```python
latent = named.Dict("root")
```
or must be immediately stored in a `named.Object`:

```python
latent = named.Object("root")
latent.xs = named.Dict() # Must be bound to a Object before use.
```

**Warning:** This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

## 11.2 Scoping

`pyro.contrib.autoname.scoping` contains the implementation of `pyro.contrib.autoname.scope()`, a tool for automatically appending a semantically meaningful prefix to names of sample sites.

```python
class NameCountMessenger

Bases: pyro.poutine.messenger.Messenger

NameCountMessenger is the implementation of `pyro.contrib.autoname.name_count()`
```

```python
class ScopeMessenger

Bases: pyro.poutine.messenger.Messenger

ScopeMessenger is the implementation of `pyro.contrib.autoname.scope()`
```

```python
scope(fn=None, prefix=None, inner=None)

Parameters
```
• **fn** – a stochastic function (callable containing Pyro primitive calls)
• **prefix** – a string to prepend to sample names (optional if fn is provided)
• **inner** – switch to determine where duplicate name counters appear

**Returns**  
fn decorated with a `ScopeMessenger`

scope prepends a prefix followed by a / to the name at a Pyro sample site. It works much like TensorFlow’s `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

scope is very useful for aligning compositional models with guides or data.

**Example:**

```python
>>> @scope(prefix="a")
... def model():
... return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

**Example:**

```python
>>> def model():
... with scope(prefix="a"):
... return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:

```python
>>> @scope(prefix="b")
... def model():
... with scope(prefix="a"):
... return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "b/a/x" in poutine.trace(model).get_trace()
```

When used as a decorator or higher-order function, scope will use the name of the input function as the prefix if no user-specified prefix is provided.

**Example:**

```python
>>> @scope
... def model():
... return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "model/x" in poutine.trace(model).get_trace()
```

**name_count**(fn=None)  
name_count is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

**Example:**
```python
>>> @name_count
def model():
 for i in range(3):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "x" in poutine.trace(model).get_trace()
>>> assert "x__1" in poutine.trace(model).get_trace()
>>> assert "x__2" in poutine.trace(model).get_trace()
```

name_count also composes with `scope()` by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
def model():
 for i in range(3):
 with pyro.contrib.autoname.scope(prefix="a"):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> @name_count
def model():
 with pyro.contrib.autoname.scope(prefix="a"):
 for i in range(3):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```
12.1 HiddenLayer

This distribution is a basic building block in a Bayesian neural network. It represents a single hidden layer, i.e. an affine transformation applied to a set of inputs \( X \) followed by a non-linearity. The uncertainty in the weights is encoded in a Normal variational distribution specified by the parameters \( A_{\text{scale}} \) and \( A_{\text{mean}} \). The so-called ‘local reparameterization trick’ is used to reduce variance (see reference below). In effect, this means the weights are never sampled directly; instead one samples in pre-activation space (i.e. before the non-linearity is applied). Since the weights are never directly sampled, when this distribution is used within the context of variational inference, care must be taken to correctly scale the KL divergence term that corresponds to the weight matrix. This term is folded into the \( \log_{\text{prob}} \) method of this distribution.

In effect, this distribution encodes the following generative process:

\[
A \sim \text{Normal}(A_{\text{mean}}, A_{\text{scale}}) \quad \text{output} \sim \text{non\_linearity}(AX)
\]

Parameters

- \( X (\text{torch.Tensor}) \) – B x D dimensional mini-batch of inputs
- \( A_{\text{mean}} (\text{torch.Tensor}) \) – D x H dimensional specifying weight mean
- \( A_{\text{scale}} (\text{torch.Tensor}) \) – D x H dimensional (diagonal covariance matrix) specifying weight uncertainty
- \( \text{non\_linearity} (\text{callable}) \) – a callable that specifies the non-linearity used. defaults to ReLU.
- \( \text{KL\_factor} (\text{float}) \) – scaling factor for the KL divergence. prototypically this is equal to the size of the mini-batch divided by the size of the whole dataset. defaults to 1.0.
- \( A_{\text{prior}} (\text{float or torch.Tensor}) \) – the prior over the weights is assumed to be normal with mean zero and scale factor \( A_{\text{prior}} \). default value is 1.0.
- \( \text{include\_hidden\_bias} (\text{bool}) \) – controls whether the activations should be augmented with a 1, which can be used to incorporate bias terms. defaults to \( \text{True} \).
- \( \text{weight\_space\_sampling} (\text{bool}) \) – controls whether the local reparameterization trick is used. this is only intended to be used for internal testing. defaults to \( \text{False} \).

Reference:

This module implements the Causal Effect Variational Autoencoder [1], which demonstrates a number of innovations including:

- a generative model for causal effect inference with hidden confounders;
- a model and guide with twin neural nets to allow imbalanced treatment; and
- a custom training loss that includes both ELBO terms and extra terms needed to train the guide to be able to answer counterfactual queries.

The main interface is the `CEVAE` class, but users may customize by using components `Model`, `Guide`, `TraceCausalEffect_ELBO` and utilities.

References

https://github.com/AMLab-Amsterdam/CEVAE

13.1 CEVAE Class

```python
class CEVAE(feature_dim, outcome_dist='bernoulli', latent_dim=20, hidden_dim=200, num_layers=3, num_samples=100)
```

Bases: `torch.nn.modules.module.Module`

Main class implementing a Causal Effect VAE [1]. This assumes a graphical model
where \( t \) is a binary treatment variable, \( y \) is an outcome, \( Z \) is an unobserved confounder, and \( X \) is a noisy function of the hidden confounder \( Z \).

Example:

```python
cvae = CEVAE(feature_dim=5)
cvae.fit(x_train, t_train, y_train)
ite = cvae.ite(x_test) # individual treatment effect
ate = ite.mean() # average treatment effect
```

### Variables

- **model** *(Model)* – Generative model.
- **guide** *(Guide)* – Inference model.

### Parameters

- **feature_dim** *(int)* – Dimension of the feature space \( x \).
- **latent_dim** *(int)* – Dimension of the latent variable \( z \). Defaults to 20.
- **num_layers** *(int)* – Number of hidden layers in fully connected networks.
- **num_samples** *(int)* – Default number of samples for the \texttt{ite()} \ method. Defaults to 100.

```python
fit(x, t, y, num_epochs=100, batch_size=100, learning_rate=0.001, learning_rate_decay=0.1,
weight_decay=0.0001, log_every=100)
```

Train using \texttt{SVI} with the \texttt{TraceCausalEffect_ELBO} loss.

### Parameters
• \( x \) (\( \text{Tensor} \)) –
• \( t \) (\( \text{Tensor} \)) –
• \( y \) (\( \text{Tensor} \)) –
• \text{num\_epochs} (\text{int}) – Number of training epochs. Defaults to 100.
• \text{batch\_size} (\text{int}) – Batch size. Defaults to 100.
• \text{learning\_rate} (\text{float}) – Learning rate. Defaults to 1e-3.
• \text{learning\_rate\_decay} (\text{float}) – Learning rate decay over all epochs; the per-step decay rate will depend on batch size and number of epochs such that the initial learning rate will be \( \text{learning\_rate} \) and the final learning rate will be \( \text{learning\_rate} \times \text{learning\_rate\_decay} \). Defaults to 0.1.
• \text{weight\_decay} (\text{float}) – Weight decay. Defaults to 1e-4.
• \text{log\_every} (\text{int}) – Log loss each this-many steps. If zero, do not log loss. Defaults to 100.

\textbf{Returns} list of epoch losses

\texttt{ite(}x, \texttt{num\_samples=None, batch\_size=None)}

Computes Individual Treatment Effect for a batch of data \( x \).

\[
ITE(x) = \mathbb{E}[y \mid X=x, \text{do}(t=1)] - \mathbb{E}[y \mid X=x, \text{do}(t=0)]
\]

This has complexity \( O(\text{len}(x) \times \text{num\_samples} ** 2) \).

\textbf{Parameters}

• \( x \) (\( \text{Tensor} \)) – A batch of data.
• \text{num\_samples} (\text{int}) – The number of monte carlo samples. Defaults to self.\text{num\_samples} which defaults to 100.
• \text{batch\_size} (\text{int}) – Batch size. Defaults to \text{len}(x).

\textbf{Returns} A \text{len}(x)-sized tensor of estimated effects.

\textbf{Return type} \text{Tensor}

\texttt{to\_script\_module()}

Compile this module using \texttt{torch.jit.trace\_module()}, assuming self has already been fit to data.

\textbf{Returns} A traced version of self with an \texttt{ite()} method.

\textbf{Return type} torch.jit.ScriptModule

\textbf{training: bool}

\section*{13.2 CEVAE Components}

\textbf{class} Model(\texttt{config})

\texttt{Bases: pyro.nn.module.PyroModule}

Generative model for a causal model with latent confounder \( z \) and binary treatment \( t \):
Each of these distributions is defined by a neural network. The $y$ distribution is defined by a disjoint pair of neural networks defining $p(y|t=0,z)$ and $p(y|t=1,z)$; this allows highly imbalanced treatment.

**Parameters**

- `config` *(dict)* – A dict specifying `feature_dim`, `latent_dim`, `hidden_dim`, `num_layers`, and `outcome_dist`.

`forward`(x, t=None, y=None, size=None)  
`y_mean`(x, t=None)  
`z_dist`()  
`x_dist`(z)  
`y_dist`(t, z)  
`t_dist`(z)  
training: `bool`

**class Guide**(config)

Bases: `pyro.nn.module.PyroModule`

Inference model for causal effect estimation with latent confounder $z$ and binary treatment $t$:

- `t ~ q(t|x)`  
- `y ~ q(y|t,x)`  
- `z ~ q(z|y,t,x)`

Each of these distributions is defined by a neural network. The $y$ and $z$ distributions are defined by disjoint pairs of neural networks defining $p(-|t=0,...)$ and $p(-|t=1,...)$; this allows highly imbalanced treatment.

**Parameters**

- `config` *(dict)* – A dict specifying `feature_dim`, `latent_dim`, `hidden_dim`, `num_layers`, and `outcome_dist`.

`forward`(x, t=None, y=None, size=None)  
`t_dist`(x)  
`y_dist`(t, x)  
`z_dist`(y, t, x)  
training: `bool`

**class TraceCausalEffect_ELBO**(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: `pyro.infer.trace_elbo.Trace_ELBO`

Loss function for training a **CEVAE**. From [1], the CEVAE objective (to maximize) is:

\[-\text{loss} = \text{ELBO} + \log q(t|x) + \log q(y|t,x)\]

`loss`(model, guide, *args, **kwargs)
13.3 Utilities

```python
class FullyConnected(sizes, final_activation=None):
 Bases: torch.nn.modules.container.Sequential
 Fully connected multi-layer network with ELU activations.
 append(layer)

training: bool

class DistributionNet
 Bases: torch.nn.modules.module.Module
 Base class for distribution nets.
 static get_class(dtype)
 Get a subclass by a prefix of its name, e.g.:
 assert DistributionNet.get_class("bernoulli") is BernoulliNet

 training: bool

class BernoulliNet(sizes)
 Bases: pyro.contrib.cevae.DistributionNet
 FullyConnected network outputting a single logits value.
 This is used to represent a conditional probability distribution of a single
 Bernoulli random variable conditioned on a sizes[0]-sized real value, for example:
    ```
    net = BernoulliNet([3, 4])
    z = torch.randn(3)
    logits, = net(z)
    t = net.make_dist(logits).sample()
    ```

 forward(x)
 static make_dist(logits)

 training: bool

class ExponentialNet(sizes)
 Bases: pyro.contrib.cevae.DistributionNet
 FullyConnected network outputting a constrained rate.
 This is used to represent a conditional probability distribution of a single Normal
 random variable conditioned on a sizes[0]-size real value, for example:
    ```
    net = ExponentialNet([3, 4])
    x = torch.randn(3)
    rate, = net(x)
    y = net.make_dist(rate).sample()
    ```

 forward(x)
 static make_dist(rate)

 training: bool
```
class LaplaceNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet

    FullyConnected network outputting a constrained $\text{loc}, \text{scale}$ pair.

    This is used to represent a conditional probability distribution of a single Laplace random variable conditioned
    on a sizes[0]-size real value, for example:

    ```python
 net = LaplaceNet([3, 4])
 x = torch.randn(3)
 loc, scale = net(x)
 y = net.make_dist(loc, scale).sample()
    ```

    forward($x$)
    static make_dist($\text{loc, scale}$)
    training: bool

class NormalNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet

    FullyConnected network outputting a constrained $\text{loc}, \text{scale}$ pair.

    This is used to represent a conditional probability distribution of a single Normal random variable conditioned
    on a sizes[0]-size real value, for example:

    ```python
 net = NormalNet([3, 4])
 x = torch.randn(3)
 loc, scale = net(x)
 y = net.make_dist(loc, scale).sample()
    ```

    forward($x$)
    static make_dist($\text{loc, scale}$)
    training: bool

class StudentTNet(sizes)
    Bases: pyro.contrib.cevae.DistributionNet

    FullyConnected network outputting a constrained $\text{df}, \text{loc}, \text{scale}$ triple, with shared
    $\text{df} > 1$.

    This is used to represent a conditional probability distribution of a single Student’s t random variable conditioned
    on a sizes[0]-size real value, for example:

    ```python
 net = StudentTNet([3, 4])
 x = torch.randn(3)
 df, loc, scale = net(x)
 y = net.make_dist(df, loc, scale).sample()
    ```

    forward($x$)
    static make_dist($\text{df, loc, scale}$)
    training: bool

class DiagNormalNet(sizes)
    Bases: torch.nn.modules.module.Module

    FullyConnected network outputting a constrained $\text{loc}, \text{scale}$ pair.
This is used to represent a conditional probability distribution of a sizes[-1]-sized diagonal Normal random variable conditioned on a sizes[0]-size real value, for example:

```python
net = DiagNormalNet([3, 4, 5])
z = torch.randn(3)
loc, scale = net(z)
x = dist.Normal(loc, scale).sample()
```

This is intended for the latent z distribution and the prewhitened x features, and conservatively clips loc and scale values.

- **forward(x)**
- **training:** bool
14.1 EasyGuide

class EasyGuide(model)

Bases: pyro.nn.module.PyroModule

Base class for “easy guides”, which are more flexible than AutoGuide s, but are easier to write than raw Pyro guides.

Derived classes should define a guide() method. This guide() method can combine ordinary guide statements (e.g. pyro.sample and pyro.param) with the following special statements:

- group = self.group(...) selects multiple pyro.sample sites in the model. See Group for subsequent methods.
- with self.plate(...): ... should be used instead of pyro.plate.
- self.map_estimate(...) uses a Delta guide for a single site.

Derived classes may also override the init() method to provide custom initialization for models sites.

Parameters model (callable) – A Pyro model.

property model

abstract guide(*args, **kargs)

Guide implementation, to be overridden by user.

init(site)

Model initialization method, may be overridden by user.

This should input a site and output a valid sample from that site. The default behavior is to draw a random sample:

    return site["fn"]()

For other possible initialization functions see http://docs.pyro.ai/en/stable/infer.autoguide.html#
module-pyro.infer.autoguide.initialization

forward(*args, **kwargs)

Runs the guide. This is typically used by inference algorithms.

Note: This method is used internally by Module. Users should instead use __call__().
plate

    (name, size=None, subsample_size=None, subsample=None, *args, **kwargs)

A wrapper around pyro.plate to allow EasyGuide to automatically construct plates. You should use this rather than pyro.plate inside your guide() implementation.

group

    (match='.*')

Select a Group of model sites for joint guidance.

Parameters

match (str) – A regex string matching names of model sample sites.

Returns

A group of model sites.

Return type

Group

map_estimate

    (name)

Construct a maximum a posteriori (MAP) guide using Delta distributions.

Parameters

name (str) – The name of a model sample site.

Returns

A sampled value.

Return type

torch.Tensor

training: bool

14.2 easy_guide

easy_guide

(model)

Convenience decorator to create an EasyGuide. The following are equivalent:

```python
Version 1. Decorate a function.
@easy_guide(model)
def guide(self, foo, bar):
 return my_guide(foo, bar)

Version 2. Create and instantiate a subclass of EasyGuide.
class Guide(EasyGuide):
 def guide(self, foo, bar):
 return my_guide(foo, bar)
guide = Guide(model)
```

Note @easy_guide wrappers cannot be pickled; to build a guide that can be pickled, instead subclass from EasyGuide.

Parameters

model (callable) – a Pyro model.

14.3 Group

class Group

    (guide, sites)

An autoguide helper to match a group of model sites.

Variables

- event_shape (torch.Size) – The total flattened concatenated shape of all matching sample sites in the model.
• **prototype_sites (list)** – A list of all matching sample sites in a prototype trace of the model.

**Parameters**

• **guide (EasyGuide)** – An easyguide instance.

• **sites (list)** – A list of model sites.

**property guide**

**sample**(guide_name, fn, infer=None)

Wrapper around `pyro.sample()` to create a single auxiliary sample site and then unpack to multiple sample sites for model replay.

**Parameters**

• **guide_name (str)** – The name of the auxiliary guide site.

• **fn (callable)** – A distribution with shape `self.event_shape`.

• **infer (dict)** – Optional inference configuration dict.

**Returns** A pair (guide_z, model_zs) where guide_z is the single concatenated blob and model_zs is a dict mapping site name to constrained model sample.

**Return type** tuple

**map_estimate()**

Construct a maximum a posteriori (MAP) guide using Delta distributions.

**Returns** A dict mapping model site name to sampled value.

**Return type** dict
Warning: Code in pyro.contrib.epidemiology is under development. This code makes no guarantee about maintaining backwards compatibility.

pyro.contrib.epidemiology provides a modeling language for a class of stochastic discrete-time discrete-count compartmental models. This module implements black-box inference (both Stochastic Variational Inference and Hamiltonian Monte Carlo), prediction of latent variables, and forecasting of future trajectories.

For example usage see the following tutorials:

- Introduction
- Univariate models
- Regional models
- Inference via auxiliary variable HMC

15.1 Base Compartmental Model

class CompartmentalModel(compartment, duration, population, *, approximate=())

Bases: abc.ABC

Abstract base class for discrete-time discrete-value stochastic compartmental models.

Derived classes must implement methods initialize() and transition(). Derived classes may optionally implement global_model(), compute_flows(), and heuristic().

Example usage:

```
First implement a concrete derived class.
class MyModel(CompartmentalModel):
 def __init__(self, ...): ...
 def global_model(self): ...
 def initialize(self, params): ...
 def transition(self, params, state, t): ...

Run inference to fit the model to data.
model = MyModel(...) # or .fit_mcmc(...)
R0 = model.samples["R0"] # An example parameter.
print("R0 = {:0.3g} ± {:0.3g}".format(R0.mean(), R0.std()))
```

(continues on next page)
# Predict latent variables.
samples = model.predict()

# Forecast forward.
samples = model.predict(forecast=30)

# You can assess future interventions (applied after ``duration``) by
# storing them as attributes that are read by your derived methods.
model.my_intervention = False
samples1 = model.predict(forecast=30)
model.my_intervention = True
samples2 = model.predict(forecast=30)
effect = samples2["my_result"].mean() - samples1["my_result"].mean()
print("average effect = {:0.3g}".format(effect))

An example workflow is to use cheaper approximate inference while finding good model structure and priors, then move to more accurate but more expensive inference once the model is plausible.

1. Start with `.fit_svi(guide_rank=0, num_steps=2000)` for cheap inference while you search for a good model.

2. Additionally infer long-range correlations by moving to a low-rank multivariate normal guide via `.fit_svi(guide_rank=None, num_steps=5000)`.

3. Optionally additionally infer non-Gaussian posterior by moving to the more expensive (but still approximate via moment matching) `.fit_mcmc(num_quant_bins=1, num_samples=10000, num_chains=2)`.

4. Optionally improve fit around small counts by moving the the more expensive enumeration-based algorithm `.fit_mcmc(num_quant_bins=4, num_samples=10000, num_chains=2)` (GPU recommended).

**Variables** samples (dict) – Dictionary of posterior samples.

**Parameters**

- **compartments (list)** – A list of strings of compartment names.
- **duration (int)** – The number of discrete time steps in this model.
- **population (int or torch.Tensor)** – Either the total population of a single-region model or a tensor of each region’s population in a regional model.
- **approximate (tuple)** – Names of compartments for which pointwise approximations should be provided in `transition()`, e.g. if you specify `approximate=("I")` then the `state["I_approx"]` will be a continuous-valued non-enumerated point estimate of `state["I"]`. Approximations are useful to reduce computational cost. Approximations are continuous-valued with support (-0.5, population + 0.5).

**property time_plate**

A pyro.plate for the time dimension.

**property region_plate**

Either a pyro.plate or a trivial ExitStack depending on whether this model .is_regional.

**full_mass()**

A list of a single tuple of the names of global random variables.

**series()**

A frozenset of names of sample sites that are sampled each time step.
global_model()
Samples and returns any global parameters.

Returns An arbitrary object of parameters (e.g. None or a tuple).

abstract initialize(params)
Returns initial counts in each compartment.

Parameters params – The global params returned by global_model().

Returns A dict mapping compartment name to initial value.

Return type dict

abstract transition(params, state, t)
Forward generative process for dynamics.

This inputs a current state and stochastically updates that state in-place.

Note that this method is called under multiple different interpretations, including batched and vectorized interpretations. During generate() this is called to generate a single sample. During heuristic() this is called to generate a batch of samples for SMC. During fit_mcmc() this is called both in vectorized form (vectorizing over time) and in sequential form (for a single time step); both forms enumerate over discrete latent variables. During predict() this is called to forecast a batch of samples, conditioned on posterior samples for the time interval [0:duration].

Parameters

• params – The global params returned by global_model().

• state (dict) – A dictionary mapping compartment name to current tensor value. This should be updated in-place.

• t (int or slice) – A time-like index. During inference t may be either a slice (for vectorized inference) or an integer time index. During prediction t will be integer time index.

finalize(params, prev, curr)
Optional method for likelihoods that depend on entire time series.

This should be used only for non-factorizable likelihoods that couple states across time. Factorizable likelihoods should instead be added to the transition() method, thereby enabling their use in heuristic() initialization. Since this method is called only after the last time step, it is not used in heuristic() initialization.

Warning: This currently does not support latent variables.

Parameters

• params – The global params returned by global_model().

• prev (dict) –

• curr (dict) – Dictionaries mapping compartment name to tensor of entire time series. These two parameters are offset by 1 step, thereby making it easy to compute time series of fluxes. For quantized inference, this uses the approximate point estimates, so users must request any needed time series in __init__(), e.g. by calling super().__init__(..., approximate=("I", "E")) if likelihood depends on the I and E time series.
compute_flows(prev, curr, t)

Computes flows between compartments, given compartment populations before and after time step t.

The default implementation assumes sequential flows terminating in an implicit compartment named “R”. For example if:

```python
compartment_names = ("S", "E", "I")
```

the default implementation computes at time step \( t = 9 \):

```python
flows["S2E_9"] = prev["S"] - curr["S"]
flows["E2I_9"] = prev["E"] - curr["E"] + flows["S2E_9"]
flows["I2R_9"] = prev["I"] - curr["I"] + flows["E2I_9"]
```

For more complex flows (non-sequential, branching, looping, duplicating, etc.), users may override this method.

**Parameters**

- **state (dict)** – A dictionary mapping compartment name to current tensor value. This should be updated in-place.
- **t (int or slice)** – A time-like index. During inference \( t \) may be either a slice (for vectorized inference) or an integer time index. During prediction \( t \) will be integer time index.

**Returns** A dict mapping flow name to tensor value.

**Return type** dict

generate(fixed={})

Generate data from the prior.

**Praram dict fixed** A dictionary of parameters on which to condition. These must be top-level parameterless nodes, i.e. have no upstream stochastic dependencies.

**Returns** A dictionary mapping sample site name to sampled value.

**Return type** dict

fit_svi(*, num_samples=100, num_steps=2000, num_particles=32, learning_rate=0.1,
   learning_rate_decay=0.01, betas=(0.8, 0.99), haar=True, init_scale=0.01, guide_rank=0,
   jit=False, log_every=200, **options)

Runs stochastic variational inference to generate posterior samples.

This runs SVI, setting the .samples attribute on completion.

This approximate inference method is useful for quickly iterating on probabilistic models.

**Parameters**

- **num_samples (int)** – Number of posterior samples to draw from the trained guide. Defaults to 100.
- **num_steps (int)** – Number of SVI steps.
- **num_particles (int)** – Number of SVI particles per step.
- **learning_rate (int)** – Learning rate for the ClippedAdam optimizer.
- **learning_rate_decay (int)** – Learning rate for the ClippedAdam optimizer. Note this is decay over the entire schedule, not per-step decay.
- **betas (tuple)** – Momentum parameters for the ClippedAdam optimizer.
• **haar (bool)** – Whether to use a Haar wavelet reparameterizer.

• **guide_rank (int)** – Rank of the auto normal guide. If zero (default) use an *AutoNormal* guide. If a positive integer or None, use an *AutoLowRankMultivariateNormal* guide. If the string “full”, use an *AutoMultivariateNormal* guide. These latter two require more num_steps to fit.

• **init_scale (float)** – Initial scale of the *AutoLowRankMultivariateNormal* guide.

• **jit (bool)** – Whether to use a jit compiled ELBO.

• **log_every (int)** – How often to log svi losses.

• **heuristic_num_particles (int)** – Passed to *heuristic()* as num_particles. Defaults to 1024.

**Returns**  Time series of SVI losses (useful to diagnose convergence).

**Return type**  list

### fit_mcmc(**options**)
Runs NUTS inference to generate posterior samples.

This uses the *NUTS* kernel to run *MCMC*, setting the .samples attribute on completion.

This uses an asymptotically exact enumeration-based model when num_quant_bins > 1, and a cheaper moment-matched approximate model when num_quant_bins == 1.

**Parameters**

• **options** – Options passed to *MCMC*. The remaining options are pulled out and have special meaning.

• **num_samples (int)** – Number of posterior samples to draw via mcmc. Defaults to 100.

• **max_tree_depth (int)** – (Default 5). Max tree depth of the *NUTS* kernel.

• **full_mass** – Specification of mass matrix of the *NUTS* kernel. Defaults to full mass over global random variables.

• **arrowhead_mass (bool)** – Whether to treat full_mass as the head of an arrowhead matrix versus simply as a block. Defaults to False.

• **num_quant_bins (int)** – If greater than 1, use asymptotically exact inference via local enumeration over this many quantization bins. If equal to 1, use continuous-valued relaxed approximate inference. Note that computational cost is exponential in num_quant_bins. Defaults to 1 for relaxed inference.

• **haar (bool)** – Whether to use a Haar wavelet reparameterizer. Defaults to True.

• **haar_full_mass (int)** – Number of low frequency Haar components to include in the full mass matrix. If haar=False then this is ignored. Defaults to 10.

• **heuristic_num_particles (int)** – Passed to *heuristic()* as num_particles. Defaults to 1024.

**Returns** An MCMC object for diagnostics, e.g. *MCMC*.summary()

**Return type**  *MCMC*

### predict(forecast=0)
Predict latent variables and optionally forecast forward.

This may be run only after *fit_mcmc()* and draws the same num_samples as passed to *fit_mcmc()*.

**Parameters**  forecast (int) – The number of time steps to forecast forward.
Returns A dictionary mapping sample site name (or compartment name) to a tensor whose first
dimension corresponds to sample batching.

Return type dict

heuristic(num_particles=1024, ess_threshold=0.5, retries=10)
Finds an initial feasible guess of all latent variables, consistent with observed data. This is needed because
not all hypotheses are feasible and HMC needs to start at a feasible solution to progress.

The default implementation attempts to find a feasible state using SMCFilter with proposals from the
prior. However this method may be overridden in cases where SMC performs poorly e.g. in high-
dimensional models.

Parameters

- num_particles (int) – Number of particles used for SMC.
- ess_threshold (float) – Effective sample size threshold for SMC.

Returns A dictionary mapping sample site name to tensor value.

Return type dict

15.2 Example Models

15.2.1 Simple SIR

class SimpleSIRModel(population, recovery_time, data)
Susceptible-Infected-Recovered model.

To customize this model we recommend forking and editing this class.

This is a stochastic discrete-time discrete-state model with three compartments: “S” for susceptible, “I” for
infected, and “R” for recovered individuals (the recovered individuals are implicit: R = population - S -
I) with transitions S -> I -> R.

Parameters

- population (int) – Total population = S + I + R.
- recovery_time (float) – Mean recovery time (duration in state I). Must be greater than
  1.
- data (iterable) – Time series of new observed infections. Each time step is Binomial
distributed between 0 and the number of S -> I transitions. This allows false negative but
no false positives.

15.2.2 Simple SEIR

class SimpleSEIRModel(population, incubation_time, recovery_time, data)
Susceptible-Exposed-Infected-Recovered model.

To customize this model we recommend forking and editing this class.

This is a stochastic discrete-time discrete-state model with four compartments: “S” for susceptible, “E” for
exposed, “I” for infected, and “R” for recovered individuals (the recovered individuals are implicit: R =
population - S - E - I) with transitions S -> E -> I -> R.

Parameters
• **population (int)** – Total population = S + E + I + R.

• **incubation_time (float)** – Mean incubation time (duration in state E). Must be greater than 1.

• **recovery_time (float)** – Mean recovery time (duration in state I). Must be greater than 1.

• **data (iterable)** – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of S -> E transitions. This allows false negative but no false positives.

### 15.2.3 Simple SEIRD

**class SimpleSEIRDModel (population, incubation_time, recovery_time, mortality_rate, data)**

Susceptible-Exposed-Infected-Recovered-Dead model.

To customize this model we recommend forking and editing this class.

This is a stochastic discrete-time discrete-state model with four compartments: “S” for susceptible, “E” for exposed, “I” for infected, “D” for deceased individuals, and “R” for recovered individuals (the recovered individuals are implicit: R = population - S - E - I - D) with transitions S -> E -> I -> R and I -> D.

Because the transitions are not simple linear succession, this model implements a custom `compute_flows()` method.

**Parameters**

• **population (int)** – Total population = S + E + I + R + D.

• **incubation_time (float)** – Mean incubation time (duration in state E). Must be greater than 1.

• **recovery_time (float)** – Mean recovery time (duration in state I). Must be greater than 1.

• **mortality_rate (float)** – Portion of infections resulting in death. Must be in the open interval (0, 1).

• **data (iterable)** – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of S -> E transitions. This allows false negative but no false positives.

### 15.2.4 Overdispersed SIR

**class OverdispersedSIRModel (population, recovery_time, data)**

Generalizes SimpleSIRModel with overdispersed distributions.

To customize this model we recommend forking and editing this class.

This adds a single global overdispersion parameter controlling overdispersion of the transition and observation distributions. See `binomial_dist()` and `beta_binomial_dist()` for distributional details. For prior work incorporating overdispersed distributions see [1,2,3,4].

**References:**

Parameters

- `population (int)` – Total population = S + I + R.
- `recovery_time (float)` – Mean recovery time (duration in state I). Must be greater than 1.
- `data (iterable)` – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of S -> I transitions. This allows false negative but no false positives.

15.2.5 Overdispersed SEIR

class OverdispersedSEIRModel(population, incubation_time, recovery_time, data)
Generalizes SimpleSEIRModel with overdispersed distributions.

To customize this model we recommend forking and editing this class.

This adds a single global overdispersion parameter controlling overdispersion of the transition and observation distributions. See `binomial_dist()` and `beta_binomial_dist()` for distributional details. For prior work incorporating overdispersed distributions see [1,2,3,4].

References:


Parameters

- `population (int)` – Total population = S + E + I + R.
- `incubation_time (float)` – Mean incubation time (duration in state E). Must be greater than 1.
- `recovery_time (float)` – Mean recovery time (duration in state I). Must be greater than 1.
15.2.6 Superspreading SIR

class SuperspreadingSIRModel(population, recovery_time, data)

Generalizes SimpleSIRModel by adding superspreading effects.

To customize this model we recommend forking and editing this class.

This model accounts for superspreading (overdispersed individual reproductive number) by assuming each infected individual infects BetaBinomial-many susceptible individuals, where the BetaBinomial distribution acts as an overdispersed Binomial distribution, adapting the more standard NegativeBinomial distribution that acts as an overdispersed Poisson distribution [1,2] to the setting of finite populations. To preserve Markov structure, we follow [2] and assume all infections by a single individual occur on the single time step where that individual makes an I -> R transition. That is, whereas the SimpleSIRModel assumes infected individuals infect Binomial(S,R/tau)-many susceptible individuals during each infected time step (over tau-many steps on average), this model assumes they infect BetaBinomial(k,...,S)-many susceptible individuals but only on the final time step before recovering.

References


Parameters

- population (int) – Total population = S + I + R.
- recovery_time (float) – Mean recovery time (duration in state I). Must be greater than 1.
- data (iterable) – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of S -> E transitions. This allows false negative but no false positives.

15.2.7 Superspreading SEIR

class SuperspreadingSEIRModel(population, incubation_time, recovery_time, data, *, leaf_times=None, coal_times=None)

Generalizes SimpleSEIRModel by adding superspreading effects.

To customize this model we recommend forking and editing this class.

This model accounts for superspreading (overdispersed individual reproductive number) by assuming each infected individual infects BetaBinomial-many susceptible individuals, where the BetaBinomial distribution acts as an overdispersed Binomial distribution, adapting the more standard NegativeBinomial distribution that acts as an overdispersed Poisson distribution [1,2] to the setting of finite populations. To preserve Markov structure, we follow [2] and assume all infections by a single individual occur on the single time step where that individual makes an I -> R transition. That is, whereas the SimpleSEIRModel assumes infected individuals infect Binomial(S,R/tau)-many susceptible individuals during each infected time step (over tau-many steps on average), this
model assumes they infect $\text{BetaBinomial}(k, \ldots, S)$-many susceptible individuals but only on the final time step before recovering.

This model also adds an optional likelihood for observed phylogenetic data in the form of coalescent times. These are provided as a pair $(\text{leaf\_times}, \text{coal\_times})$ of times at which genomes are sequenced and lineages coalesce, respectively. We incorporate this data using the $\text{CoalescentRateLikelihood}$ with base coalescence rate computed from the $S$ and $I$ populations. This likelihood is independent across time and preserves the Markov property needed for inference.

References


Parameters

- **population** ($\text{int}$) – Total population $= S + E + I + R$.
- **incubation\_time** ($\text{float}$) – Mean incubation time (duration in state $E$). Must be greater than 1.
- **recovery\_time** ($\text{float}$) – Mean recovery time (duration in state $I$). Must be greater than 1.
- **data** ($\text{iterable}$) – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of $S \rightarrow E$ transitions. This allows false negative but no false positives.

15.2.8 Heterogeneous SIR

class HeterogeneousSIRModel($\text{population}, \text{recovery\_time}, \text{data}$)

Generalizes $\text{SimpleSIRModel}$ by allowing $R_t$ and $\rho$ to vary in time.

To customize this model we recommend forking and editing this class.

In this model, the response rate $\rho$ is piecewise constant with unknown value over three pieces. The reproductive number $R_t$ is a product of a constant $R_0$ with a factor $\beta$ that drifts via Brownian motion in log space. Both $\rho$ and $R_t$ are available as time series.

Parameters

- **population** ($\text{int}$) – Total population $= S + I + R$.
- **recovery\_time** ($\text{float}$) – Mean recovery time (duration in state $I$). Must be greater than 1.
- **data** ($\text{iterable}$) – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of $S \rightarrow I$ transitions. This allows false negative but no false positives.
15.2.9 Sparse SIR

class SparseSIRModel(population, recovery_time, data, mask)
Generalizes SimpleSIRModel to allow sparsely observed infections.

To customize this model we recommend forking and editing this class.

This model allows observations of cumulative infections at uneven time intervals. To preserve Markov structure (and hence tractable inference) this model adds an auxiliary compartment $O$ denoting the fully-observed cumulative number of observations at each time point. At observed times (when $\text{mask}[t] == \text{True}$) $O$ must exactly match the provided data; between observed times $O$ stochastically imputes the provided data.

This model demonstrates how to implement a custom compute_flows() method. A custom method is needed in this model because inhabitants of the $S$ compartment can transition to both the $I$ and $O$ compartments, allowing duplication.

Parameters

- population (int) – Total population = $S + I + R$.
- recovery_time (float) – Mean recovery time (duration in state $I$). Must be greater than 1.
- data (iterable) – Time series of cumulative observed infections. Whenever $\text{mask}[t] == \text{True}$, $\text{data}[t]$ corresponds to an observation; otherwise $\text{data}[t]$ can be arbitrary, e.g. NaN.
- mask (iterable) – Boolean time series denoting whether an observation is made at each time step. Should satisfy len(mask) == len(data).

15.2.10 Unknown Start SIR

class UnknownStartSIRModel(population, recovery_time, pre_obs_window, data)
Generalizes SimpleSIRModel by allowing unknown date of first infection.

To customize this model we recommend forking and editing this class.

This model demonstrates:

1. How to incorporate spontaneous infections from external sources;
2. How to incorporate time-varying piecewise $\rho$ by supporting forecasting in transition().
3. How to override the predict() method to compute extra statistics.

Parameters

- population (int) – Total population = $S + I + R$.
- recovery_time (float) – Mean recovery time (duration in state $I$). Must be greater than 1.
- pre_obs_window (int) – Number of time steps before beginning data where the initial infection may have occurred. Must be positive.
- data (iterable) – Time series of new observed infections. Each time step is Binomial distributed between 0 and the number of $S \rightarrow I$ transitions. This allows false negative but no false positives.
15.2.11 Regional SIR

class RegionalSIRModel(population, coupling, recovery_time, data)

Generalizes SimpleSIRModel to simultaneously model multiple regions with weak coupling across regions.

To customize this model we recommend forking and editing this class.

Regions are coupled by a coupling matrix with entries in \([0,1]\). The all ones matrix is equivalent to a single region. The identity matrix is equivalent to a set of independent regions. This need not be symmetric, but symmetric matrices are probably more physically plausible. The expected number of new infections each time step S\(2\)I is Binomial distributed with mean:

\[
E[S2I] = S \left(1 - \frac{1 - R0}{\text{population} \times \text{coupling}}\right)^{\text{I} \times \text{coupling}}
\]

Thus in a nearly entirely susceptible population, a single infected individual infects approximately \(R_0\) new individuals on average, independent of \(\text{coupling}\).

This model demonstrates:

1. How to create a regional model with a \(\text{population}\) vector.
2. How to model both homogeneous parameters (here \(R_0\)) and heterogeneous parameters with hierarchical structure (here \(\rho\)) using self.region_plate.
3. How to approximately couple regions in transition() using state["I_approx"].

Parameters

- \(\text{population}\) (torch.Tensor) – Tensor of per-region populations, defining \(\text{population} = S + I + R\).
- \(\text{coupling}\) (torch.Tensor) – Pairwise coupling matrix. Entries should be in \([0,1]\).
- \(\text{recovery\_time}\) (float) – Mean recovery time (duration in state I). Must be greater than 1.
- \(\text{data}\) (iterable) – Time x Region sized tensor of new observed infections. Each time step is vector of Binomials distributed between 0 and the number of \(S \rightarrow I\) transitions. This allows false negative but no false positives.

15.2.12 Heterogeneous Regional SIR

class HeterogeneousRegionalSIRModel(population, coupling, recovery_time, data)

Generalizes RegionalSIRModel by allowing \(R_t\) and \(\rho\) to vary in time.

To customize this model we recommend forking and editing this class.

In this model, the response rate \(\rho\) varies across time and region, whereas the reproductive number \(R_t\) varies in time but is shared among regions. Both parameters drift according to transformed Brownian motion with learned drift rate.

This model demonstrates how to model hierarchical latent time series, other than compartmental variables.

Parameters

- \(\text{population}\) (torch.Tensor) – Tensor of per-region populations, defining \(\text{population} = S + I + R\).
- \(\text{coupling}\) (torch.Tensor) – Pairwise coupling matrix. Entries should be in \([0,1]\).
• **recovery_time** (*float*) – Mean recovery time (duration in state I). Must be greater than 1.

• **data** (*iterable*) – Time x Region sized tensor of new observed infections. Each time step is vector of Binomials distributed between 0 and the number of S \rightarrow I transitions. This allows false negative but no false positives.

## 15.3 Distributions

**set_approx_sample_thresh**(thresh)

EXPERIMENTAL Context manager / decorator to temporarily set the global default value of Binomial. approx_sample_thresh, thereby decreasing the computational complexity of sampling from Binomial, BetaBinomial, ExtendedBinomial, ExtendedBetaBinomial, and distributions returned by infection_dist().

This is useful for sampling from very large `total_count`.

This is used internally by CompartmentalModel.

**Parameters**

<table>
<thead>
<tr>
<th><strong>thresh</strong> (<em>int or float</em>) – New temporary threshold</th>
</tr>
</thead>
</table>

**set_approx_log_prob_tol**(tol)

EXPERIMENTAL Context manager / decorator to temporarily set the global default value of Binomial. approx_log_prob_tol and BetaBinomial.approx_log_prob_tol, thereby decreasing the computational complexity of scoring Binomial and BetaBinomial distributions.

This is used internally by CompartmentalModel.

**Parameters**

<table>
<thead>
<tr>
<th><strong>tol</strong> (<em>int or float</em>) – New temporary tolold</th>
</tr>
</thead>
</table>

**binomial_dist**(`total_count`, `probs`, *, overdispersion=0.0)

Returns a Beta-Binomial distribution that is an overdispersed version of a Binomial distribution, according to a parameter overdispersion, typically set in the range 0.1 to 0.5.

This is useful for (1) fitting real data that is overdispersed relative to a Binomial distribution, and (2) relaxing models of large populations to improve inference. In particular the overdispersion parameter lower bounds the relative uncertainty in stochastic models such that increasing population leads to a limiting scale-free dynamical system with bounded stochasticity, in contrast to Binomial-based SDEs that converge to deterministic ODEs in the large population limit.

This parameterization satisfies the following properties:

1. Variance increases monotonically in overdispersion.

2. overdispersion = 0 results in a Binomial distribution.

3. overdispersion lower bounds the relative uncertainty `std_dev / (total_count * p * q)`, where `probs = p = 1 - q`, and serves as an asymptote for relative uncertainty as `total_count \rightarrow \infty`. This contrasts the Binomial whose relative uncertainty tends to zero.

4. If `X \sim binomial_dist(n, p, overdispersion=)` then in the large population limit `n \rightarrow \infty`, the scaled random variable `X / n` converges in distribution to LogitNormal(\text{log}(p/(1-p)) , ).

To achieve these properties we set `p = probs, q = 1 - p, and:`

\[
\text{concentration} = \frac{1}{(p \times q \times \text{overdispersion}^2) - 1}
\]

**Parameters**

| **total_count** (*int or torch.Tensor*) – Number of Bernoulli trials |
• **probs (float or torch.Tensor)** – Event probabilities.

• **overdispersion (float or torch.tensor)** – Amount of overdispersion, in the half-open interval \([0,2)\). Defaults to zero.

**beta_binomial_dist**\((\text{concentration1, concentration0, total_count, \*, overdispersion=0.0})\)

Returns a Beta-Binomial distribution that is an overdispersed version of the usual Beta-Binomial distribution, according to an extra parameter overdispersion, typically set in the range 0.1 to 0.5.

**Parameters**

• **concentration1 (float or torch.Tensor)** – 1st concentration parameter (alpha) for the Beta distribution.

• **concentration0 (float or torch.Tensor)** – 2nd concentration parameter (beta) for the Beta distribution.

• **total_count (float or torch.Tensor)** – Number of Bernoulli trials.

• **overdispersion (float or torch.tensor)** – Amount of overdispersion, in the half-open interval \([0,2)\). Defaults to zero.

**infection_dist**\((\*, individual_rate, num_infectious, num_susceptible=inf, population=inf, concentration=inf, overdispersion=0.0)\)

Create a Distribution over the number of new infections at a discrete time step.

This returns a Poisson, Negative-Binomial, Binomial, or Beta-Binomial distribution depending on whether population and concentration are finite. In Pyro models, the population is usually finite. In the limit population \(\to \infty\) and num_susceptible/population \(\to \), the Binomial converges to Poisson and the Beta-Binomial converges to Negative-Binomial. In the limit concentration \(\to \infty\), the Negative-Binomial converges to Poisson and the Beta-Binomial converges to Binomial.

The overdispersed distributions (Negative-Binomial and Beta-Binomial returned when concentration < \(\infty\)) are useful for modeling superspreader individuals [1,2]. The finitely supported distributions Binomial and Negative-Binomial are useful in small populations and in probabilistic programming systems where truncation or censoring are expensive [3].

**References**


**Parameters**

• **individual_rate** – The mean number of infections per infectious individual per time step in the limit of large population, equal to \(R_0 / \tau\) where \(R_0\) is the basic reproductive number and \(\tau\) is the mean duration of infectiousness.

• **num_infectious** – The number of infectious individuals at this time step, sometimes \(I\), sometimes \(I_+I\).

• **num_susceptible** – The number \(S\) of susceptible individuals at this time step. This defaults to an infinite population.
• **population** – The total number of individuals in a population. This defaults to an infinite population.

• **concentration** – The concentration or dispersion parameter $k$ in overdispersed models of superspreaders [1,2]. This defaults to minimum variance concentration = $\infty$.

• **overdispersion** (*float* or *torch.tensor*) – Amount of overdispersion, in the half open interval $[0,2)$. Defaults to zero.

class CoalescentRateLikelihood(leaf_times, coal_times, duration, *, validate_args=None)

Bases: object

EXPERIMENTAL This is not a Distribution, but acts as a transposed version of CoalescentTimesWithRate making the elements of rate_grid independent and thus compatible with plate and poutine.markov. For non-batched inputs the following are all equivalent likelihoods:

```python
Version 1.
pyro.sample("coalescent",
 CoalescentTimesWithRate(leaf_times, rate_grid),
 obs=coal_times)

Version 2. using pyro.plate
likelihood = CoalescentRateLikelihood(leaf_times, coal_times, len(rate_grid))
with pyro.plate("time", len(rate_grid)):
 pyro.factor("coalescent", likelihood(rate_grid))

Version 3. using pyro.markov
likelihood = CoalescentRateLikelihood(leaf_times, coal_times, len(rate_grid))
for t in pyro.markov(range(len(rate_grid))):
 pyro.factor("coalescent_{t}", format(t), likelihood(rate_grid[t], t))
```

The third version is useful for e.g. SMCFilter where rate_grid might be computed sequentially.

Parameters

- **leaf_times** (*torch.Tensor*) – Tensor of times of sampling events, i.e. leaf nodes in the phylogeny. These can be arbitrary real numbers with arbitrary order and duplicates.

- **coal_times** (*torch.Tensor*) – A tensor of coalescent times. These denote sets of size leaf_times.size(-1) – 1 along the trailing dimension and should be sorted along that dimension.

- **duration** (*int*) – Size of the rate grid, rate_grid.size(-1).

__call__ (rate_grid, t=slice(None, None, None))
Computes the likelihood of [1] equations 7-9 for one or all time points.

References


Parameters

- **rate_grid** (*torch.Tensor*) – Tensor of base coalescent rates (pairwise rate of coalescence). For example in a simple SIR model this might be beta $S \div I$. The rightmost dimension is time, and this tensor represents a (batch of) rates that are piecwise constant in time.
• **time** (*int* or *slice*) – Optional time index by which the input was sliced, as in `rate_grid[..., t]`. This can be an integer for sequential models or `slice(None)` for vectorized models.

**Returns** Likelihood $p(\text{coal\_times} \mid \text{leaf\_times}, \text{rate\_grid})$, or a part of that likelihood corresponding to a single time step.

**Return type** `torch.Tensor`

### bio_phylo_to_times(tree, *, get_time=None)

Extracts coalescent summary statistics from a phylogeny, suitable for use with `CoalescentRateLikelihood`.

**Parameters**

- **get_time** (*callable*) – Optional function to extract the time point of each sub-`Clade`. If absent, times will be computed by cumulative `.branch_length`.

**Returns** A pair of `Tensor`s (`leaf\_times`, `coal\_times`) where `leaf\_times` are times of sampling events (leaf nodes in the phylogenetic tree) and `coal\_times` are times of coalescences (leaf nodes in the phylogenetic binary tree).

**Return type** `tuple`
16.1 Datasets

16.1.1 Multi MNIST

This script generates a dataset similar to the Multi-MNIST dataset described in [1].


```python
imresize(arr, size)
sample_one(canvas_size, mnist)
sample_multi(num_digits, canvas_size, mnist)
mk_dataset(n, mnist, max_digits, canvas_size)
load_mnist(root_path)
load(root_path)
```

16.1.2 BART Ridership

```python
load_bart_od()
```

Load a dataset of hourly origin-destination ridership counts for every pair of BART stations during the years 2011-2019.

**Source** https://www.bart.gov/about/reports/ridership

This downloads the dataset the first time it is called. On subsequent calls this reads from a local cached file .pk1.bz2. This attempts to download a preprocessed compressed cached file maintained by the Pyro team. On cache hit this should be very fast. On cache miss this falls back to downloading the original data source and preprocessing the dataset, requiring about 350MB of file transfer, storing a few GB of temp files, and taking upwards of 30 minutes.

**Returns**

a dataset is a dictionary with fields:

- ”stations”: a list of strings of station names
- ”start_date”: a `datetime.datetime` for the first observation
- ”counts”: a `torch.FloatTensor` of ridership counts, with shape `(num_hours, len(stations), len(stations))`.  

load_fake_od()
   Create a tiny synthetic dataset for smoke testing.

16.1.3 Nextstrain SARS-CoV-2 counts

load_nextstrain_counts(map_location=None) → dict
   Loads a SARS-CoV-2 dataset.
   The original dataset is a preprocessed intermediate metadata.tsv.gz available via nextstrain. The metadata.tsv.gz file was then aggregated to (month,location,lineage) and (lineage,mutation) bins by the Broad Institute’s preprocessing script.

16.2 Utilities

class MNIST(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform:
   Optional[Callable] = None, download: bool = False):
   Bases: torchvision.datasets.mnist.MNIST

   mirrors = ['https://d2hg8soec8ck9v.cloudfront.net/datasets/mnist/',
             'http://yann.lecun.com/exdb/mnist/',
             'https://ossci-datasets.s3.amazonaws.com/mnist/']

global_data_loader(dataset_name, data_dir, batch_size=1, dataset_transforms=None, is_training_set=True,
                   shuffle=True)

global_print_and_log(logger, msg)

global_get_data_directory(filepath=None)
Chapter Seventeen

Forecasting

`pyro.contrib.forecast` is a lightweight framework for experimenting with a restricted class of time series models and inference algorithms using familiar Pyro modeling syntax and PyTorch neural networks.

Models include hierarchical multivariate heavy-tailed time series of ~1000 time steps and ~1000 separate series. Inference combines subsample-compatible variational inference with Gaussian variable elimination based on the `GaussianHMM` class. Inference using Hamiltonian Monte Carlo sampling is also supported with `HMCForecaster`. Forecasts are in the form of joint posterior samples at multiple future time steps.

Hierarchical models use the familiar `plate` syntax for general hierarchical modeling in Pyro. Plates can be subsampled, enabling training of joint models over thousands of time series. Multivariate observations are handled via multivariate likelihoods like `MultivariateNormal`, `GaussianHMM`, or `LinearHMM`. Heavy tailed models are possible by using `StudentT` or `Stable` likelihoods, possibly together with `LinearHMM` and reparameterizers including `StudentTReparam`, `StableReparam`, and `LinearHMMReparam`.

Seasonality can be handled using the helpers `periodic_repeat()`, `periodic_cumsum()`, and `periodic_features()`.

See `pyro.contrib.timeseries` for ways to construct temporal Gaussian processes useful as likelihoods.

For example usage see:

- The univariate forecasting tutorial
- The state space modeling tutorial
- The hierarchical forecasting tutorial
- The forecasting example

### 17.1 Forecaster Interface

```python
class ForecastingModel
 Bases: `pyro.nn.module.PyroModule`

 Abstract base class for forecasting models.

 Derived classes must implement the `model()` method.

 `abstract model(zero_data, covariates)`

 Generative model definition.

 Implementations must call the `predict()` method exactly once.

 Implementations must draw all time-dependent noise inside the `time_plate()`. The prediction passed to `predict()` must be a deterministic function of noise tensors that are independent over time. This requirement is slightly more general than state space models.
```
Parameters

- **zero_data** (*Tensor*) – A zero tensor like the input data, but extended to the duration of the `time_plate()`. This allows models to depend on the shape and device of data but not its value.

- **covariates** (*Tensor*) – A tensor of covariates with time dimension -2.

Returns  Return value is ignored.

property **time_plate**

Returns  A plate named “time” with size `covariates.size(-2)` and dim=-1. This is available only during model execution.

Return type **plate**

predict(*noise_dist, prediction*)

Prediction function, to be called by `model()` implementations.

This should be called outside of the `time_plate()`.

This is similar to an observe statement in Pyro:

```python
pyro.sample("residual", noise_dist,
 obs=(data - prediction))
```

but with (1) additional reshaping logic to allow time-dependent `noise_dist` (most often a `GaussianHMM` or variant); and (2) additional logic to allow only a partial observation and forecast the remaining data.

Parameters

- **noise_dist** (*Distribution*) – A noise distribution with .event_dim in \{0,1,2\}. `noise_dist` is typically zero-mean or zero-median or zero-mode or somehow centered.

- **prediction** (*Tensor*) – A prediction for the data. This should have the same shape as `data`, but broadcastable to full duration of the `covariates`.

class **Forecaster**(model, data, covariates, *, guide=None, init_loc_fn=<function init_to_sample>, init_scale=0.1, create_plates=None, optim=None, learning_rate=0.01, betas=(0.9, 0.99), learning_rate_decay=0.1, clip_norm=10.0, time_reparam=None, dct_gradients=False, subsample_aware=False, num_steps=1001, num_particles=1, vectorize_particles=True, warm_start=False, log_every=100)

Bases: torch.nn.modules.module.Module

Forecaster for a `ForecastingModel` using variational inference.

On initialization, this fits a distribution using variational inference over latent variables and exact inference over the noise distribution, typically a `GaussianHMM` or variant.

After construction this can be called to generate sample forecasts.

Variables **losses** (*list*) – A list of losses recorded during training, typically used to debug convergence. Defined by `loss = -elbo / data.numel()`.

Parameters

- **model** (*ForecastingModel*) – A forecasting model subclass instance.

- **data** (*Tensor*) – A tensor dataset with time dimension -2.

- **covariates** (*Tensor*) – A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor `torch.empty(duration, 0)`.

- **guide** (*PyroModule*) – Optional guide instance. Defaults to a `AutoNormal`. 
• **init_loc_fn** *(callable)* – A per-site initialization function for the *AutoNormal* guide. Defaults to *init_to_sample()* . See Initialization section for available functions.

• **init_scale** *(float)* – Initial uncertainty scale of the *AutoNormal* guide.

• **create_plates** *(callable)* – An optional function to create plates for subsampling with the *AutoNormal* guide.

• **optim** *(PyroOptim)* – An optional Pyro optimizer. Defaults to a freshly constructed *DCTAdam*.

• **learning_rate** *(float)* – Learning rate used by *DCTAdam*.

• **betas** *(tuple)* – Coefficients for running averages used by *DCTAdam*.

• **learning_rate_decay** *(float)* – Learning rate decay used by *DCTAdam*. Note this is the total decay over all num_steps, not the per-step decay factor.

• **clip_norm** *(float)* – Norm used for gradient clipping during optimization. Defaults to 10.0.

• **time_reparam** *(str)* – If not None (default), reparameterize all time-dependent variables via the Haar wavelet transform (if “haar”) or the discrete cosine transform (if “dct”).

• **dct_gradients** *(bool)* – Whether to discrete cosine transform gradients in *DCTAdam*. Defaults to False.

• **subsample_aware** *(bool)* – Whether to update gradient statistics only for those elements that appear in a subsample. This is used by *DCTAdam*.

• **num_steps** *(int)* – Number of SVI steps.

• **num_particles** *(int)* – Number of particles used to compute the *ELBO*.

• **vectorize_particles** *(bool)* – If num_particles > 1, determines whether to vectorize computation of the *ELBO*. Defaults to True. Set to False for models with dynamic control flow.

• **warm_start** *(bool)* – Whether to warm start parameters from a smaller time window. Note this may introduce statistical leakage; usage is recommended for model exploration purposes only and should be disabled when publishing metrics.

• **log_every** *(int)* – Number of training steps between logging messages.

___call___ *(data, covariates, num_samples, batch_size=None)*

Samples forecasted values of data for time steps in \([t_1, t_2)\), where \(t_1 = \text{data.size}(-2)\) is the duration of observed data and \(t_2 = \text{covariates.size}(-2)\) is the extended duration of covariates. For example to forecast 7 days forward conditioned on 30 days of observations, set \(t_1=30\) and \(t_2=37\).

**Parameters**

• **data** *(Tensor)* – A tensor dataset with time dimension -2.

• **covariates** *(Tensor)* – A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor *torch.empty(duration, 0)*.

• **num_samples** *(int)* – The number of samples to generate.

• **batch_size** *(int)* – Optional batch size for sampling. This is useful for generating many samples from models with large memory footprint. Defaults to num_samples.

**Returns** A batch of joint posterior samples of shape *(num_samples,1,...,1) + data. shape[:-2] + (t2-t1, data.size(-1)),* where the 1’s are inserted to avoid conflict with model plates.
Return type  Tensor

class HMCForecaster(model, data, covariates=None, *, num_warmup=1000, num_samples=1000, num_chains=1, time_reparam=None, dense_mass=False, jit_compile=False, max_tree_depth=10)

Bases: torch.nn.modules.module.Module

Forecaster for a ForecastingModel using Hamiltonian Monte Carlo.

On initialization, this will run NUTS sampler to get posterior samples of the model.

After construction, this can be called to generate sample forecasts.

Parameters

- **model** (ForecastingModel) – A forecasting model subclass instance.
- **data** (Tensor) – A tensor dataset with time dimension -2.
- **covariates** (Tensor) – A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor torch.empty(duration, 0).
- **num_warmup** (int) – number of MCMC warmup steps.
- **num_samples** (int) – number of MCMC samples.
- **num_chains** (int) – number of parallel MCMC chains.
- **dense_mass** (bool) – a flag to control whether the mass matrix is dense or diagonal. Defaults to False.
- **time_reparam** (str) – If not None (default), reparameterize all time-dependent variables via the Haar wavelet transform (if “haar”) or the discrete cosine transform (if “dct”).
- **jit_compile** (bool) – whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator. Defaults to False.
- **max_tree_depth** (int) – Max depth of the binary tree created during the doubling scheme of the NUTS sampler. Defaults to 10.

__call__(data, covariates, num_samples, batch_size=None)

Samples forecasted values of data for time steps in [t1,t2), where t1 = data.size(-2) is the duration of observed data and t2 = covariates.size(-2) is the extended duration of covariates. For example to forecast 7 days forward conditioned on 30 days of observations, set t1=30 and t2=37.

Parameters

- **data** (Tensor) – A tensor dataset with time dimension -2.
- **covariates** (Tensor) – A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor torch.empty(duration, 0).
- **num_samples** (int) – The number of samples to generate.
- **batch_size** (int) – Optional batch size for sampling. This is useful for generating many samples from models with large memory footprint. Defaults to num_samples.

Returns A batch of joint posterior samples of shape (num_samples,1,...,1) + data.shape[:-2] + (t2-t1,data.size(-1)), where the 1’s are inserted to avoid conflict with model plates.

Return type  Tensor
17.2 Evaluation

**eval_mae**(pred, truth)
Evaluate mean absolute error, using sample median as point estimate.

Parameters
- **pred** (*torch.Tensor*) – Forecasted samples.
- **truth** (*torch.Tensor*) – Ground truth.

Return type: float

**eval_rmse**(pred, truth)
Evaluate root mean squared error, using sample mean as point estimate.

Parameters
- **pred** (*torch.Tensor*) – Forecasted samples.
- **truth** (*torch.Tensor*) – Ground truth.

Return type: float

**eval_crps**(pred, truth)
Evaluate continuous ranked probability score, averaged over all data elements.

References

Parameters
- **pred** (*torch.Tensor*) – Forecasted samples.
- **truth** (*torch.Tensor*) – Ground truth.

Return type: float

**backtest**(data, covariates, model_fn, *, forecaster_fn=<class 'pyro.contrib.forecast.forecaster.Forecaster'>,  
metrics=None, transform=None, train_window=None, min_train_window=1, test_window=None,  
min_test_window=1, stride=1, seed=1234567890, num_samples=100, batch_size=None,  
forecaster_options={})
Backtest a forecasting model on a moving window of (train,test) data.

Parameters
- **data** (*Tensor*) – A tensor dataset with time dimension -2.
- **covariates** (*Tensor*) – A tensor of covariates with time dimension -2. For models not using covariates, pass a shaped empty tensor `torch.empty(duration, 0)`.
- **model_fn** (*callable*) – Function that returns an *ForecastingModel* object.
- **forecaster_fn** (*callable*) – Function that returns a forecaster object (for example, *Forecaster* or *HMCForecaster*) given arguments model, training data, training covariates and keyword arguments defined in *forecaster_options*.
- **metrics** (*dict*) – A dictionary mapping metric name to metric function. The metric function should input a forecast *pred* and ground *truth* and can output anything, often a number. Example metrics include: *eval_mae()*,**eval_rmse()**, and **eval_crps()**.
• **transform** (*callable*) – An optional transform to apply before computing metrics. If provided this will be applied as `pred, truth = transform(pred, truth)`.

• **train_window** (*int*) – Size of the training window. By default trains from beginning of data. This must be None if forecaster is `Forecaster` and `forecaster_options["warm_start"]` is true.

• **min_train_window** (*int*) – If `train_window` is None, this specifies the min training window size. Defaults to 1.

• **test_window** (*int*) – Size of the test window. By default forecasts to end of data.

• **min_test_window** (*int*) – If `test_window` is None, this specifies the min test window size. Defaults to 1.

• **stride** (*int*) – Optional stride for test/train split. Defaults to 1.

• **seed** (*int*) – Random number seed.

• **num_samples** (*int*) – Number of samples for forecast. Defaults to 100.

• **batch_size** (*int*) – Batch size for forecast sampling. Defaults to `num_samples`.

• **forecaster_options** (*dict or callable*) – Options dict to pass to forecaster, or callable inputting time window `t0, t1, t2` and returning such a dict. See `Forecaster` for details.

**Returns**  A list of dictionaries of evaluation data. Caller is responsible for aggregating the per-window metrics. Dictionary keys include: train begin time “t0”, train/test split time “t1”, test end time “t2”, “seed”, “num_samples”, “train_walltime”, “test_walltime”, and one key for each metric.

**Return type**  list
18.1 Primitives

clear_param_store()
Clears the global `ParamStoreDict`.
This is especially useful if you’re working in a REPL. We recommend calling this before each training loop (to avoid leaking parameters from past models), and before each unit test (to avoid leaking parameters across tests).

condition(fn=None, *args, **kwargs)
Convenient wrapper of `ConditionMessenger`
Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:

```python
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(x, s))
... return z ** 2
```

To observe a value for site `z`, we can write

```python
>>> conditioned_model = pyro.poutine.condition(model, data={"z": torch.tensor(1.)})
```

This is equivalent to adding `obs=value` as a keyword argument to `pyro.sample("z", ...) in model`.

Parameters
- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `data` – a dict or a `Trace`

Returns stochastic function decorated with a `ConditionMessenger`

deterministic(name, value, event_dim=None)
Deterministic statement to add a `Delta` site with name `name` and value `value` to the trace. This is useful when we want to record values which are completely determined by their parents. For example:

```python
x = pyro.sample("x", dist.Normal(0, 1))
x2 = pyro.deterministic("x2", x ** 2)
```
Note: The site does not affect the model density. This currently converts to a \texttt{sample()} statement, but may change in the future.

**Parameters**

- \texttt{name (str)} – Name of the site.
- \texttt{value (torch.Tensor)} – Value of the site.
- \texttt{event_dim (int)} – Optional event dimension, defaults to \texttt{value.ndim}.

\texttt{do(fn=None, *args, **kwargs)}

Convenient wrapper of \texttt{DoMessenger}

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values as if they were hard-coded to those values and introduce fresh sample sites with the same names whose values do not propagate.

Composes freely with \texttt{condition()} to represent counterfactual distributions over potential outcomes. See Single World Intervention Graphs [1] for additional details and theory.

Consider the following Pyro program:

```python
>>> def model(x):
 ... s = pyro.param("s", torch.tensor(0.5))
 ... z = pyro.sample("z", dist.Normal(x, s))
 ... return z ** 2
```

To intervene with a value for site \(z\), we can write

```python
>>> intervened_model = pyro.poutine.do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing \texttt{z = pyro.sample(“z”, ...)} with \texttt{z = torch.tensor(1.)} and introducing a fresh sample site \texttt{pyro.sample(“z”, ...)} whose value is not used elsewhere.

**References**

[1] Single World Intervention Graphs: A Primer, Thomas Richardson, James Robins

**Parameters**

- \texttt{fn} – a stochastic function (callable containing Pyro primitive calls)
- \texttt{data} – a dict mapping sample site names to interventions

**Returns** stochastic function decorated with a \texttt{DoMessenger}

\texttt{enable_validation(is_validate=True)}

Enable or disable validation checks in Pyro. Validation checks provide useful warnings and errors, e.g. NaN checks, validating distribution arguments and support values, detecting incorrect use of ELBO and MCMC. Since some of these checks may be expensive, you may want to disable validation of mature models to speed up inference.

The default behavior mimics Python’s \texttt{assert} statement: validation is on by default, but is disabled if Python is run in optimized mode (via \texttt{python -O}). Equivalently, the default behavior depends on Python’s global \texttt{__debug__} value via \texttt{pyro.enable_validation(__debug__)}. 284 Chapter 18. Funsor-based Pyro
Validation is temporarily disabled during jit compilation, for all inference algorithms that support the PyTorch jit. We recommend developing models with non-jitted inference algorithms to ease debugging, then optionally moving to jitted inference once a model is correct.

**Parameters**

- `is_validate (bool)` — (optional; defaults to True) whether to enable validation checks.

**factor**

`factor(name, log_factor, *, has_rsample=None)`

Factor statement to add arbitrary log probability factor to a probabilistic model.

**Warning:** When using factor statements in guides, you’ll need to specify whether the factor statement originated from fully reparametrized sampling (e.g. the Jacobian determinant of a transformation of a reparametrized variable) or from nonreparameterized sampling (e.g. discrete samples). For the fully reparametrized case, set `has_rsample=True`; for the nonreparametrized case, set `has_rsample=False`. This is needed only in guides, not in models.

**Parameters**

- `name (str)` — Name of the trivial sample
- `log_factor (torch.Tensor)` — A possibly batched log probability factor.
- `has_rsample (bool)` — Whether the `log_factor` arose from a fully reparametrized distribution. Defaults to False when used in models, but must be specified for use in guides.

**get_param_store()**

Returns the global `ParamStoreDict`.

**markov**

`markov(fn=None, *args, **kwargs)`

Convenient wrapper of `MarkovMessenger`

Handler for converting to/from funsors consistent with Pyro’s positional batch dimensions.

**Parameters**

- `history (int)` — The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.
- `keep (bool)` — If true, frames are replayable. This is important when branching: if `keep=True`, neighboring branches at the same level can depend on each other; if `keep=False`, neighboring branches are independent (conditioned on their shared ancestors).

**module**

`module(name, nn_module, update_module_params=False)`

Registers all parameters of a `torch.nn.Module` with Pyro’s `param_store`. In conjunction with the `ParamStoreDict save()` and `load()` functionality, this allows the user to save and load modules.

**Note:** Consider instead using `PyroModule`, a newer alternative to `pyro.module()` that has better support for: jitting, serving in C++, and converting parameters to random variables. For details see the Modules Tutorial.

**Parameters**

- `name (str)` — name of module
- `nn_module (torch.nn.Module)` — the module to be registered with Pyro
- `update_module_params` — determines whether Parameters in the PyTorch module get overridden with the values found in the ParamStore (if any). Defaults to `False`

**Returns** `torch.nn.Module`
**param** *(name, init_tensor=None, constraint=Real(), event_dim=None)*

Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

**Parameters**

- **name** *(str)* – name of parameter
- **init_tensor** *(torch.Tensor or callable)* – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
- **constraint** *(torch.distributions.constraints.Constraint)* – torch constraint, defaults to `constraints.real`.
- **event_dim** *(int)* – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

**Returns** A constrained parameter. The underlying unconstrained parameter is accessible via pyro.param(...).unconstrained(), where .unconstrained is a weakref attribute.

**Return type** torch.Tensor

**random_module** *(name, nn_module, prior, *args, **kwargs)*

**Warning:** The `random_module` primitive is deprecated, and will be removed in a future release. Use `PyroModule` instead to to create Bayesian modules from `torch.nn.Module` instances. See the Bayesian Regression tutorial for an example.

**DEPRECATED** Places a prior over the parameters of the module `nn_module`. Returns a distribution (callable) over `nn.Module`s, which upon calling returns a sampled `nn.Module`.

**Parameters**

- **name** *(str)* – name of pyro module
- **nn_module** *(torch.nn.Module)* – the module to be registered with pyro
- **prior** – pyro distribution, stochastic function, or python dict with parameter names as keys and respective distributions/stochastic functions as values.

**Returns** a callable which returns a sampled module

**sample** *(name, fn, *args, **kwargs)*

Calls the stochastic function `fn` with additional side-effects depending on `name` and the enclosing context (e.g. an inference algorithm). See Introduction to Pyro for a discussion.

**Parameters**

- **name** – name of sample
- **fn** – distribution class or function
- **obs** – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
- **obs_mask** *(bool or Tensor)* – Optional boolean tensor mask of shape broadcastable with `fn.batch_shape`. If provided, events with mask=True will be conditioned on obs and
remaining events will be imputed by sampling. This introduces a latent sample site named 
name + "," _unobserved" which should be used by guides.

- **infer** *(dict)* – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

**set_rng_seed**(rng_seed)
Sets seeds of torch and torch.cuda (if available).

Parameters **rng_seed** *(int)* – The seed value.

**subsample**(data, event_dim)
Subsampling statement to subsample data tensors based on enclosing plate s.

This is typically called on arguments to model() when subsampling is performed automatically by plate s by passing either the subsample or subsample_size kwarg. For example the following are equivalent:

```python
Version 1. using indexing
def model(data):
 with pyro.plate("data", len(data), subsample_size=10, dim=-data.dim()) as ind:
 data = data[ind]
 # ...

Version 2. using pyro.subsample()
def model(data):
 with pyro.plate("data", len(data), subsample_size=10, dim=-data.dim()):
 data = pyro.subsample(data, event_dim=0)
 # ...
```

Parameters

- **data** *(Tensor)* – A tensor of batched data.
- **event_dim** *(int)* – The event dimension of the data tensor. Dimensions to the left are considered batch dimensions.

Returns A subsampled version of data

Return type Tensor

**to_data**(x, name_to_dim=None, dim_type=DimType.LOCAL)

**to_funsor**(x, output=None, dim_to_name=None, dim_type=DimType.LOCAL)

**vectorized_markov**(fn=None, *args, **kwargs)

Convenient wrapper of VectorizedMarkovMessenger

Construct for Markov chain of variables designed for efficient elimination of Markov dimensions using the parallel-scan algorithm. Whenever permissible, vectorized_markov is interchangeable with markov.

The for loop generates both int and 1-dimensional torch.Tensor indices: (0, ..., history-1, torch. arange(0, size-history), ..., torch.arange(history, size)). int indices are used to initiate the Markov chain and torch.Tensor indices are used to construct vectorized transition probabilities for efficient elimination by the parallel-scan algorithm.

When history==0 vectorized_markov behaves similar to plate.

After the for loop is run, Markov variables are identified and then the step information is constructed and added to the trace. step informs inference algorithms which variables belong to a Markov chain.
data = torch.ones(3, dtype=torch.float)

def model(data, vectorized=True):

    init = pyro.param("init", lambda: torch.rand(3), constraint=constraints.simplex)
    trans = pyro.param("trans", lambda: torch.rand((3, 3)), constraint=constraints.simplex)
    locs = pyro.param("locs", lambda: torch.rand(3,))

    markov_chain = pyro.vectorized_markov(name="time", size=len(data), dim=-1)
    if vectorized else pyro.markov(range(len(data)))

    for i in markov_chain:
        x_curr = pyro.sample("x_\{\}", dist.Categorical(
            init if isinstance(i, int) and i < 1 else trans[x_prev]),
            pyro.sample("y_\{\}", dist.Normal(Vindex(locs)[..., x_curr], 1.),
            obs=data[i])
        x_prev = x_curr

    # trace.nodes["time"]["value"]
    # frozenset({("x_0", x_slice(0, 2, None), x_slice(1, 3, None))})
    #
    # pyro.vectorized_markov trace
    # ...
    # Sample Sites:
    #    locs dist | 3
    #    value | 3
    #    log_prob | 
    #    x_0 dist |
    #    value 3 1 1 1 1 |
    #    log_prob 3 1 1 1 1 |
    #    y_0 dist 3 1 1 1 1 |
    #    value |
    #    log_prob 3 1 1 1 1 |
    #    x_slice(1, 3, None) dist 3 1 1 1 1 2 |
    #    value 3 1 1 1 1 1 |
    #    log_prob 3 1 1 1 1 1 2 |
    #    y_slice(1, 3, None) dist 3 1 1 1 1 1 2 |
    #    value 2 |
    #    log_prob 3 1 1 1 1 1 2 |
    #
    # pyro.markov trace
    # ...
    # Sample Sites:
    #    locs dist | 3
    #    value | 3
    #    log_prob |
    #    x_0 dist |
    #    value 3 1 1 1 1 |
    #    log_prob 3 1 1 1 1 |
    #    y_0 dist 3 1 1 1 1 |

    (continues on next page)
Parameters

- **name** *(str)* – A unique name of a Markov dimension to help inference algorithm eliminate variables in the Markov chain.

- **size** *(int)* – Length (size) of the Markov chain.

- **dim** *(int)* – An optional dimension to use for this Markov dimension. If specified, `dim` should be negative, i.e. should index from the right. If not specified, `dim` is set to the rightmost dim that is left of all enclosing `plate` contexts.

- **history** *(int)* – Memory (order) of the Markov chain. Also the number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `plate`.

**Returns** Returns both `int` and 1-dimensional `torch.Tensor` indices: `(0, ..., history-1, torch.arange(size-history), ..., torch.arange(history, size))`.

### 18.2 Effect handlers

**enum** *(fn=None, *args, **kwargs)*

Convenient wrapper of `EnumMessenger`

This version of `EnumMessenger` uses `to_data()` to allocate a fresh enumeration dim for each discrete sample site.

**markov** *(fn=None, *args, **kwargs)*

Convenient wrapper of `MarkovMessenger`

Handler for converting to/from funsors consistent with Pyro’s positional batch dimensions.

**Parameters**

- **history** *(int)* – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.

---

Warning: This is only valid if there is only one Markov dimension per branch.
Pyro Documentation

- **keep** *(bool)* – If true, frames are replayable. This is important when branching: if keep=True, neighboring branches at the same level can depend on each other; if keep=False, neighboring branches are independent (conditioned on their shared ancestors).

**named** *(fn=None, *args, **kwargs)*

Convenient wrapper of NamedMessenger

Base effect handler class for the `to_funsor()` and `to_data()` primitives. Any effect handlers that invoke these primitives internally or wrap code that does should inherit from NamedMessenger.

This design ensures that the global name-dim mapping is reset upon handler exit rather than potentially persisting until the entire program terminates.

**plate** *(fn=None, *args, **kwargs)*

Convenient wrapper of PlateMessenger


**replay** *(fn=None, *args, **kwargs)*

Convenient wrapper of ReplayMessenger

This version of ReplayMessenger is almost identical to the original version, except that it calls `to_data()` on the replayed funsor values. This may result in different unpacked shapes, but should produce correct allocations.

**trace** *(fn=None, *args, **kwargs)*

Convenient wrapper of TraceMessenger

Setting pack_online=True packs online instead of after the fact, converting all distributions and values to Funsors as soon as they are available.

Setting pack_online=False computes information necessary to do packing after execution. Each sample site is annotated with a dim_to_name dictionary, which can be passed directly to `to_funsor()`.

**vectorized_markov** *(fn=None, *args, **kwargs)*

Convenient wrapper of VectorizedMarkovMessenger

Construct for Markov chain of variables designed for efficient elimination of Markov dimensions using the parallel-scan algorithm. Whenever permissible, vectorized_markov is interchangeable with markov.

The for loop generates both int and 1-dimensional `torch.Tensor` indices: (0, ..., history-1, `torch.arange(0, size-history), ..., torch.arange(history, size)`). int indices are used to initiate the Markov chain and `torch.Tensor` indices are used to construct vectorized transition probabilities for efficient elimination by the parallel-scan algorithm.

When history==0 vectorized_markov behaves similar to plate.

After the for loop is run, Markov variables are identified and then the step information is constructed and added to the trace. step informs inference algorithms which variables belong to a Markov chain.

```python
data = torch.ones(3, dtype=torch.float)

def model(data, vectorized=True):
 init = pyro.param("init", lambda: torch.rand(3), constraint=constraints.simplex)
 trans = pyro.param("trans", lambda: torch.rand((3, 3)), constraint=constraints.simplex)
 locs = pyro.param("locs", lambda: torch.rand(3,))

 markov_chain = pyro.vectorized_markov(name="time", size=len(data), dim=-1) if vectorized \
```

(continues on next page)
```python
else pyro.markov(range(len(data)))

for i in markov_chain:
 x_curr = pyro.sample("x_{i}", dist.Categorical(
 init if isinstance(i, int) and i < 1 else trans[x_prev]),
 pyro.sample("y_{i}", dist.Normal(Vindex(locs)[..., x_curr], 1.),
 obs=data[i])
 x_prev = x_curr

trace.nodes["time"]["value"]
frozenset({('x_0', 'x_slice(0, 2, None)', 'x_slice(1, 3, None)')})

pyro.vectorized_markov trace
...
Sample Sites:
locs dist | 3
value | 3
log_prob |
x_0 dist |
value 3 1 1 1 1 |
log_prob 3 1 1 1 1 |
y_0 dist 3 1 1 1 1 |
value |
log_prob 3 1 1 1 1 |
x_slice(1, 3, None) dist 3 1 1 1 1 2 |
value 3 1 1 1 1 1 |
log_prob 3 1 1 1 1 2 |
y_slice(1, 3, None) dist 3 1 1 1 1 2 |
value 2 |
log_prob 3 1 1 1 1 2 |

pyro.markov trace
...
Sample Sites:
locs dist | 3
value | 3
log_prob |
x_0 dist |
value 3 1 1 1 1 |
log_prob 3 1 1 1 1 |
y_0 dist 3 1 1 1 1 |
value |
log_prob 3 1 1 1 1 |
x_1 dist 3 1 1 1 1 |
value 3 1 1 1 1 |
log_prob 3 1 1 1 1 |
y_1 dist 3 1 1 1 1 |
value |
log_prob 3 1 1 1 1 |
x_2 dist 3 1 1 1 1 |
value 3 1 1 1 |
```

(continues on next page)
Parameters

- **name (str)** – A unique name of a Markov dimension to help inference algorithm eliminate variables in the Markov chain.

- **size (int)** – Length (size) of the Markov chain.

- **dim (int)** – An optional dimension to use for this Markov dimension. If specified, dim should be negative, i.e. should index from the right. If not specified, dim is set to the right-most dim that is left of all enclosing `plate` contexts.

- **history (int)** – Memory (order) of the Markov chain. Also the number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `plate`.

**Returns**

Returns both `int` and 1-dimensional `torch.Tensor` indices: `(0, ..., history-1, torch.arange(size-history), ..., torch.arange(history, size))`.

class **NamedMessenger**(first_available_dim=None)

Base effect handler class for the `to_funsor()` and `to_data()` primitives. Any effect handlers that invoke these primitives internally or wrap code that does should inherit from `NamedMessenger`.

This design ensures that the global name-dim mapping is reset upon handler exit rather than potentially persisting until the entire program terminates.

class **MarkovMessenger**(history=1, keep=False)

Handler for converting to/from funsors consistent with Pyro’s positional batch dimensions.

**Parameters**

- **history (int)** – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.

- **keep (bool)** – If true, frames are replayable. This is important when branching: if keep=True, neighboring branches at the same level can depend on each other; if keep=False, neighboring branches are independent (conditioned on their shared ancestors).

class **GlobalNamedMessenger**(first_available_dim=None)

Base class for any new effect handlers that use the `to_funsor()` and `to_data()` primitives to allocate `DimType`. `GLOBAL` or `DimType` . `VISIBLE` dimensions.

Serves as a manual “scope” for dimensions that should not be recycled by `MarkovMessenger`: global dimensions will be considered active until the innermost `GlobalNamedMessenger` under which they were initially allocated exits.

**to_funsor**(x, output=None, dim_to_name=None, dim_type=DimType.LOCAL)
```python

to_data(x, name_to_dim=None, dim_type=DimType.LOCAL)

class StackFrame(name_to_dim, dim_to_name, history=1, keep=False)
 Bases: object
 Consistent bidirectional mapping between integer positional dimensions and names. Can be queried like a dictionary (value = frame[key], frame[key] = value).

class DimType(value)
 Bases: enum.Enum
 Enumerates the possible types of dimensions to allocate
 LOCAL = 0
 GLOBAL = 1
 VISIBLE = 2

class DimRequest(value, dim_type)
 Bases: tuple
 property dim_type
 Alias for field number 1
 property value
 Alias for field number 0

class DimStack
 Bases: object
 Single piece of global state to keep track of the mapping between names and dimensions.
 Replaces the plate _DimAllocator, the enum _EnumAllocator, the stack in MarkovMessenger, _param_dims and _value_dims in EnumMessenger, and dim_to_symbol in msg['infer']
 MAX_DIM = -25
 DEFAULT_FIRST_DIM = -5
 set_first_available_dim(dim)
 push_global(frame)
 pop_global()
 push_iter(frame)
 pop_iter()
 push_local(frame)
 pop_local()
 property global_frame
 property local_frame
 property current_write_env
 property current_read_env
 Collect all frames necessary to compute the full name <--> dim mapping and interpret Funsor inputs or batch shapes at any point in a computation.
 allocate(key_to_value_request)
 names_from_batch_shape(batch_shape, dim_type=DimType.LOCAL)
```

18.2. Effect handlers
18.3 Inference algorithms

class ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False,
strict Enumeration warning=True, ignore jit warnings=False, jit options=None,
retain graph=None, tail adaptive beta=- 1.0)
Bases: pyro.infer.elbo.ELBO
differentiable_loss(model, guide, *args, **kwargs)
loss(model, guide, *args, **kwargs)
See pyro.infer.traceenum_elbo.TraceEnum_ELBO.loss()
loss_and_grads(model, guide, *args, **kwargs)
See pyro.infer.traceenum_elbo.TraceEnum_ELBO.loss_and_grads()
class Jit_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False,
jit options=None, retain graph=None, tail adaptive beta=- 1.0)
Bases: pyro.contrib.funsor.infer.elbo.ELBO
differentiable_loss(model, guide, *args, **kwargs)
class Trace_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False,
jit options=None, retain graph=None, tail adaptive beta=- 1.0)
Bases: pyro.contrib.funsor.infer.elbo.ELBO
differentiable_loss(model, guide, *args, **kwargs)
See pyro.infer.trace_elbo.Trace_ELBO.differentiable_loss()
class JitTrace_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False,
jit options=None, retain graph=None, tail adaptive beta=- 1.0)
Trace_ELBO
apply_optimizer(x)
terms_from_trace(tr)
Helper function to extract elbo components from execution traces.
class TraceMarkovEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False,
jit options=None, retain graph=None, tail adaptive beta=- 1.0)
Bases: pyro.contrib.funsor.infer.elbo.ELBO
differentiable_loss(model, guide, *args, **kwargs)
See pyro.infer.traceenum_elbo.TraceEnum_ELBO.differentiable_loss()
class TraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False,
jit options=None, retain graph=None, tail adaptive beta=- 1.0)
Bases: pyro.contrib.funsor.infer.elbo.ELBO
differentiable_loss(model, guide, *args, **kwargs)
See pyro.infer.traceenum_elbo.TraceEnum_ELBO.differentiable_loss()
class JitTraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, 
ignore_jit_warnings=False, jit_options=None, retain_graph=None, 
tail_adaptive_beta=-1.0)

class JitTraceMarkovEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, 
ignore_jit_warnings=False, jit_options=None, retain_graph=None, 
tail_adaptive_beta=-1.0)

class TraceTMC_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, ignore_jit_warnings=False, 
jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)
Bases: pyro.contrib.funsor.infer.elbo.ELBO

differentiable_loss(model, guide, *args, **kwargs)
See pyro.infer.tracetmc_elbo.TraceTMC_ELBO.differentiable_loss()

class JitTraceTMC_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, 
vectorize_particles=False, strict Enumeration_warning=True, ignore_jit_warnings=False, 
jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)
Bases: pyro.contrib.funsor.infer.elbo.Jit_ELBO, pyro.contrib.funsor.infer.tracetmc_elbo.TraceTMC_ELBO
See the Gaussian Processes tutorial for an introduction.

class Parameterized
Bases: pyro.nn.module.PyroModule

A wrapper of PyroModule whose parameters can be set constraints, set priors.

By default, when we set a prior to a parameter, an auto Delta guide will be created. We can use the method autoguide() to setup other auto guides.

Example:

```python
>>> class Linear(Parameterized):
... def __init__(self, a, b):
... super().__init__()
... self.a = Parameter(a)
... self.b = Parameter(b)
... def forward(self, x):
... return self.a * x + self.b
... >>> linear = Linear(torch.tensor(1.), torch.tensor(0.))
>>> linear.a = PyroParam(torch.tensor(1.), constraints.positive)
>>> linear.b = PyroSample(dist.Normal(0, 1))
>>> linear.autoguide("b", dist.Normal)
```

Note that by default, data of a parameter is a float torch.Tensor (unless we use torch.set_default_tensor_type() to change default tensor type). To cast these parameters to a correct data type or GPU device, we can call methods such as double() or cuda(). See torch.nn.Module for more information.

set_prior(name, prior)
Sets prior for a parameter.

Parameters

- name (str) – Name of the parameter.
- prior (Distribution) – A Pyro prior distribution.

autoguide(name, dist_constructor)
Sets an autoguide for an existing parameter with name name (mimic the behavior of module pyro.infer.autoguide).
**Note:** *dist Constructor* should be one of *Delta, Normal, and MultivariateNormal*. More distribution constructor will be supported in the future if needed.

### Parameters

- **name** *(str)* – Name of the parameter.
- **dist Constructor** – A *Distribution* constructor.

### set_mode*(mode)*

Sets *mode* of this object to be able to use its parameters in stochastic functions. If *mode="model"*, a parameter will get its value from its prior. If *mode="guide"*, the value will be drawn from its guide.

**Note:** This method automatically sets *mode* for submodules which belong to *Parameterized* class.

### Parameters

- **mode** *(str)* – Either “model” or “guide”.

**property mode**

**training: bool**

## 19.1 Models

### 19.1.1 GPModel

```python
class GPModel(X, y, kernel, mean_function=None, jitter=1e-06)
 Bases: pyro.contrib.gp.parameterized.Parameterized

Base class for Gaussian Process models.

The core of a Gaussian Process is a covariance function *k* which governs the similarity between input points. Given *k*, we can establish a distribution over functions *f* by a multivariate normal distribution

\[p(f(X)) = \mathcal{N}(0, k(X, X)), \]

where *X* is any set of input points and *k(X, X)* is a covariance matrix whose entries are outputs *k(x, z)* of *k* over input pairs (*x, z*). This distribution is usually denoted by

\[f \sim \mathcal{GP}(0, k). \]

Note: Generally, beside a covariance matrix *k*, a Gaussian Process can also be specified by a mean function *m* (which is a zero-value function by default). In that case, its distribution will be

\[p(f(X)) = \mathcal{N}(m(X), k(X, X)). \]

Gaussian Process models are *Parameterized* subclasses. So its parameters can be learned, set priors, or fixed by using corresponding methods from *Parameterized*. A typical way to define a Gaussian Process model is
There are two ways to train a Gaussian Process model:

- Using an MCMC algorithm (in module pyro.infer.mcmc) on `model()` to get posterior samples for the Gaussian Process’s parameters. For example:

  ```python
  >>> hmc_kernel = HMC(gpr.model)
  >>> mcmc = MCMC(hmc_kernel, num_samples=10)
  >>> mcmc.run()
  >>> ls_name = "kernel.lengthscale"
  >>> posterior_ls = mcmc.get_samples()[ls_name]
  ```

- Using a variational inference on the pair `model()`, `guide()`:

  ```python
  >>> optimizer = torch.optim.Adam(gpr.parameters(), lr=0.01)
  >>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
  >>> for i in range(1000):
  ...     svi.step()
  ...     optimizer.zero_grad()
  ...     loss = loss_fn(gpr.model, gpr.guide)
  ...     loss.backward()
  ...     optimizer.step()
  ```

To give a prediction on new dataset, simply use `forward()` like any PyTorch `torch.nn.Module`:

```python
>>> Xnew = torch.tensor([[2., 3, 1]])
>>> f_loc, f_cov = gpr(Xnew, full_cov=True)
```
model()
A “model” stochastic function. If self.y is None, this method returns mean and variance of the Gaussian Process prior.

guide()
A “guide” stochastic function to be used in variational inference methods. It also gives posterior information to the method forward() for prediction.

forward(Xnew, full_cov=False)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data X_new:

\[p(f^* | X_{new}, X, y, k, \theta), \]

where \(\theta \) are parameters of this model.

Note: Model’s parameters \(\theta \) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters
- Xnew (torch.Tensor) – A input data for testing. Note that Xnew.shape[1:] must be the same as X.shape[1:].
- full_cov (bool) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns
loc and covariance matrix (or variance) of \(p(f^*(X_{new})) \)

Return type
tuple(torch.Tensor, torch.Tensor)

set_data(X, y=None)
Sets data for Gaussian Process models.

Some examples to utilize this method are:

- Batch training on a sparse variational model:

```python
>>> Xu = torch.tensor([[1., 0, 2]]) # inducing input
>>> likelihood = gp.likelihoods.Gaussian()
>>> vsgp = gp.models.VariationalSparseGP(X, y, kernel, Xu, likelihood)
>>> optimizer = torch.optim.Adam(vsgp.parameters(), lr=0.01)
>>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
>>> batched_X, batched_y = X.split(split_size=10), y.split(split_size=10)
>>> for Xi, yi in zip(batched_X, batched_y):
...    optimizer.zero_grad()
...    vsgp.set_data(Xi, yi)
...    svi.step()
...    loss = loss_fn(vsgp.model, vsgp.guide)
...    loss.backward()
...    optimizer.step()
```

- Making a two-layer Gaussian Process stochastic function:

```python
>>> gpr1 = gp.models.GPRegression(X, None, kernel)
>>> Z, _ = gpr1.model()
```

>>> gpr2 = gp.models.GPRegression(Z, y, kernel)
>>> def two_layer_model():
... Z, _ = gpr1.model()
... gpr2.set_data(Z, y)
... return gpr2.model()

References:

Parameters
- `X` (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
- `y` (torch.Tensor) – An output data for training. Its last dimension is the number of data points.

training: bool

19.1.2 GPRegression

class GPRegression(X, y, kernel, noise=None, mean_function=None, jitter=1e-06)
Bases: pyro.contrib.gp.models.model.GPModel

Gaussian Process Regression model.

The core of a Gaussian Process is a covariance function \(k \) which governs the similarity between input points. Given \(k \), we can establish a distribution over functions \(f \) by a multivariate normal distribution

\[
p(f(X)) = \mathcal{N}(0, k(X, X)),
\]

where \(X \) is any set of input points and \(k(X, X) \) is a covariance matrix whose entries are outputs \(k(x, z) \) of \(k \) over input pairs \((x, z) \). This distribution is usually denoted by

\[
f \sim \mathcal{GP}(0, k).
\]

Note: Generally, beside a covariance matrix \(k \), a Gaussian Process can also be specified by a mean function \(m \) (which is a zero-value function by default). In that case, its distribution will be

\[
p(f(X)) = \mathcal{N}(m(X), k(X, X)).
\]

Given inputs \(X \) and their noisy observations \(y \), the Gaussian Process Regression model takes the form

\[
f \sim \mathcal{GP}(0, k(X, X)),
\]

\[
y \sim f + \epsilon,
\]

where \(\epsilon \) is Gaussian noise.

Note: This model has \(\mathcal{O}(N^3) \) complexity for training, \(\mathcal{O}(N^3) \) complexity for testing. Here, \(N \) is the number of train inputs.
Parameters

- **X** (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
- **y** (*torch.Tensor*) – An output data for training. Its last dimension is the number of data points.
- **kernel** (*Kernel*) – A Pyro kernel object, which is the covariance function \(k \).
- **noise** (*torch.Tensor*) – Variance of Gaussian noise of this model.
- **mean_function** (*callable*) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
- **jitter** (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

model()

guide()

forward(Xnew, full_cov=False, noiseless=True)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}} \):

\[
p(f^* \mid X_{\text{new}}, X, y, k, \epsilon) = \mathcal{N}(\text{loc}, \text{cov}).
\]

Note: The noise parameter **noise** (\(\epsilon \)) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **Xnew** (*torch.Tensor*) – A input data for testing. Note that \(\text{Xnew}.\text{shape}[1:] \) must be the same as \(\text{self.X}\text{.shape}[1:] \).
- **full_cov** (*bool*) – A flag to decide if we want to predict full covariance matrix or just variance.
- **noiseless** (*bool*) – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

Return type tuple(*torch.Tensor*, *torch.Tensor*)

iter_sample(noiseless=True)

Iteratively constructs a sample from the Gaussian Process posterior.

Recall that at test input points \(X_{\text{new}} \), the posterior is multivariate Gaussian distributed with mean and covariance matrix given by **forward()**.

This method samples lazily from this multivariate Gaussian. The advantage of this approach is that later query points can depend upon earlier ones. Particularly useful when the querying is to be done by an optimisation routine.
Note: The noise parameter noise (\(\epsilon\)) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters **noiseless** (bool) – A flag to decide if we want to add sampling noise to the samples beyond the noise inherent in the GP posterior.

Returns: sampler

Return type: function

training: bool

19.1.3 SparseGPRegression

class SparseGPRegression(X, y, kernel, Xu, noise=None, mean_function=None, approx=None, jitter=1e-06)

Bases: pyro.contrib.gp.models.model.GPModel

Sparse Gaussian Process Regression model.

In \textit{GPRegression} model, when the number of input data \(X\) is large, the covariance matrix \(k(X, X)\) will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). By introducing an additional inducing-input parameter \(X_u\), we can reduce computational cost by approximate \(k(X, X)\) by a low-rank Nymström approximation \(Q\) (see reference [1]), where

\[
Q = k(X, X_u)k(X, X)^{-1}k(X_u, X).
\]

Given inputs \(X\), their noisy observations \(y\), and the inducing-input parameters \(X_u\), the model takes the form:

\[
\begin{align*}
 u &\sim \mathcal{GP}(0, k(X_u, X_u)), \\
 f &\sim q(f | X, X_u) = \mathbb{E}_{p(u)}q(f | X, X_u, u), \\
 y &\sim f + \epsilon,
\end{align*}
\]

where \(\epsilon\) is Gaussian noise and the conditional distribution \(q(f | X, X_u, u)\) is an approximation of

\[
p(f | X, X_u, u) = \mathcal{N}(m, k(X, X) - Q),
\]

whose terms \(m\) and \(k(X, X) - Q\) is derived from the joint multivariate normal distribution:

\[
[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])).
\]

This class implements three approximation methods:

- Deterministic Training Conditional (DTC):

\[
q(f | X, X_u, u) = \mathcal{N}(m, 0),
\]

which in turns will imply

\[
f \sim \mathcal{N}(0, Q).
\]

- Fully Independent Training Conditional (FITC):
\[q(f \mid X, X_u, u) = \mathcal{N}(m, \text{diag}(k(X, X) - Q)), \]

which in turns will correct the diagonal part of the approximation in DTC:

\[f \sim \mathcal{N}(0, Q + \text{diag}(k(X, X) - Q)). \]

- Variational Free Energy (VFE), which is similar to DTC but has an additional \textit{trace_term} in the model’s log likelihood. This additional term makes “VFE” equivalent to the variational approach in \texttt{SparseVariationalGP} (see reference [2]).

\textbf{Note:} This model has \(O(NM^2) \) complexity for training, \(O(NM^2) \) complexity for testing. Here, \(N \) is the number of train inputs, \(M \) is the number of inducing inputs.

\textbf{References:}

[1] \textit{A Unifying View of Sparse Approximate Gaussian Process Regression}, Joaquin Quiñonero-Candela, Carl E. Rasmussen

\textbf{Parameters}

- \(X \) (\texttt{torch.Tensor}) – A input data for training. Its first dimension is the number of data points.
- \(y \) (\texttt{torch.Tensor}) – An output data for training. Its last dimension is the number of data points.
- \texttt{kernel} (\texttt{Kernel}) – A Pyro kernel object, which is the covariance function \(k \).
- \(X_u \) (\texttt{torch.Tensor}) – Initial values for inducing points, which are parameters of our model.
- \(\text{noise} \) (\texttt{torch.Tensor}) – Variance of Gaussian noise of this model.
- \texttt{mean_function} (\texttt{callable}) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
- \texttt{approx} (\texttt{str}) – One of approximation methods: “DTC”, “FITC”, and “VFE” (default).
- \texttt{jitter} (\texttt{float}) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
- \texttt{name} (\texttt{str}) – Name of this model.

\texttt{model()}

\texttt{guide()}

\texttt{forward(Xnew, full_cov=False, noiseless=True)}

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}} \):

\[p(f^* \mid X_{\text{new}}, X, y, k, X_u, \epsilon) = \mathcal{N}((\text{loc}, \text{cov})). \]

\textbf{Note:} The noise parameter \texttt{noise} (\(\epsilon \)), the inducing-point parameter \(X_u \), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).
Parameters

- **Xnew (torch.Tensor)** – A input data for testing. Note that Xnew.shape[1:] must be the same as self.X.shape[1:].
- **full_cov (bool)** – A flag to decide if we want to predict full covariance matrix or just variance.
- **noiseless (bool)** – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of $p(f^{*}(X_{new}))$

Return type tuple(torch.Tensor, torch.Tensor)

training: bool

19.1.4 VariationalGP

class VariationalGP(X, y, kernel, likelihood, mean_function=None, latent_shape=None, whiten=False, jitter=1e-06)

Bases: pyro.contrib.gp.models.model.GPModel

Variational Gaussian Process model.

This model deals with both Gaussian and non-Gaussian likelihoods. Given inputs X and their noisy observations y, the model takes the form

$$f \sim \mathcal{GP}(0, k(X, X)),$$

$$y \sim p(y) = p(y | f)p(f),$$

where $p(y | f)$ is the likelihood.

We will use a variational approach in this model by approximating $q(f)$ to the posterior $p(f | y)$. Precisely, $q(f)$ will be a multivariate normal distribution with two parameters f_{loc} and $f_{\text{scale_tril}}$, which will be learned during a variational inference process.

Note: This model can be seen as a special version of SparseVariationalGP model with $X_u = X$.

Note: This model has $O(N^3)$ complexity for training, $O(N^3)$ complexity for testing. Here, N is the number of train inputs. Size of variational parameters is $O(N^2)$.

Parameters

- **X (torch.Tensor)** – A input data for training. Its first dimension is the number of data points.
- **y (torch.Tensor)** – An output data for training. Its last dimension is the number of data points.
- **kernel (Kernel)** – A Pyro kernel object, which is the covariance function k.
- **likelihood (likelihood Likelihood)** – A likelihood object.
- **mean_function (callable)** – An optional mean function m of this Gaussian process. By default, we use zero mean.
• **latent_shape** *(torch.Size)* – Shape for latent processes *(batch_shape of q(f)). By default, it equals to output batch shape *y.shape[:-1]*. For the multi-class classification problems, latent_shape[-1] should correspond to the number of classes.

• **whiten** *(bool)* – A flag to tell if variational parameters *f_loc* and *f_scale_tril* are transformed by the inverse of *Lff*, where *Lff* is the lower triangular decomposition of *kernel(X, X)*. Enable this flag will help optimization.

• **jitter** *(float)* – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

```python
model()

guide()

forward(Xnew, full_cov=False)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data *Xnew*:

\[ p(f^* \mid X_{\text{new}}, X, y, k, f_{\text{loc}}, f_{\text{scale, tril}}) = \mathcal{N}(\text{loc, cov}). \]

**Note:** Variational parameters *f_loc, f_scale_tril*, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

**Parameters**

• **Xnew** *(torch.Tensor)* – A input data for testing. Note that *Xnew.shape[1:]* must be the same as *self.X.shape[1:]*.

• **full_cov** *(bool)* – A flag to decide if we want to predict full covariance matrix or just variance.

**Returns** loc and covariance matrix (or variance) of *p(f^*(X_{\text{new}}))

**Return type** tuple(torch.Tensor, torch.Tensor)

**training**: bool

### 19.1.5 VariationalSparseGP

**class** VariationalSparseGP(*X, y, kernel, Xu, likelihood, mean_function=None, latent_shape=None, num_data=None, whiten=False, jitter=1e-06)

**Bases:** pyro.contrib.gp.models.model.GPModel

Variational Sparse Gaussian Process model.

In *VariationalGP* model, when the number of input data *X* is large, the covariance matrix *k(X, X)* will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). This model introduces an additional inducing-input parameter *X_u* to solve that problem. Given inputs *X*, their noisy observations *y*, and the inducing-input parameters *X_u*, the model takes the form:

\[
[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])), \\
y \sim p(y) = p(y \mid f)p(f),
\]

where *p(y \mid f)* is the likelihood.
We will use a variational approach in this model by approximating \( q(f, u) \) to the posterior \( p(f, u \mid y) \). Precisely, \( q(f) = p(f \mid u) q(u) \), where \( q(u) \) is a multivariate normal distribution with two parameters \( u_{\text{loc}} \) and \( u_{\text{scale\_tril}} \), which will be learned during a variational inference process.

**Note:** This model can be learned using MCMC method as in reference [2]. See also GPModel.

**Note:** This model has \( \mathcal{O}(NM^2) \) complexity for training, \( \mathcal{O}(M^3) \) complexity for testing. Here, \( N \) is the number of train inputs, \( M \) is the number of inducing inputs. Size of variational parameters is \( \mathcal{O}(M^2) \).

References:


**Parameters**
- \( X \) (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
- \( y \) (torch.Tensor) – An output data for training. Its last dimension is the number of data points.
- kernel (Kernel) – A Pyro kernel object, which is the covariance function \( k \).
- \( Xu \) (torch.Tensor) – Initial values for inducing points, which are parameters of our model.
- likelihood (likelihood Likelihood) – A likelihood object.
- mean_function (callable) – An optional mean function \( m \) of this Gaussian process. By default, we use zero mean.
- latent_shape (torch.Size) – Shape for latent processes (\( \text{batch\_shape of } q(u) \)). By default, it equals to output batch shape \( y_{\text{shape}}[:-1] \). For the multi-class classification problems, \( \text{latent\_shape}[:-1] \) should correspond to the number of classes.
- num_data (int) – The size of full training dataset. It is useful for training this model with mini-batch.
- whiten (bool) – A flag to tell if variational parameters \( u_{\text{loc}} \) and \( u_{\text{scale\_tril}} \) are transformed by the inverse of \( Luu \), where \( Luu \) is the lower triangular decomposition of \( \text{kernel}(X_u, X_u) \). Enable this flag will help optimization.
- jitter (float) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

**Model**

**Guide**

**Forward**(Xnew, full_cov=False)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \( X_{\text{new}} \):

\[
p(f^* \mid X_{\text{new}}, X, y, k, X_u, u_{\text{loc}}, u_{\text{scale\_tril}}) = \mathcal{N}(\text{loc}, \text{cov}).
\]
Pyro Documentation

Note: Variational parameters \( u_{\text{loc}} \), \( u_{\text{scale\_tril}} \), the inducing-point parameter \( X_u \), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **Xnew** (*torch.Tensor*) – A input data for testing. Note that \( \text{Xnew}\_\text{shape}[1:] \) must be the same as \( \text{self.X}\_\text{shape}[1:] \).

- **full_cov** (*bool*) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of \( p(f^*(X_{\text{new}})) \)

Return type: tuple(*torch.Tensor*, *torch.Tensor*)

**training**: bool

19.1.6 GPLVM

class GPLVM(*base_model*)

Bases: *pyro.contrib.gp.parameterized.Parameterized*

Gaussian Process Latent Variable Model (GPLVM) model.

GPLVM is a Gaussian Process model with its train input data is a latent variable. This model is useful for dimensional reduction of high dimensional data. Assume the mapping from low dimensional latent variable to is a Gaussian Process instance. Then the high dimensional data will play the role of train output \( y \) and our target is to learn latent inputs which best explain \( y \). For the purpose of dimensional reduction, latent inputs should have lower dimensions than \( y \).

We follows reference [1] to put a unit Gaussian prior to the input and approximate its posterior by a multivariate normal distribution with two variational parameters: \( X_{\text{loc}} \) and \( X_{\text{scale\_tril}} \).

For example, we can do dimensional reduction on Iris dataset as follows:

```python
>>> # With \(y \) as the 2D Iris data of shape 150x4 and we want to reduce its dimension
>>> # to a tensor \(X \) of shape 150x2, we will use GPLVM.

>>> # First, define the initial values for \(X \) parameter:
>>> X_init = torch.zeros(150, 2)
>>> # Then, define a Gaussian Process model with input \(X_\text{init} \) and output \(y \):
>>> kernel = gp.kernels.RBF(input_dim=2, lengthscale=torch.ones(2))
>>> Xu = torch.zeros(20, 2) # initial inducing inputs of sparse model
>>> gpmodule = gp.models.SparseGPRegression(X_init, y, kernel, Xu)
>>> # Finally, wrap gpmodule by GPLVM, optimize, and get the "learned" mean, of \(X \):
>>> gplvm = gp.models.GPLVM(gpmodule)
>>> gp.util.train(gplvm)
>>> X = gplvm.X
```

Reference:

Parameters base_model (GPModel) – A Pyro Gaussian Process model object. Note that base_model.X will be the initial value for the variational parameter X_loc.

model()
guide()
forward(**kwargs)
    Forward method has the same signal as its base_model. Note that the train input data of base_model is sampled from GPLVM.

training: bool

19.2 Kernels

19.2.1 Kernel

class Kernel(input_dim, active_dims=None)
    Bases: pyro.contrib.gp.parameterized.Parameterized

    Base class for kernels used in this Gaussian Process module.

    Every inherited class should implement a forward() pass which takes inputs X, Z and returns their covariance matrix.

    To construct a new kernel from the old ones, we can use methods add(), mul(), exp(), warp(), vertical_scale().

    References:

Parameters

    • input_dim (int) – Number of feature dimensions of inputs.
    • variance (torch.Tensor) – Variance parameter of this kernel.
    • active_dims (list) – List of feature dimensions of the input which the kernel acts on.

forward(X, Z=None, diag=False)
    Calculates covariance matrix of inputs on active dimensionals.

Parameters

    • X (torch.Tensor) – A 2D tensor with shape N x input_dim.
    • Z (torch.Tensor) – An (optional) 2D tensor with shape M x input_dim.
    • diag (bool) – A flag to decide if we want to return full covariance matrix or just its diagonal part.

Returns covariance matrix of X and Z with shape N x M

Return type torch.Tensor

training: bool
19.2.2 Brownian

class Brownian(input_dim, variance=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel
    This kernel corresponds to a two-sided Brownian motion (Wiener process):
    
    \[ k(x, z) = \begin{cases} 
    \sigma^2 \min(|x|, |z|), & \text{if } x \cdot z \geq 0 \\
    0, & \text{otherwise.} 
    \end{cases} \]

    Note that the input dimension of this kernel must be 1.

    Reference:

    forward(X, Z=None, diag=False)

    training: bool

19.2.3 Combination

class Combination(kern0, kern1)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel
    Base class for kernels derived from a combination of kernels.

    Parameters
    • kern0 (Kernel) – First kernel to combine.
    • kern1 (Kernel or numbers.Number) – Second kernel to combine.

    training: bool

19.2.4 Constant

class Constant(input_dim, variance=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel
    Implementation of Constant kernel:
    
    \[ k(x, z) = \sigma^2. \]

    forward(X, Z=None, diag=False)

    training: bool

19.2.5 Coregionalize

class Coregionalize(input_dim, rank=None, components=None, diagonal=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel
    A kernel for the linear model of coregionalization \( k(x, z) = x^T(WW^T + D)z \) where \( W \) is an input_dim-by-rank matrix and typically \( \text{rank} < \text{input_dim} \), and \( D \) is a diagonal matrix.

    This generalizes the Linear kernel to multiple features with a low-rank-plus-diagonal weight matrix. The typical use case is for modeling correlations among outputs of a multi-output GP, where outputs are coded as distinct data points with one-hot coded features denoting which output each datapoint represents.
If only \( \text{rank} \) is specified, the kernel \((W W^T + D)\) will be randomly initialized to a matrix with expected value the identity matrix.

References:


Parameters

- **input_dim** (int) – Number of feature dimensions of inputs.
- **rank** (int) – Optional rank. This is only used if \( \text{components} \) is unspecified. If neither \( \text{rank} \) nor \( \text{components} \) is specified, then \( \text{rank} \) defaults to \( \text{input_dim} \).
- **components** (torch.Tensor) – An optional \((\text{input_dim}, \text{rank})\) shaped matrix that maps features to \( \text{rank} \)-many components. If unspecified, this will be randomly initialized.
- **diagonal** (torch.Tensor) – An optional vector of length \( \text{input_dim} \). If unspecified, this will be set to constant 0.5.
- **active_dims** (list) – List of feature dimensions of the input which the kernel acts on.
- **name** (str) – Name of the kernel.

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]

\[
\text{training: } \text{bool}
\]

19.2.6 Cosine

class Cosine(input_dim, variance=\text{None}, lengthscale=\text{None}, active_dims=\text{None})

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Cosine kernel:

\[
k(x, z) = \sigma^2 \cos \left( \frac{|x-z|}{\ell} \right).
\]

Parameters **lengthscale** (torch.Tensor) – Length-scale parameter of this kernel.

\[
\text{forward}(X, Z=\text{None}, \text{diag}=\text{False})
\]

\[
\text{training: } \text{bool}
\]

19.2.7 DotProduct

class DotProduct(input_dim, variance=\text{None}, active_dims=\text{None})

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels which are functions of \( x \cdot z \).

\[
\text{training: } \text{bool}
\]
19.2.8 Exponent

class Exponent(kern)
    Bases: pyro.contrib.gp.kernels.kernel.Transforming

    Creates a new kernel according to
    \[ k_{\text{new}}(x, z) = \exp(k(x, z)). \]

    forward(X, Z=None, diag=False)

    training:  bool

19.2.9 Exponential

class Exponential(input_dim, variance=None, lengthscale=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

    Implementation of Exponential kernel:
    \[ k(x, z) = \sigma^2 \exp \left( -\frac{|x - z|}{l} \right). \]

    forward(X, Z=None, diag=False)

    training:  bool

19.2.10 Isotropy

class Isotropy(input_dim, variance=None, lengthscale=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.kernel.Kernel

    Base class for a family of isotropic covariance kernels which are functions of the distance \(|x - z|/l\), where \(l\) is the length-scale parameter.

    By default, the parameter lengthscale has size 1. To use the isotropic version (different lengthscale for each dimension), make sure that lengthscale has size equal to input_dim.

    Parameters
    lengthscale (torch.Tensor) – Length-scale parameter of this kernel.

    training:  bool

19.2.11 Linear

class Linear(input_dim, variance=None, active_dims=None)
    Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

    Implementation of Linear kernel:
    \[ k(x, z) = \sigma^2 x \cdot z. \]

    Doing Gaussian Process regression with linear kernel is equivalent to doing a linear regression.

    forward(X, Z=None, diag=False)
**19.2.12 Matern32**

```python
class Matern32(input_dim, variance=None, lengthscale=None, active_dims=None):
 Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

 Implementation of Matern32 kernel:
 \[k(x, z) = \sigma^2 \left(1 + \sqrt{3} \times \frac{|x-z|}{l} \right) \exp \left(-\sqrt{3} \times \frac{|x-z|}{l} \right). \]

 forward(X, Z=None, diag=False)
 training: bool
```

**19.2.13 Matern52**

```python
class Matern52(input_dim, variance=None, lengthscale=None, active_dims=None):
 Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

 Implementation of Matern52 kernel:
 \[k(x, z) = \sigma^2 \left(1 + \sqrt{5} \times \frac{|x-z|}{l} + \frac{5}{3} \times \frac{|x-z|^2}{l^2} \right) \exp \left(-\sqrt{5} \times \frac{|x-z|}{l} \right). \]

 forward(X, Z=None, diag=False)
 training: bool
```

**19.2.14 Periodic**

```python
class Periodic(input_dim, variance=None, lengthscale=None, period=None, active_dims=None):
 Bases: pyro.contrib.gp.kernels.kernel.Kernel

 Implementation of Periodic kernel:
 \[k(x, z) = \sigma^2 \exp \left(-2 \times \frac{\sin^2(\pi(x-z)/p)}{p^2} \right), \]
 where \(p \) is the period parameter.

 References:
 [1] *Introduction to Gaussian processes*, David J.C. MacKay

 Parameters
 - **lengthscale** (torch.Tensor) – Length scale parameter of this kernel.
 - **period** (torch.Tensor) – Period parameter of this kernel.

 forward(X, Z=None, diag=False)
 training: bool
19.2.15 Polynomial

```python
class Polynomial:
    def __init__(self, input_dim, variance=None, bias=None, degree=1, active_dims=None):
        Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

        Implementation of Polynomial kernel:
        \[ k(x, z) = \sigma^2 (\text{bias} + x \cdot z)^d. \]

        Parameters
        • bias (torch.Tensor) – Bias parameter of this kernel. Should be positive.
        • degree (int) – Degree \(d\) of the polynomial.

        forward(X, Z=None, diag=False)
        training: bool
```

19.2.16 Product

```python
class Product:
    def __init__(self, kern0, kern1):
        Bases: pyro.contrib.gp.kernels.kernel.Combination

        Returns a new kernel which acts like a product/tensor product of two kernels. The second kernel can be a constant.

        forward(X, Z=None, diag=False)
        training: bool
```

19.2.17 RBF

```python
class RBF:
    def __init__(self, input_dim, variance=None, lengthscale=None, active_dims=None):
        Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

        Implementation of Radial Basis Function kernel:
        \[ k(x, z) = \sigma^2 \exp \left(-0.5 \times \frac{|x-z|^2}{l^2}\right). \]

        Note: This kernel also has name Squared Exponential in literature.

        forward(X, Z=None, diag=False)
        training: bool
```
19.2.18 RationalQuadratic

class RationalQuadratic(input_dim, variance=None, lengthscale=None, scale_mixture=None, active_dims=None):

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of RationalQuadratic kernel:
\[
k(x, z) = \sigma^2 \left(1 + 0.5 \times \frac{|x-z|^2}{\alpha^2} \right)^{-\alpha}.
\]

Parameters
- `scale_mixture` (torch.Tensor) – Scale mixture (\(\alpha\)) parameter of this kernel. Should have size 1.

forward(X, Z=None, diag=False)

training: bool

19.2.19 Sum

class Sum(kern0, kern1):

Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a sum/direct sum of two kernels. The second kernel can be a constant.

forward(X, Z=None, diag=False)

training: bool

19.2.20 Transforming

class Transforming(kern):

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels derived from a kernel by some transforms such as warping, exponent, vertical scaling.

Parameters
- `kern` (Kernel) – The original kernel.

training: bool

19.2.21 VerticalScaling

class VerticalScaling(kern, vscaling_fn):

Bases: pyro.contrib.gp.kernels.kernel.Transforming

Creates a new kernel according to
\[
k_{\text{new}}(x, z) = f(x)k(x, z)f(z),
\]

where \(f\) is a function.

Parameters
- `vscaling_fn` (callable) – A vertical scaling function \(f\).

forward(X, Z=None, diag=False)

training: bool
19.2.22 Warping

```python
>>> linear = torch.nn.Linear(10, 3)
>>> # register its parameters to Pyro's ParamStore and wrap it by lambda
>>> pyro_linear_fn = lambda x: pyro.module("linear", linear)(x)
>>> kernel = gp.kernels.Matern52(input_dim=3, lengthscale=torch.ones(3))
>>> warped_kernel = gp.kernels.Warping(kernel, pyro_linear_fn)
```

Reference:

Parameters
- **iwarping_fn** (*callable*) — An input warping function \(f \).
- **owarping_coef** (*list*) — A list of coefficients of the output warping polynomial. These coefficients must be non-negative.

19.2.23 WhiteNoise

```python
>>> kernel = gp.kernels.WhiteNoise(input_dim=3, variance=1.0, active_dims=None)
```

Implementation of WhiteNoise kernel:

\[
k(x, z) = \sigma^2 \delta(x, z),
\]

where \(\delta \) is a Dirac delta function.

```python
>>> forward(X, Z=None, diag=False)
```

training: *bool*
19.3 Likelihoods

19.3.1 Likelihood

class Likelihood
Bases: pyro.contrib.gp.parameterized.Parameterized

Base class for likelihoods used in Gaussian Process.
Every inherited class should implement a forward pass which takes an input f and returns a sample y.

```python
forward(f_loc, f_var, y=None)
```

Samples y given f_{loc}, f_{var}.

Parameters

- f_{loc} (torch.Tensor) – Mean of latent function output.
- f_{var} (torch.Tensor) – Variance of latent function output.
- y (torch.Tensor) – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

training: bool

19.3.2 Binary

class Binary(response_function=None)
Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of Binary likelihood, which is used for binary classification problems.
Binary likelihood uses Bernoulli distribution, so the output of `response_function` should be in range (0, 1).
By default, we use sigmoid function.

Parameters `response_function` (callable) – A mapping to correct domain for Binary likelihood.

```python
forward(f_loc, f_var, y=None)
```

Samples y given f_{loc}, f_{var} according to

$$f \sim N(\mu, \sigma)(f_{loc}, f_{var}),$$
$$y \sim B(\mu)(f).$$

Note: The log likelihood is estimated using Monte Carlo with 1 sample of f.

Parameters

- f_{loc} (torch.Tensor) – Mean of latent function output.
- f_{var} (torch.Tensor) – Variance of latent function output.
- y (torch.Tensor) – Training output tensor.

Returns a tensor sampled from likelihood
19.3.3 Gaussian

class Gaussian(variance=None)
 Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood
 Implementation of Gaussian likelihood, which is used for regression problems.
 Gaussian likelihood uses Normal distribution.

 Parameters variance (torch.Tensor) – A variance parameter, which plays the role of noise in regression problems.

 forward(f_loc, f_var, y=None)
 Samples y given f_loc, f_var according to

 \[y \sim N(f_{\text{loc}}, f_{\text{var}} + \epsilon), \]

where \(\epsilon \) is the variance parameter of this likelihood.

Parameters

- f_loc (torch.Tensor) – Mean of latent function output.
- f_var (torch.Tensor) – Variance of latent function output.
- y (torch.Tensor) – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

19.3.4 MultiClass

class MultiClass(num_classes, response_function=None)
 Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood
 Implementation of MultiClass likelihood, which is used for multi-class classification problems.
 MultiClass likelihood uses Categorical distribution, so response_function should normalize its input's rightmost axis. By default, we use softmax function.

 Parameters

 - num_classes (int) – Number of classes for prediction.
 - response_function (callable) – A mapping to correct domain for MultiClass likelihood.

 forward(f_loc, f_var, y=None)
 Samples y given f_loc, f_var according to
\[f \sim N \ni \triangleright \heartsuit \triangleright (f_{\text{loc}}, f_{\text{var}}), \\
y \sim \calD \approx \triangleright \ni \triangleright \heartsuit \triangleright (f) . \]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

Parameters
- \(f_{\text{loc}} \) ([torch.Tensor](https://pytorch.org/docs/stable/tensor.html)) – Mean of latent function output.
- \(f_{\text{var}} \) ([torch.Tensor](https://pytorch.org/docs/stable/tensor.html)) – Variance of latent function output.

Returns a tensor sampled from likelihood

Return type [torch.Tensor](https://pytorch.org/docs/stable/tensor.html)

19.3.5 Poisson

class Poisson *(response_function=\(\text{None} \))*

Bases: [pyro.contrib.gp.likelihoods.likelihood.Likelihood](https://github.com/pyro-ai/pyro/blob/main/pyro/contrib/gp/likelihoods/likelihood.py)

Implementation of Poisson likelihood, which is used for count data.

Poisson likelihood uses the Poisson distribution, so the output of `response_function` should be positive. By default, we use `torch.exp()` as response function, corresponding to a log-Gaussian Cox process.

Parameters `response_function` *(callable)* – A mapping to positive real numbers.

forward *(\(f_{\text{loc}}, f_{\text{var}}, y=\text{None} \))*

Samples \(y \) given \(f_{\text{loc}}, f_{\text{var}} \) according to

\[f \sim N \ni \triangleright \heartsuit \triangleright (f_{\text{loc}}, f_{\text{var}}), \\
y \sim \calP \ni \triangleright \ni \ni \ni \ni (\exp(f)) . \]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

Parameters
- \(f_{\text{loc}} \) ([torch.Tensor](https://pytorch.org/docs/stable/tensor.html)) – Mean of latent function output.
- \(f_{\text{var}} \) ([torch.Tensor](https://pytorch.org/docs/stable/tensor.html)) – Variance of latent function output.

Returns a tensor sampled from likelihood

Return type [torch.Tensor](https://pytorch.org/docs/stable/tensor.html)

training: *bool*
19.4 Parameterized

class Parameterized
 Bases: pyro.nn.module.PyroModule

 A wrapper of PyroModule whose parameters can be set constraints, set priors.

 By default, when we set a prior to a parameter, an auto Delta guide will be created. We can use the method `autoguide()` to setup other auto guides.

 Example:

>>> class Linear(Parameterized):
... def __init__(self, a, b):
... super().__init__()
... self.a = Parameter(a)
... self.b = Parameter(b)
...
... def forward(self, x):
... return self.a * x + self.b
>>> linear = Linear(torch.tensor(1.), torch.tensor(0.))
>>> linear.a = PyroParam(torch.tensor(1.), constraints.positive)
>>> linear.b = PyroSample(dist.Normal(0, 1))
>>> linear.autoguide("b", dist.Normal)

Note that by default, data of a parameter is a float torch.Tensor (unless we use `torch.set_default_tensor_type()` to change default tensor type). To cast these parameters to a correct data type or GPU device, we can call methods such as `double()` or `cuda()`. See `torch.nn.Module` for more information.

set_prior(name, prior)
 Sets prior for a parameter.

 Parameters

 • `name (str)` – Name of the parameter.

 • `prior (Distribution)` – A Pyro prior distribution.

autoguide(name, dist_constructor)
 Sets an autoguide for an existing parameter with name name (mimic the behavior of module pyro.infer.autoguide).

 Note: `dist_constructor` should be one of Delta, Normal, and MultivariateNormal. More distribution constructor will be supported in the future if needed.
set_mode(mode)
Sets mode of this object to be able to use its parameters in stochastic functions. If mode="model", a parameter will get its value from its prior. If mode="guide", the value will be drawn from its guide.

Note: This method automatically sets mode for submodules which belong to Parameterized class.

Parameters mode (str) – Either “model” or “guide”.

property mode
training: bool

19.5 Util

conditional(Xnew, X, kernel, f_loc, f_scale_tril=None, Lff=None, full_cov=False, whiten=False, jitter=1e-06)
Given Xnew, predicts loc and covariance matrix of the conditional multivariate normal distribution

\[p(f^*(X_{\text{new}}) \mid X, k, f_{\text{loc}}, f_{\text{scale_tril}}). \]

Here f_loc and f_scale_tril are variation parameters of the variational distribution

\[q(f \mid f_{\text{loc}}, f_{\text{scale_tril}}) \sim p(f \mid X, y), \]

where f is the function value of the Gaussian Process given input X

\[p(f(X)) \sim N(0, k(X, X)) \]

and y is computed from f by some likelihood function \(p(y|f) \).
In case f_scale_tril=None, we consider \(f = f_{\text{loc}} \) and computes

\[p(f^*(X_{\text{new}}) \mid X, k, f). \]

In case f_scale_tril is not None, we follow the derivation from reference [1]. For the case f_scale_tril=None, we follow the popular reference [2].

References:
[1] Sparse GPs: approximate the posterior, not the model

Parameters

- Xnew (torch.Tensor) – A new input data.
- X (torch.Tensor) – An input data to be conditioned on.
- kernel (Kernel) – A Pyro kernel object.
- f_loc (torch.Tensor) – Mean of \(q(f) \). In case f_scale_tril=None, \(f_{\text{loc}} = f \).
- f_scale_tril (torch.Tensor) – Lower triangular decomposition of covariance matrix of \(q(f) \)’s.
- Lff (torch.Tensor) – Lower triangular decomposition of \(\text{kernel}(X, X) \) (optional).
• **full_cov** *(bool)* – A flag to decide if we want to return full covariance matrix or just variance.

• **whiten** *(bool)* – A flag to tell if f_loc and f_scale_tril are already transformed by the inverse of Lff.

• **jitter** *(float)* – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new})) \)

Return type tuple(torch.Tensor, torch.Tensor)

train *(gpmodule, optimizer=None, loss_fn=None, retain_graph=None, num_steps=1000)*
A helper to optimize parameters for a GP module.

Parameters

• **gpmodule** *(GPModel)* – A GP module.

• **optimizer** *(Optimizer)* – A PyTorch optimizer instance. By default, we use Adam with lr=0.01.

• **loss_fn** *(callable)* – A loss function which takes inputs are gpmodule.model, gpmodule.guide, and returns ELBO loss. By default, loss_fn=TraceMeanField_ELBO().differentiable_loss.

• **retain_graph** *(bool)* – An optional flag of torch.autograd.backward.

• **num_steps** *(int)* – An optional flag of torch.autograd.backward.

Returns a list of losses during the training procedure

Return type list
20.1 Mini Pyro

This file contains a minimal implementation of the Pyro Probabilistic Programming Language. The API (method signatures, etc.) match that of the full implementation as closely as possible. This file is independent of the rest of Pyro, with the exception of the pyro.distributions module.

An accompanying example that makes use of this implementation can be found at examples/minipyro.py.

class Adam(optim_args)
 Bases: object
 __call__(params)

class JitTrace_ELBO(**kwargs)
 Bases: object
 __call__(model, guide, *args)

class Messenger(fn=None)
 Bases: object
 __call__(*args, **kwargs)
 postprocess_message(msg)
 process_message(msg)

class PlateMessenger(fn, size, dim)
 Bases: pyro.contrib.minipyro.Messenger
 process_message(msg)

class SVI(model, guide, optim, loss)
 Bases: object
 step(*args, **kwargs)

Trace_ELBO(**kwargs)

apply_stack(msg)

class block(fn=None, hide_fn=<function block.<lambda>>)
 Bases: pyro.contrib.minipyro.Messenger
 process_message(msg)
 elbo(model, guide, *args, **kwargs)
 get_param_store()
param(name, init_value=None, constraint=Real(), event_dim=None)

plate(name, size, dim=None)

class replay(fn, guide_trace)
 Bases: pyro.contrib.minipyro.Messenger

 process_message(msg)

class sample(name, fn, *args, **kwargs)

class seed(fn=None, rng_seed=None)
 Bases: pyro.contrib.minipyro.Messenger

class trace(fn=None)
 Bases: pyro.contrib.minipyro.Messenger

 get_trace(*args, **kwargs)

 postprocess_message(msg)
BIological sequence models with mue

Warning: Code in `pyro.contrib.mue` is under development. This code makes no guarantee about maintaining backwards compatibility.

`pyro.contrib.mue` provides modeling tools for working with biological sequence data. In particular it implements MuE distributions, which are used as a fully generative alternative to multiple sequence alignment-based preprocessing.

Reference: MuE models were described in Weinstein and Marks (2021), https://www.biorxiv.org/content/10.1101/2020.07.31.231381v2.

21.1 Example MuE Models

Example MuE observation models.

```python
class ProfileHMM(latent_seq_length, alphabet_length, prior_scale=1.0, indel_prior_bias=10.0, cuda=False, pin_memory=False)
Bases: torch.nn.modules.module.Module
Profile HMM.
This model consists of a constant distribution (a delta function) over the regressor sequence, plus a MuE observation distribution. The priors are all Normal distributions, and are pushed through a softmax function onto the simplex.

Parameters
- `latent_seq_length (int)` – Length of the latent regressor sequence M. Must be greater than or equal to 1.
- `alphabet_length (int)` – Length of the sequence alphabet (e.g. 20 for amino acids).
- `prior_scale (float)` – Standard deviation of the prior distribution.
- `indel_prior_bias (float)` – Mean of the prior distribution over the log probability of an indel not occurring. Higher values lead to lower probability of indels.
- `cuda (bool)` – Transfer data onto the GPU during training.
- `pin_memory (bool)` – Pin memory for faster GPU transfer.

```svi``(dataset, epochs=2, batch_size=1, scheduler=None, jit=False)
Infer approximate posterior with stochastic variational inference.

This runs SVI. It is an approximate inference method useful for quickly iterating on probabilistic models.
Parameters

- **dataset** *(Dataset)* – The training dataset.
- **epochs** *(int)* – Number of epochs of training.
- **batch_size** *(int)* – Minibatch size (number of sequences).
- **scheduler** *(pyro.optim.MultiStepLR)* – Optimization scheduler. (Default: Adam optimizer, 0.01 constant learning rate.)
- **jit** *(bool)* – Whether to use a jit compiled ELBO.

evaluate(dataset_train, dataset_test=None, jit=False)
Evaluate performance (log probability and per residue perplexity) on train and test datasets.

Parameters

- **dataset** *(Dataset)* – The training dataset.
- **dataset** – The testing dataset.
- **jit** *(bool)* – Whether to use a jit compiled ELBO.

class FactorMuE(data_length, alphabet_length, z_dim, batch_size=10, latent_seq_length=None, indel_factor_dependence=False, indel_prior_scale=1.0, indel_prior_bias=10.0, inverse_temp_prior=100.0, weights_prior_scale=1.0, offset_prior_scale=1.0, z_prior_distribution='Normal', ARD_prior=False, substitution_matrix=True, substitution_prior_scale=10.0, latent_alphabet_length=None, cuda=False, pin_memory=False, epsilon=1e-32)
Bases: torch.nn.modules.module.Module
This model consists of probabilistic PCA plus a MuE output distribution.
The priors are all Normal distributions, and where relevant pushed through a softmax onto the simplex.

Parameters

- **data_length** *(int)* – Length of the input sequence matrix, including zero padding at the end.
- **alphabet_length** *(int)* – Length of the sequence alphabet (e.g. 20 for amino acids).
- **z_dim** *(int)* – Number of dimensions of the z space.
- **batch_size** *(int)* – Minibatch size.
- **latent_seq_length** *(int)* – Length of the latent regressor sequence (M). Must be greater than or equal to 1. (Default: 1.1 x data_length.)
- **indel_factor_dependence** *(bool)* – Indel probabilities depend on the latent variable z.
- **indel_prior_scale** *(float)* – Standard deviation of the prior distribution on indel parameters.
- **indel_prior_bias** *(float)* – Mean of the prior distribution over the log probability of an indel not occurring. Higher values lead to lower probability of indels.
- **inverse_temp_prior** *(float)* – Mean of the prior distribution over the inverse temperature parameter.
- **weights_prior_scale** *(float)* – Standard deviation of the prior distribution over the factors.
- **offset_prior_scale** *(float)* – Standard deviation of the prior distribution over the offset (constant) in the pPCA model.
• **z_prior_distribution**(str) – Prior distribution over the latent variable z. Either ‘Normal’ (pPCA model) or ‘Laplace’ (an ICA model).

• **ARD_prior**(bool) – Use automatic relevance determination prior on factors.

• **substitution_matrix**(bool) – Use a learnable substitution matrix rather than the identity matrix.

• **substitution_prior_scale**(float) – Standard deviation of the prior distribution over substitution matrix parameters (when substitution_matrix is True).

• **latent_alphabet_length**(int) – Length of the alphabet in the latent regressor sequence.

• **cuda**(bool) – Transfer data onto the GPU during training.

• **pin_memory**(bool) – Pin memory for faster GPU transfer.

• **epsilon**(float) – A small value for numerical stability.

fit_svi(dataset, epochs=2, anneal_length=1.0, batch_size=None, scheduler=None, jit=False)

Infer approximate posterior with stochastic variational inference. This runs SVI. It is an approximate inference method useful for quickly iterating on probabilistic models.

Parameters

• **dataset**(Dataset) – The training dataset.

• **epochs**(int) – Number of epochs of training.

• **anneal_length**(float) – Number of epochs over which to linearly anneal the prior KL divergence weight from 0 to 1, for improved training.

• **batch_size**(int) – Minibatch size (number of sequences).

• **scheduler**(pyro.optim.MultiStepLR) – Optimization scheduler. (Default: Adam optimizer, 0.01 constant learning rate.)

• **jit**(bool) – Whether to use a jit compiled ELBO.

evaluate(dataset_train, dataset_test=None, jit=False)

Evaluate performance (log probability and per residue perplexity) on train and test datasets.

Parameters

• **dataset**(Dataset) – The training dataset.

• **dataset** – The testing dataset (optional).

• **jit**(bool) – Whether to use a jit compiled ELBO.

embed(dataset, batch_size=None)

Get the latent space embedding (mean posterior value of z).

Parameters

• **dataset**(Dataset) – The dataset to embed.

• **batch_size**(int) – Minibatch size (number of sequences). (Defaults to batch_size of the model object.)
21.2 State Arrangers for Parameterizing MuEs

```python
class Profile(M, epsilon=1e-32)
    Bases: torch.nn.modules.module.Module

Profile HMM state arrangement. Parameterizes an HMM according to Equation S40 in [1] (with r_{M+1,j} = 1
and u_{M+1,j} = 0 for j in {0, 1, 2}). For further background on profile HMMs see [2].

References
mutational variability” https://www.biorxiv.org/content/10.1101/2020.07.31.231381v2.full.pdf
models of proteins and nucleic acids” Cambridge university press

Parameters
- M (int) – Length of regressor sequence.
- epsilon (float) – A small value for numerical stability.

forward(precursor_seq_logits, insert_seq_logits, insert_logits, delete_logits, substitute_logits=None)
Assemble HMM parameters given profile parameters.

Parameters
- precursor_seq_logits (Tensor) – Regressor sequence log(x). Should have rightmost dimension (M, D) and be broadcastable to (batch_size, M, D). Where D is the latent alphabet size. Should be normalized to one along the final axis, i.e. precursor_seq_logits.logsumexp(-1) = zeros.
- insert_seq_logits (Tensor) – Insertion sequence log(c). Should have rightmost dimension (M+1, D) and be broadcastable to (batch_size, M+1, D). Should be normalized along the final axis.
- insert_logits (Tensor) – Insertion probabilities log(r). Should have rightmost dimension (M, 3, 2) and be broadcastable to (batch_size, M, 3, 2). Should be normalized along the final axis.
- delete_logits (Tensor) – Deletion probabilities log(u). Should have rightmost dimension (M, 3, 2) and be broadcastable to (batch_size, M, 3, 2). Should be normalized along the final axis.
- substitute_logits (Tensor) – Substitution probabilities log(l). Should have rightmost dimension (D, B). Where B is the alphabet size of the data, and broadcastable to (batch_size, D, B). Must be normalized along the final axis.

Returns initial_logits, transition_logits, and observation_logits. These parameters can be used
to directly initialize the MissingDataDiscreteHMM distribution.

Return type Tensor, Tensor, Tensor

mg2k(m, g, M)
    Convert from (m, g) indexing to k indexing.
```
21.3 Missing or Variable Length Data HMM

class MissingDataDiscreteHMM(*args, **kwargs)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

HMM with discrete latent states and discrete observations, allowing for missing data or variable length sequences. Observations are assumed to be one hot encoded; rows with all zeros indicate missing data.

Warning: Unlike in pyro’s pyro.distributions.DiscreteHMM, which computes the probability of the first state as initial.T @ transition @ emission this distribution uses the standard HMM convention, initial.T @ emission

Parameters

- **initial_logits** (Tensor) – A logits tensor for an initial categorical distribution over latent states. Should have rightmost size state_dim and be broadcastable to (batch_size, state_dim).
- **transition_logits** (Tensor) – A logits tensor for transition conditional distributions between latent states. Should have rightmost shape (state_dim, state_dim) (old, new), and be broadcastable to (batch_size, state_dim, state_dim).
- **observation_logits** (Tensor) – A logits tensor for observation distributions from latent states. Should have rightmost shape (state_dim, categorical_size), where categorical_size is the dimension of the categorical output, and be broadcastable to (batch_size, state_dim, categorical_size).

log_prob(value)

Parameters

- **value** (Tensor) – One-hot encoded observation. Must be real-valued (float) and broadcastable to (batch_size, num_steps, categorical_size) where categorical_size is the dimension of the categorical output. Missing data is represented by zeros, i.e. value[batch, step, :] == tensor([0, ..., 0]). Variable length observation sequences can be handled by padding the sequence with zeros at the end.

sample(sample_shape=torch.Size(()))

Parameters

- **sample_shape** (Size) – Sample shape, last dimension must be num_steps and must be broadcastable to (batch_size, num_steps). batch_size must be int not tuple.

filter(value)

Compute the marginal probability of the state variable at each step conditional on the previous observations.

Parameters

- **value** (Tensor) – One-hot encoded observation. Must be real-valued (float) and broadcastable to (batch_size, num_steps, categorical_size) where categorical_size is the dimension of the categorical output.

smooth(value)

Compute posterior expected value of state at each position (smoothing).

Parameters

- **value** (Tensor) – One-hot encoded observation. Must be real-valued (float) and broadcastable to (batch_size, num_steps, categorical_size) where categorical_size is the dimension of the categorical output.

sample_states(value)

Sample states with forward filtering-backward sampling algorithm.
Parameters *value* (*Tensor*) – One-hot encoded observation. Must be real-valued (float) and broadcastable to (batch_size, num_steps, categorical_size) where categorical_size is the dimension of the categorical output.

map_states(*value*)
Compute maximum a posteriori (MAP) estimate of state variable with Viterbi algorithm.

Parameters *value* (*Tensor*) – One-hot encoded observation. Must be real-valued (float) and broadcastable to (batch_size, num_steps, categorical_size) where categorical_size is the dimension of the categorical output.

given_states(*states*)
Distribution conditional on the state variable.

Parameters *map_states* (*Tensor*) – State trajectory. Must be integer-valued (long) and broadcastable to (batch_size, num_steps).

sample_given_states(*states*)
Sample an observation conditional on the state variable.

Parameters *map_states* (*Tensor*) – State trajectory. Must be integer-valued (long) and broadcastable to (batch_size, num_steps).

21.4 Biosequence Dataset Loading

class BiosequenceDataset(*source*, *source_type='list', alphabet='amino-acid', max_length=None, include_stop=False, device=None)*

Bases: torch.utils.data.dataset.Dataset

Load biological sequence data, either from a fasta file or a python list.

Parameters

- *source* – Either the input fasta file path (str) or the input list of sequences (list of str).
- *source_type* (*str*) – Type of input, either ‘list’ or ‘fasta’.
- *alphabet* (*str*) – Alphabet to use. Alphabets ‘amino-acid’ and ‘dna’ are preset; any other input will be interpreted as the alphabet itself, i.e. you can use ‘ACGU’ for RNA.
- *max_length* (*int*) – Total length of the one-hot representation of the sequences, including zero padding. Defaults to the maximum sequence length in the dataset.
- *include_stop* (*bool*) – Append stop symbol to the end of each sequence and add the stop symbol to the alphabet.
- *device* (*torch.device*) – Device on which data should be stored in memory.

write(*x, alphabet, file, truncate_stop=False, append=False, scores=None)*

Write sequence samples to file.

Parameters

- *x* (*Tensor*) – One-hot encoded sequences, with size (data_size, seq_length, alphabet_length). May be padded with zeros for variable length sequences.
- *alphabet* (*array*) – Alphabet.
- *file* (*str*) – Output file, where sequences will be written in fasta format.
• **truncate_stop** (*bool*) – If True, sequences will be truncated at the first stop symbol (i.e. the stop symbol and everything after will not be written). If False, the whole sequence will be written, including any internal stop symbols.

• **append** (*bool*) – If True, sequences are appended to the end of the output file. If False, the file is first erased.
CHAPTER TWENTYTWO

OPTIMAL EXPERIMENT DESIGN

Tasks such as choosing the next question to ask in a psychology study, designing an election polling strategy, and deciding which compounds to synthesize and test in biological sciences are all fundamentally asking the same question: how do we design an experiment to maximize the information gathered? Pyro is designed to support automated optimal experiment design: specifying a model and guide is enough to obtain optimal designs for many different kinds of experiment scenarios. Check out our experimental design tutorials that use Pyro to design an adaptive psychology study that uses past data to select the next question, and design an election polling strategy that aims to give the strongest prediction about the eventual winner of the election.

Bayesian optimal experimental design (BOED) is a powerful methodology for tackling experimental design problems and is the framework adopted by Pyro. In the BOED framework, we begin with a Bayesian model with a likelihood \(p(y|\theta, d) \) and a prior \(p(\theta) \) on the target latent variables. In Pyro, any fully Bayesian model can be used in the BOED framework. The sample sites corresponding to experimental outcomes are the observation sites, those corresponding to latent variables of interest are the target sites. The design \(d \) is the argument to the model, and is not a random variable.

In the BOED framework, we choose the design that optimizes the expected information gain (EIG) on the targets \(\theta \) from running the experiment

\[
\text{EIG}(d) = \mathbb{E}_{p(y|d)}[H[p(\theta)|H[p(\theta|y, d)]]],
\]

where \(H[] \) represents the entropy and \(p(\theta|y, d) \propto p(\theta)p(y|\theta, d) \) is the posterior we get from running the experiment with design \(d \) and observing \(y \). In other words, the optimal design is the one that, in expectation over possible future observations, most reduces posterior entropy over the target latent variables. If the predictive model is correct, this forms a design strategy that is (one-step) optimal from an information-theoretic viewpoint. For further details, see [1, 2].

The `pyro.contrib.oed` module provides tools to create optimal experimental designs for Pyro models. In particular, it provides estimators for the expected information gain (EIG).

To estimate the EIG for a particular design, we first set up our Pyro model. For example:

```python
def model(design):
    # This line allows batching of designs, treating all batch dimensions as independent
    with pyro.plate_stack("plate_stack", design.shape):

        # We use a Normal prior for theta
        theta = pyro.sample("theta", dist.Normal(torch.tensor(0.0), torch.tensor(1.0)))

        # We use a simple logistic regression model for the likelihood
        logit_p = theta - design
        y = pyro.sample("y", dist.Bernoulli(logits=logit_p))

    return y
```
We then select an appropriate EIG estimator, such as:

```python
eig = nmc_eig(model, design, observation_labels=['y'], target_labels=['theta'], N=2500, M=50)
```

It is possible to estimate the EIG across a grid of designs:

```python
designs = torch.stack([design1, design2], dim=0)
```

to find the best design from a number of options.

22.1 Expected Information Gain

`laplace_eig(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=None, eig=True, **prior_entropy_kwargs)`

Estimates the expected information gain (EIG) by making repeated Laplace approximations to the posterior.

Parameters

- `model` (*function*) – Pyro stochastic function taking `design` as only argument.
- `design` (*torch.Tensor*) – Tensor of possible designs.
- `observation_labels` (*list*) – labels of sample sites to be regarded as observables.
- `target_labels` (*list*) – labels of sample sites to be regarded as latent variables of interest, i.e. the sites that we wish to gain information about.
- `guide` (*function*) – Pyro stochastic function corresponding to `model`.
- `loss` – a Pyro loss such as `pyro.infer.Trace_ELBO().differentiable_loss`.
- `optim` – optimizer for the loss
- `num_steps` (*int*) – Number of gradient steps to take per sampled pseudo-observation.
- `final_num_samples` (*int*) – Number of y samples (pseudo-observations) to take.
- `y_dist` – Distribution to sample y from; if `None` we use the Bayesian marginal distribution.
- `eig` (*bool*) – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by $EIG = prior \text{ entropy} - APE$. If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned.
- `prior_entropy_kwargs` (*dict*) – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history

Return type `torch.Tensor`

`vi_eig(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None, eig=True, **prior_entropy_kwargs)`

Deprecated since version 0.4.1: Use `posterior_eig` instead.
Estimates the expected information gain (EIG) using variational inference (VI).

The APE is defined as

\[\text{APE}(d) = E_{Y \sim p(y|\theta, d)}[H(p(\theta|Y, d))] \]

where \(H[p(x)] \) is the differential entropy. The APE is related to expected information gain (EIG) by the equation

\[\text{EIG}(d) = H[p(\theta)] - \text{APE}(d) \]

in particular, minimising the APE is equivalent to maximising EIG.

Parameters

- **model** *(function)* – A pyro model accepting *design* as only argument.
- **design** *(torch.Tensor)* – Tensor representation of design
- **observation_labels** *(list)* – A subset of the sample sites present in *model*. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** *(list)* – A subset of the sample sites over which the posterior entropy is to be measured.
- **vi_parameters** *(dict)* – Variational inference parameters which should include: *optim*: an instance of `pyro.Optim`, *guide*: a guide function compatible with *model*, *num_steps*: the number of VI steps to make, and *loss*: the loss function to use for VI
- **is_parameters** *(dict)* – Importance sampling parameters for the marginal distribution of \(Y \). May include *num_samples*: the number of samples to draw from the marginal.
- **y_dist** *(pyro.distributions.Distribution)* – (optional) the distribution assumed for the response variable \(Y \)
- **eig** *(bool)* – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(\text{EIG} = \text{prior entropy - APE} \). If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the *model*. If False the APE is returned.
- **prior_entropy_kwargs** *(dict)* – parameters for estimating the prior entropy: *num_prior_samples* indicating the number of samples for a MC estimate of prior entropy, and *mean_field* indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history

Return type torch.Tensor

nmc_eig *(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None, independent_priors=False)*

Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects,

\[
\frac{1}{N} \sum_{n=1}^{N} \log p(y_n|\theta_n, d) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, d) \right)
\]

where \(\theta_n, y_n \sim p(\theta, y|d) \) and \(\theta_m \sim p(\theta) \). The estimate in the presence of random effects is

\[
\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M'} \sum_{m'=1}^{M'} p(y_n|\theta_n, \tilde{\theta}_{nm}, d) \right) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, \tilde{\theta}_m, d) \right)
\]

where \(\tilde{\theta} \) are the random effects with \(\tilde{\theta}_{nm} \sim p(\tilde{\theta}|\theta = \theta_n) \) and \(\theta_m, \tilde{\theta}_m \sim p(\theta, \tilde{\theta}) \). The latter form is used when *M_prime* != None.
Parameters

- **model** (*function*) – A pyro model accepting `design` as only argument.
- **design** (*torch.Tensor*) – Tensor representation of design
- **observation_labels** (*list*) – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.
- **N** (*int*) – Number of outer expectation samples.
- **M** (*int*) – Number of inner expectation samples for \(p(y|d) \).
- **M_prime** (*int*) – Number of samples for \(p(y | \theta, d) \) if required.
- **independent_priors** (*bool*) – Only used when `M_prime` is not `None`. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables.

Returns EIG estimate, optionally includes full optimization history

Return type *torch.Tensor*

donsker_varadhan_eig(*model, design, observation_labels, target_labels, num_samples, num_steps, T, optim, return_history=False, final_design=None, final_num_samples=None*)

Donsker-Varadhan estimate of the expected information gain (EIG).

The Donsker-Varadhan representation of EIG is

\[
\sup_T E_p(y, \theta|d) [T(y, \theta)] - \log E_p(y|d) p(\theta) \exp(T(\bar{y}, \bar{\theta}))
\]

where \(T \) is any (measurable) function.

This method optimizes the loss function over a pre-specified class of functions \(T \).

Parameters

- **model** (*function*) – A pyro model accepting `design` as only argument.
- **design** (*torch.Tensor*) – Tensor representation of design
- **observation_labels** (*list*) – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples** (*int*) – Number of samples per iteration.
- **num_steps** (*int*) – Number of optimization steps.
- **T** (*function or torch.nn.Module*) – Optimisable function \(T \) for use in the Donsker-Varadhan loss function.
- **optim** (*pyro.optim.Optim*) – Optimiser to use.
- **return_history** (*bool*) – If True, also returns a tensor giving the loss function at each step of the optimization.
- **final_design** (*torch.Tensor*) – The final design tensor to evaluate at. If None, uses `design`.
posterior_eig

```python
def posterior_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None, eig=True, prior_entropy_kwargs={}, *args, **kwargs):
```

Posterior estimate of expected information gain (EIG) computed from the average posterior entropy (APE) using \(EIG(d) = H[p(\theta)] - APE(d) \). See [1] for full details.

The posterior representation of APE is

\[
\sup_q E_{p(y, \theta|d)}[\log q(\theta|y, d)]
\]

where \(q \) is any distribution on \(\theta \).

This method optimises the loss over a given guide family representing \(q \).

Parameters

- **model** (*function*) – A pyro model accepting `design` as only argument.
- **design** (*torch.Tensor*) – Tensor representation of `design`
- **observation_labels** (*list*) – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples** (*int*) – Number of samples per iteration.
- **num_steps** (*int*) – Number of optimization steps.
- **guide** (*function*) – guide family for use in the (implicit) posterior estimation. The parameters of `guide` are optimised to maximise the posterior objective.
- **optim** (*pyro.optim.Optim*) – Optimiser to use.
- **return_history** (*bool*) – If True, also returns a tensor giving the loss function at each step of the optimization.
- **final_design** (*torch.Tensor*) – The final design tensor to evaluate at. If None, uses `design`.
- **final_num_samples** (*int*) – The number of samples to use at the final evaluation, If None, uses `num_samples`.
- **eig** (*bool*) – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(EIG = prior\ entropy - APE \). If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If False the APE is returned.
- **prior_entropy_kwargs** (*dict*) – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimization history
Return type torch.Tensor or tuple

marginal_eig *(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None)*

Estimate EIG by estimating the marginal entropy \(p(y|d) \). See [1] for full details.

The marginal representation of EIG is

\[
\inf_q E_{p(y, \theta|d)} \left[\log \frac{p(y, \theta|d)}{q(y|d)} \right]
\]

where \(q \) is any distribution on \(y \). A variational family for \(q \) is specified in the *guide*.

Warning: This method does not estimate the correct quantity in the presence of random effects.

Parameters

- **model** *(function)* – A pyro model accepting \(\text{design} \) as only argument.
- **design** *(torch.Tensor)* – Tensor representation of design
- **observation_labels** *(list)* – A subset of the sample sites present in *model*. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** *(list)* – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples** *(int)* – Number of samples per iteration.
- **num_steps** *(int)* – Number of optimization steps.
- **guide** *(function)* – guide family for use in the marginal estimation. The parameters of \(\text{guide} \) are optimised to maximise the log-likelihood objective.
- **optim** *(pyro.optim.Optim)* – Optimiser to use.
- **return_history** *(bool)* – If True, also returns a tensor giving the loss function at each step of the optimization.
- **final_design** *(torch.Tensor)* – The final design tensor to evaluate at. If None, uses \(\text{design} \).
- **final_num_samples** *(int)* – The number of samples to use at the final evaluation, If None, uses \(\text{num_samples} \).

Returns EIG estimate, optionally includes full optimization history

lfire_eig *(model, design, observation_labels, target_labels, num_y_samples, num_theta_samples, num_steps, classifier, optim, return_history=False, final_design=None, final_num_samples=None)*

Estimates the EIG using the method of Likelihood-Free Inference by Ratio Estimation (LFIRE) as in [1]. LFIRE is run separately for several samples of \(\theta \).

Parameters

- **model** *(function)* – A pyro model accepting \(\text{design} \) as only argument.
• **design** (torch.Tensor) – Tensor representation of design

• **observation_labels** (list) – A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** (list) – A subset of the sample sites over which the posterior entropy is to be measured.

• **num_y_samples** (int) – Number of samples to take in \(y \) for each \(\theta \).

• **num_steps** (int) – Number of optimization steps.

• **classifier** (function) – A PyTorch or Pyro classifier used to distinguish between samples of \(y \) under \(p(y|d) \) and samples under \(p(y|\theta, d) \) for some \(\theta \).

• **optim** (pyro.optim.Optim) – Optimiser to use.

• **return_history** (bool) – If True, also returns a tensor giving the loss function at each step of the optimization.

• **final_design** (torch.Tensor) – The final design tensor to evaluate at. If None, uses design.

• **final_num_samples** (int) – The number of samples to use at the final evaluation. If None, uses num_samples.

Param int num_theta_samples: Number of initial samples in \(\theta \) to take. The likelihood ratio is estimated by LFIRE for each sample.

Returns EIG estimate, optionally includes full optimization history

Return type torch.Tensor or tuple

vnmc_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None)

Estimates the EIG using Variational Nested Monte Carlo (VNMC). The VNMC estimate \[1 \sum_{n=1}^{N} \left[\log p(y_n|\theta_n,d) - \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\theta_m|\theta_m,y_n,d)}{q(\theta_m|y_n)} \right) \right] \]

where \(q(\theta|y) \) is the learned variational posterior approximation and \(\theta_n, y_n \sim p(\theta, y|d), \theta_m \sim q(\theta|y = y_n) \).

As \(N \to \infty \) this is an upper bound on EIG. We minimise this upper bound by stochastic gradient descent.

Warning: This method cannot be used in the presence of random effects.

Parameters

• **model** (function) – A pyro model accepting design as only argument.

• **design** (torch.Tensor) – Tensor representation of design

• **observation_labels** (list) – A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** (list) – A subset of the sample sites over which the posterior entropy is to be measured.
• **num_samples** (*tuple*) – Number of \((N, M)\) samples per iteration.
• **num_steps** (*int*) – Number of optimization steps.
• **guide** (*function*) – guide family for use in the posterior estimation. The parameters of *guide* are optimised to minimise the VNMC upper bound.
• **optim** (*pyro.optim.Optim*) – Optimiser to use.
• **return_history** (*bool*) – If True, also returns a tensor giving the loss function at each step of the optimization.
• **final_design** (*torch.Tensor*) – The final design tensor to evaluate at. If None, uses *design*.
• **final_num_samples** (*tuple*) – The number of \((N, M)\) samples to use at the final evaluation. If None, uses `num_samples`.

Returns EIG estimate, optionally includes full optimization history

Return type *torch.Tensor* or *tuple*

22.2 Generalised Linear Mixed Models

Warning: This module will eventually be deprecated in favor of *brmp*

The *pyro.contrib.oed.glmm* module provides models and guides for generalised linear mixed models (GLMM). It also includes the Normal-inverse-gamma family.

To create a classical Bayesian linear model, use:

```python
from pyro.contrib.oed.glmm import known_covariance_linear_model

# Note: coef is a p-vector, observation_sd is a scalar
# Here, p=1 (one feature)
model = known_covariance_linear_model(coef_mean=torch.tensor([0.]),
                                       coef_sd=torch.tensor([10.]),
                                       observation_sd=torch.tensor(2.))

# An n x p design tensor
# Here, n=2 (two observations)
design = torch.tensor(torch.tensor([[1.], [-1.]]))

model(design)
```

A non-linear link function may be introduced, for instance:

```python
from pyro.contrib.oed.glmm import logistic_regression_model

# No observation_sd is needed for logistic models
model = logistic_regression_model(coef_mean=torch.tensor([0.]),
                                  coef_sd=torch.tensor([10.]))
```

Random effects may be incorporated as regular Bayesian regression coefficients. For random effects with a shared covariance matrix, see *pyro.contrib.oed.glmm.lmer_model()*.
23.1 Random Variable

class RandomVariable(distribution)

Bases: pyro.contrib.randomvariable.random_variable.RVMagicOps, pyro.contrib.
randomvariable.random_variable.RVChainOps

EXPERIMENTAL random variable container class around a distribution

Representation of a distribution interpreted as a random variable. Rather than directly manipulating a probability density by applying pointwise transformations to it, this allows for simple arithmetic transformations of the random variable the distribution represents. For more flexibility, consider using the transform method. Note that if you perform a non-invertible transform (like \(|abs(X)|\) or \(X^2\)), certain things might not work properly.

Can switch between RandomVariable and Distribution objects with the convenient Distribution.rv and RandomVariable.dist properties.

Supports either chaining operations or arithmetic operator overloading.

Example usage:

```python
# This should be equivalent to an Exponential distribution.
RandomVariable(Uniform(0, 1)).log().neg().dist

# These two distributions Y1, Y2 should be the same
X = Uniform(0, 1).rv
Y1 = X.mul(4).pow(0.5).sub(1).abs().neg().dist
Y2 = (-abs((4*X)**(0.5) - 1)).dist
```

property dist

Convenience property for exposing the distribution underlying the random variable.

Returns The Distribution object underlying the random variable

Return type Distribution

transform(t: torch.distributions.transforms.Transform)

Performs a transformation on the distribution underlying the RV.

Parameters t (Transform) – The transformation (or sequence of transformations) to be applied to the distribution. There are many examples to be found in torch.distributions.transforms and pyro.distributions.transforms, or you can subclass directly from Transform.

Returns The transformed RandomVariable

Return type RandomVariable
The `pyro.contrib.timeseries` module provides a collection of Bayesian time series models useful for forecasting applications.

See the GP example for example usage.

24.1 Abstract Models

```python
class TimeSeriesModel(name="")
    Bases: pyro.nn.module.PyroModule

    Base class for univariate and multivariate time series models.

    log_prob(targets)
        Log probability function.

        Parameters
        ----------
        targets (torch.Tensor) -- A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step.

        Returns
        -------
        torch.Tensor -- A 0-dimensional log probability for the case of properly multivariate time series models in which the output dimensions are correlated; otherwise returns a 1-dimensional tensor of log probabilities for batched univariate time series models.

    forecast(targets, dts)

        Parameters
        ----------
        targets (torch.Tensor) -- A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.

        dts (torch.Tensor) -- A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target targets[-1].

        Returns
        -------
        torch.distributions.Distribution -- Returns a predictive distribution with batch shape (S,) and event shape (obs_dim,), where S is the size of dts. That is, the resulting predictive distributions do not encode correlations between distinct times in dts.

    get_dist()
        Get a Distribution object corresponding to this time series model. Often this is a GaussianHMM.

    training: bool
```

24.2 Gaussian Processes

class IndependentMaternGP(nu=1.5, dt=1.0, obs_dim=1, length_scale_init=None, kernel_scale_init=None, obs_noise_scale_init=None)
Bases: pyro.contrib.timeseries.base.TimeSeriesModel

A time series model in which each output dimension is modeled independently with a univariate Gaussian Process with a Matern kernel. The targets are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series T.

Parameters

- **nu** *(float)* – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.
- **dt** *(float)* – The time spacing between neighboring observations of the time series.
- **obs_dim** *(int)* – The dimension of the targets at each time step.
- **length_scale_init** *(torch.Tensor)* – optional initial values for the kernel length scale given as a obs_dim-dimensional tensor
- **kernel_scale_init** *(torch.Tensor)* – optional initial values for the kernel scale given as a obs_dim-dimensional tensor
- **obs_noise_scale_init** *(torch.Tensor)* – optional initial values for the observation noise scale given as a obs_dim-dimensional tensor

get_dist(duration=None)
Get the GaussianHMM distribution that corresponds to obs_dim-many independent Matern GPs.

Parameters **duration** *(int)* – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

log_prob(targets)

Parameters **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step

Returns **torch.Tensor** A 1-dimensional tensor of log probabilities of shape (obs_dim,)

forecast(targets, dts)

Parameters

- **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- **dts** *(torch.Tensor)* – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target targets[-1].

Returns **torch.distributions.Normal** Returns a predictive Normal distribution with batch shape (S,) and event shape (obs_dim,), where S is the size of dts.

training: **bool**
class LinearlyCoupledMaternGP(nu=1.5, dt=1.0, obs_dim=2, num_gps=1, length_scale_init=None, kernel_scale_init=None, obs_noise_scale_init=None):

Bases: pyro.contrib.timeseries.base.TimeSeriesModel

A time series model in which each output dimension is modeled as a linear combination of shared univariate Gaussian Processes with Matern kernels.

In more detail, the generative process is:

\[y_i(t) = \sum_j A_{ij} f_j(t) + \epsilon_i(t) \]

The targets \(y_i \) are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series \(T \).

Parameters

- **nu** (float) – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.
- **dt** (float) – The time spacing between neighboring observations of the time series.
- **obs_dim** (int) – The dimension of the targets at each time step.
- **num_gps** (int) – The number of independent GPs that are mixed to model the time series. Typical values might be \(N_{gp} \in \left[\frac{D_{obs}}{2}, D_{obs} \right] \)
- **length_scale_init** (torch.Tensor) – optional initial values for the kernel length scale given as a num_gps-dimensional tensor
- **kernel_scale_init** (torch.Tensor) – optional initial values for the kernel scale given as a num_gps-dimensional tensor
- **obs_noise_scale_init** (torch.Tensor) – optional initial values for the observation noise scale given as a obs_dim-dimensional tensor

get_dist(duration=None)

Get the GaussianHMM distribution that corresponds to a LinearlyCoupledMaternGP.

Parameters duration (int) – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

log_prob(targets)

Parameters targets (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, \ obs_dim)\), where \(T \) is the length of the time series and \(obs_dim \) is the dimension of the real-valued targets at each time step

Returns torch.Tensor a (scalar) log probability

forecast(targets, dts)

Parameters

- **targets** (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape \((T, \ obs_dim)\), where \(T \) is the length of the time series and \(obs_dim \) is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- **dts** (torch.Tensor) – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target targets[-1].

Returns torch.distributions.MultivariateNormal Returns a predictive MultivariateNormal distribution with batch shape \((S, \)\) and event shape \((obs_dim, \)\), where \(S \) is the size of dts.
class DependentMaternGP(nu=1.5, dt=1.0, obs_dim=1, linearly_coupled=False, length_scale_init=None, obs_noise_scale_init=None)

Bases: pyro.contrib.timeseries.base.TimeSeriesModel

A time series model in which each output dimension is modeled as a univariate Gaussian Process with a Matern kernel. The different output dimensions become correlated because the Gaussian Processes are driven by a correlated Wiener process; see reference [1] for details. If, in addition, linearly_coupled is True, additional correlation is achieved through linear mixing as in LinearlyCoupledMaternGP. The targets are assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series T.

Parameters

- **nu** *(float)* – The order of the Matern kernel; must be 1.5.
- **dt** *(float)* – The time spacing between neighboring observations of the time series.
- **obs_dim** *(int)* – The dimension of the targets at each time step.
- **linearly_coupled** *(bool)* – Whether to linearly mix the various gaussian processes in the likelihood. Defaults to False.
- **length_scale_init** *(torch.Tensor)* – optional initial values for the kernel length scale given as a obs_dim-dimensional tensor
- **obs_noise_scale_init** *(torch.Tensor)* – optional initial values for the observation noise scale given as a obs_dim-dimensional tensor

References

get_dist(duration=None)

Get the GaussianHMM distribution that corresponds to a DependentMaternGP

Parameters **duration** *(int)* – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

log_prob(targets)

Parameters **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step

Returns **torch.Tensor** A (scalar) log probability

training: bool

forecast(targets, dts)

Parameters

- **targets** *(torch.Tensor)* – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- **dts** *(torch.Tensor)* – A 1-dimensional tensor of times to forecast into the future, with zero corresponding to the time of the final target targets[-1].
24.3 Linear Gaussian State Space Models

class GenericLGSSM

A generic Linear Gaussian State Space Model parameterized with arbitrary time invariant transition and observation dynamics. The targets are (implicitly) assumed to be evenly spaced in time. Training and inference are logarithmic in the length of the time series T.

Parameters

- **obs_dim** (int) – The dimension of the targets at each time step.
- **state_dim** (int) – The dimension of latent state at each time step.
- **learnable_observation_loc** (bool) – whether the mean of the observation model should be learned or not; defaults to False.

get_dist(duration=None)

Get the GaussianHMM distribution that corresponds to GenericLGSSM.

Parameters duration (int) – Optional size of the time axis event_shape[0]. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

log_prob(targets)

Parameters targets (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step.

Returns torch.Tensor A (scalar) log probability.

forecast(targets, N_timesteps)

Parameters

- **targets** (torch.Tensor) – A 2-dimensional tensor of real-valued targets of shape (T, obs_dim), where T is the length of the time series and obs_dim is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- **N_timesteps** (int) – The number of timesteps to forecast into the future from the final target targets[-1].

Returns torch.distributions.MultivariateNormal Returns a predictive MultivariateNormal distribution with batch shape (N_timesteps,) and event shape (obs_dim,)

training: bool

class GenericLGSSMWithGPNoiseModel

Bases: pyro.contrib.timeseries.base.TimeSeriesModel

24.3. Linear Gaussian State Space Models
A generic Linear Gaussian State Space Model parameterized with arbitrary time invariant transition and observation dynamics together with separate Gaussian Process noise models for each output dimension. In more detail, the generative process is:

\[y_i(t) = \sum_j A_{ij} z_j(t) + f_i(t) + \epsilon_i(t) \]

where the latent variables \(z(t) \) follow generic time invariant Linear Gaussian dynamics and the \(f_i(t) \) are Gaussian Processes with Matern kernels.

The targets are (implicitly) assumed to be evenly spaced in time. In particular a timestep of \(dt = 1.0 \) for the continuous-time GP dynamics corresponds to a single discrete step of the \(z \)-space dynamics. Training and inference are logarithmic in the length of the time series \(T \).

Parameters

- \texttt{obs_dim (int)} – The dimension of the targets at each time step.
- \texttt{state_dim (int)} – The dimension of the \(z \) latent state at each time step.
- \texttt{nu (float)} – The order of the Matern kernel; one of 0.5, 1.5 or 2.5.
- \texttt{length_scale_init (torch.Tensor)} – optional initial values for the kernel length scale given as a \texttt{obs_dim}-dimensional tensor
- \texttt{kernel_scale_init (torch.Tensor)} – optional initial values for the kernel scale given as a \texttt{obs_dim}-dimensional tensor
- \texttt{obs_noise_scale_init (torch.Tensor)} – optional initial values for the observation noise scale given as a \texttt{obs_dim}-dimensional tensor
- \texttt{learnable_observation_loc (bool)} – whether the mean of the observation model should be learned or not; defaults to False.

get_dist(duration=None)

Get the \texttt{GaussianHMM} distribution that corresponds to \texttt{GenericLGSSMWithGPNoiseModel}.

Parameters

- \texttt{duration (int)} – Optional size of the time axis \texttt{event_shape[0]}. This is required when sampling from homogeneous HMMs whose parameters are not expanded along the time axis.

log_prob(targets)

Parameters

- \texttt{targets (torch.Tensor)} – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs_dim})\), where \(T \) is the length of the time series and \text{obs_dim} is the dimension of the real-valued targets at each time step

Returns \texttt{torch.Tensor} A (scalar) log probability.

forecast(targets, N_timesteps)

Parameters

- \texttt{targets (torch.Tensor)} – A 2-dimensional tensor of real-valued targets of shape \((T, \text{obs_dim})\), where \(T \) is the length of the time series and \text{obs_dim} is the dimension of the real-valued targets at each time step. These represent the training data that are conditioned on for the purpose of making forecasts.
- \texttt{N_timesteps (int)} – The number of timesteps to forecast into the future from the final target \texttt{targets[-1]}.

Returns \texttt{torch.distributions.MultivariateNormal} Returns a predictive MultivariateNormal distribution with batch shape \((N_{timesteps},)\) and event shape \((\text{obs_dim},)\)
training: bool
25.1 Data Association

class MarginalAssignment(exists_logits, assign_logits, bp_iters=None)
Computes marginal data associations between objects and detections.

This assumes that each detection corresponds to zero or one object, and each object corresponds to zero or more detections. Specifically this does not assume detections have been partitioned into frames of mutual exclusion as is common in 2-D assignment problems.

Parameters

- exists_logits (torch.Tensor) – a tensor of shape \([\text{num_objects}]\) representing per-object factors for existence of each potential object.
- assign_logits (torch.Tensor) – a tensor of shape \([\text{num_detections}, \text{num_objects}]\) representing per-edge factors of assignment probability, where each edge denotes that a given detection associates with a single object.
- bp_iters (int) – optional number of belief propagation iterations. If unspecified or None an expensive exact algorithm will be used.

Variables

- num_detections (int) – the number of detections
- num_objects (int) – the number of (potentially existing) objects
- exists_dist (pyro.distributions.Bernoulli) – a mean field posterior distribution over object existence.
- assign_dist (pyro.distributions.Categorical) – a mean field posterior distribution over the object (or None) to which each detection associates. This has .event_shape == (\text{num_objects} + 1,) where the final element denotes spurious detection, and .batch_shape == (\text{num_frames}, \text{num_detections}).

class MarginalAssignmentSparse(num_objects, num_detections, edges, exists_logits, assign_logits, bp_iters)
A cheap sparse version of MarginalAssignment.

Parameters

- num_detections (int) – the number of detections
- num_objects (int) – the number of (potentially existing) objects
- edges (torch.LongTensor) – a \([2, \text{num_edges}]\)-shaped tensor of (detection, object) index pairs specifying feasible associations.
• **exists_logits** (*torch.Tensor*) – a tensor of shape `[num_objects]` representing per-object factors for existence of each potential object.

• **assign_logits** (*torch.Tensor*) – a tensor of shape `[num_edges]` representing per-edge factors of assignment probability, where each edge denotes that a given detection associates with a single object.

• **bp_iters** (*int*) – optional number of belief propagation iterations. If unspecified or `None` an expensive exact algorithm will be used.

Variables

• **num_detections** (*int*) – the number of detections

• **num_objects** (*int*) – the number of (potentially existing) objects

• **exists_dist** (*pyro.distributions.Bernoulli*) – a mean field posterior distribution over object existence.

• **assign_dist** (*pyro.distributions.Categorical*) – a mean field posterior distribution over the object (or `None`) to which each detection associates. This has `.event_shape == (num_objects + 1,)` where the final element denotes spurious detection, and `.batch_shape == (num_frames, num_detections)`.

class MarginalAssignmentPersistent

This computes marginal distributions of a multi-frame multi-object data association problem with an unknown number of persistent objects.

The inputs are factors in a factor graph (existence probabilities for each potential object and assignment probabilities for each object-detection pair), and the outputs are marginal distributions of posterior existence probability of each potential object and posterior assignment probabilites of each object-detection pair.

This assumes a shared (maximum) number of detections per frame; to handle variable number of detections, simply set corresponding elements of `assign_logits` to `-float('inf')`.

Parameters

• **exists_logits** (*torch.Tensor*) – a tensor of shape `[num_objects]` representing per-object factors for existence of each potential object.

• **assign_logits** (*torch.Tensor*) – a tensor of shape `[num_frames, num_detections, num_objects]` representing per-edge factors of assignment probability, where each edge denotes that at a given time frame a given detection associates with a single object.

• **bp_iters** (*int*) – optional number of belief propagation iterations. If unspecified or `None` an expensive exact algorithm will be used.

• **bp_momentum** (*float*) – optional momentum to use for belief propagation. Should be in the interval `[0, 1)`.

Variables

• **num_frames** (*int*) – the number of time frames

• **num_detections** (*int*) – the (maximum) number of detections per frame

• **num_objects** (*int*) – the number of (potentially existing) objects

• **exists_dist** (*pyro.distributions.Bernoulli*) – a mean field posterior distribution over object existence.

• **assign_dist** (*pyro.distributions.Categorical*) – a mean field posterior distribution over the object (or `None`) to which each detection associates. This has `.event_shape == (num_objects + 1,)` where the final element denotes spurious detection, and `.batch_shape == (num_frames, num_detections)`.
== (num_objects + 1,) where the final element denotes spurious detection, and
batch_shape == (num_frames, num_detections).

compute_marginals(*exists_logits, assign_logits*)

This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See **MarginalAssignment** for args and problem description.

compute_marginals_bp(*exists_logits, assign_logits, bp_iters*)

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See **MarginalAssignment** for args and problem description.

compute_marginals_sparse_bp(*num_objects, num_detections, edges, exists_logits, assign_logits, bp_iters*)

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See **MarginalAssignmentSparse** for args and problem description.

compute_marginals_persistent(*exists_logits, assign_logits*)

This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See **MarginalAssignmentPersistent** for args and problem description.

compute_marginals_persistent_bp(*exists_logits, assign_logits, bp_iters, bp_momentum=0.5*)

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1], [2].

See **MarginalAssignmentPersistent** for args and problem description.

25.2 Distributions

class EKFDistribution(*args, **kwargs *)

Distribution over EKF states. See **EKFState**. Currently only supports **log_prob**.

Parameters

- **x0** (*torch.Tensor*) – PV tensor (mean)
- **P0** (*torch.Tensor*) – covariance
- **dynamic_model** – **DynamicModel** object
- **measurement_cov** (*torch.Tensor*) – measurement covariance
- **time_steps** (*int*) – number time step
- **dt** (*torch.Tensor*) – time step
Pyro Documentation

filter_states(value)
Returns the ekf states given measurements

Parameters
- value (torch.Tensor) – measurement means of shape `(time_steps, event_shape)`

log_prob(value)
Returns the joint log probability of the innovations of a tensor of measurements

Parameters
- value (torch.Tensor) – measurement means of shape `(time_steps, event_shape)`

25.3 Dynamic Models

class DynamicModel(dimension, dimension_pv, num_process_noise_parameters=None)
Dynamic model interface.

Parameters
- dimension – native state dimension.
- dimension_pv – PV state dimension.
- num_process_noise_parameters – process noise parameter space dimension. This for UKF applications. Can be left as `None` for EKF and most other filters.

property dimension
Native state dimension access.

property dimension_pv
PV state dimension access.

property num_process_noise_parameters
Process noise parameters space dimension access.

abstract forward(x, dt, do_normalization=True)
Integrate native state `x` over time interval `dt`.

Parameters
- x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of `x` being augmented with process noise parameters.
- dt – time interval to integrate over.
- do_normalization – whether to perform normalization on output, e.g., mod’ing angles into an interval.

Returns
Native state `x` integrated `dt` into the future.

geodesic_difference(x1, x0)
Compute and return the geodesic difference between 2 native states. This is a generalization of the Euclidean operation `x1 - x0`.

Parameters
- x1 – native state.
- x0 – native state.

Returns
Geodesic difference between native states `x1` and `x2`.

abstract mean2pv(x)
Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.
Parameters \(x \) – native state estimate mean.

Returns PV state estimate mean.

abstract cov2pv\((P) \)

Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

- **Parameters** \(P \) – native state estimate covariance.
- **Returns** PV state estimate covariance.

abstract process_noise_cov\((dt=0.0) \)

Compute and return process noise covariance (\(Q \)).

- **Parameters** \(dt \) – time interval to integrate over.
- **Returns** Read-only covariance (\(Q \)). For a DifferentiableDynamicModel, this is the covariance of the native state \(x \) resulting from stochastic integration (for use with EKF). Otherwise, it is the covariance directly of the process noise parameters (for use with UKF).

process_noise_dist\((dt=0.0) \)

Return a distribution object of state displacement from the process noise distribution over a time interval.

- **Parameters** \(dt \) – time interval that process noise accumulates over.
- **Returns** MultivariateNormal.

class DifferentiableDynamicModel\((dimension, dimension_pv, num_process_noise_parameters=None) \)

DynamicModel for which state transition Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

- **abstract jacobian\((dt) \)**

 Compute and return native state transition Jacobian (\(F \)) over time interval \(dt \).

 - **Parameters** \(dt \) – time interval to integrate over.
 - **Returns** Read-only Jacobian (\(F \)) of integration map (\(f \)).

class Ncp\((dimension, sv2) \)

NCP (Nearly-Constant Position) dynamic model. May be subclassed, e.g., with CWNV (Continuous White Noise Velocity) or DWNV (Discrete White Noise Velocity).

- **Parameters**

 - \(dimension \) – native state dimension.
 - \(sv2 \) – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

forward\((x, dt, do_normalization=True) \)

Integrate native state \(x \) over time interval \(dt \).

- **Parameters**

 - \(x \) – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of \(x \) being augmented with process noise parameters.
 - \(dt \) – time interval to integrate over. do_normalization: whether to perform normalization on output, e.g., mod’ing angles into an interval. Has no effect for this subclass.

- **Returns** Native state \(x \) integrated \(dt \) into the future.

mean2pv\((x) \)

Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.
Parameters x – native state estimate mean.

Returns PV state estimate mean.

$\text{cov2pv}(P)$

Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters P – native state estimate covariance.

Returns PV state estimate covariance.

$\text{jacobian}(dt)$

Compute and return cached native state transition Jacobian (F) over time interval dt.

Parameters dt – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

abstract $\text{process_noise_cov}(dt=0.0)$

Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class Ncv(dimension, sa2)

NCV (Nearly-Constant Velocity) dynamic model. May be subclassed, e.g., with CWNA (Continuous White Noise Acceleration) or DWNA (Discrete White Noise Acceleration).

Parameters

- dimension – native state dimension.
- sa2 – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

$\text{forward}(x, dt, do_normalization=True)$

Integrate native state x over time interval dt.

Parameters

- x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of x being augmented with process noise parameters.
- dt – time interval to integrate over.
- $do_normalization$ – whether to perform normalization on output, e.g., mod’ing angles into an interval. Has no effect for this subclass.

Returns Native state x integrated dt into the future.

$\text{mean2pv}(x)$

Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters x – native state estimate mean.

Returns PV state estimate mean.

$\text{cov2pv}(P)$

Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters P – native state estimate covariance.
Returns PV state estimate covariance.

jacobian(dt)

Compute and return cached native state transition Jacobian (F) over time interval dt.

Parameters dt – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

abstract process_noise_cov(dt=0.0)

Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcpContinuous(dimension, sv2)

NCP (Nearly-Constant Position) dynamic model with CWNV (Continuous White Noise Velocity).

Parameters

• dimension – native state dimension.
• sv2 – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

process_noise_cov(dt=0.0)

Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcvContinuous(dimension, sa2)

NCV (Nearly-Constant Velocity) dynamic model with CWNA (Continuous White Noise Acceleration).

Parameters

• dimension – native state dimension.
• sa2 – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

process_noise_cov(dt=0.0)

Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcpDiscrete(dimension, sv2)

NCP (Nearly-Constant Position) dynamic model with DWNV (Discrete White Noise Velocity).

Parameters

• dimension – native state dimension.
• **sv2** – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.


```python
process_noise_cov(dt=0.0)
```

Compute and return cached process noise covariance (Q).

Parameters
- `dt` – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

```python
class NcvDiscrete(dimension, sa2)
```

NCV (Nearly-Constant Velocity) dynamic model with DWNA (Discrete White Noise Acceleration).

Parameters
- `dimension` – native state dimension.
- `sa2` – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.


```python
process_noise_cov(dt=0.0)
```

Compute and return cached process noise covariance (Q).

Parameters
- `dt` – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF). (Note that this Q, modulo numerical error, has rank `dimension/2`. So, it is only positive semi-definite.)

25.4 Extended Kalman Filter

```python
class EKFState(dynamic_model, mean, cov, time=None, frame_num=None)
```

State-Centric EKF (Extended Kalman Filter) for use with either an NCP (Nearly-Constant Position) or NCV (Nearly-Constant Velocity) target dynamic model. Stores a target dynamic model, state estimate, and state time. Incoming `Measurement` provide sensor information for updates.

Warning: For efficiency, the dynamic model is only shallow-copied. Make a deep copy outside as necessary to protect against unexpected changes.

Parameters
- `dynamic_model` – target dynamic model.
- `mean` – mean of target state estimate.
- `cov` – covariance of target state estimate.
- `time` – time of state estimate.

property dynamic_model
Dynamic model access.
property dimension
Native state dimension access.

property mean
Native state estimate mean access.

property cov
Native state estimate covariance access.

property dimension_pv
PV state dimension access.

mean_pv()
Compute and return cached PV state estimate mean.

cov_pv()
Compute and return cached PV state estimate covariance.

property time
Continuous State time access.

property frame_num
Discrete State time access.

predict(dt=None, destination_time=None, destination_frame_num=None)
Use dynamic model to predict (aka propagate aka integrate) state estimate in-place.

Parameters

- **dt** – time to integrate over. The state time will be automatically incremented this amount unless you provide destination_time. Using destination_time may be preferable for prevention of roundoff error accumulation.

- **destination_time** – optional value to set continuous state time to after integration. If this is not provided, then destination_frame_num must be.

- **destination_frame_num** – optional value to set discrete state time to after integration. If this is not provided, then destination_frame_num must be.

innovation(measurement)
Compute and return the innovation that a measurement would induce if it were used for an update, but don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for computing Chi^2 stats and likelihoods.

Parameters

- **measurement** – measurement

Returns
Innovation mean and covariance of hypothetical update.

Return type
tuple(torch.Tensor, torch.Tensor)

log_likelihood_of_update(measurement)
Compute and return the likelihood of a potential update, but don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for gating and calculating costs in assignment problems for data association.

Param
measurement.

Returns
Likelihood of hypothetical update.

update(measurement)
Use measurement to update state estimate in-place and return innovation. The innovation is useful, e.g., for evaluating filter consistency or updating model likelihoods when the EKFState is part of an IMMState.

Param
measurement.
25.5 Hashing

class LSH(radius)

Implements locality-sensitive hashing for low-dimensional euclidean space.

Allows to efficiently find neighbours of a point. Provides 2 guarantees:

- Difference between coordinates of points not returned by `nearby()` and input point is larger than `radius`.
- Difference between coordinates of points returned by `nearby()` and input point is smaller than 2 `radius`.

Example:

```python
>>> radius = 1
>>> lsh = LSH(radius)
>>> a = torch.tensor([-0.51, -0.51])  # hash(a)=(-1,-1)
>>> b = torch.tensor([-0.49, -0.49])  # hash(a)=(0,0)
>>> c = torch.tensor([1.0, 1.0])      # hash(b)=(1,1)
>>> lsh.add('a', a)
>>> lsh.add('b', b)
>>> lsh.add('c', c)
>>> # even though c is within 2radius of a
>>> lsh.nearby('a')
{ 'b'
}  # lsh.nearby('b')
{ 'a', 'c'
}  # lsh.remove('b')
>>> lsh.nearby('a')
set()
```

Parameters

- `radius (float)` – Scaling parameter used in hash function. Determines the size of the neighbourhood.

- `add(key, point)`
 Adds (key, point) pair to the hash.

 Parameters

 - `key` – Key used to identify point.
 - `point (torch.Tensor)` – Data, should be detached and on cpu.

- `remove(key)`
 Removes key and corresponding point from the hash.

 Raises `KeyError` if key is not in hash.

 Parameters

 - `key` – Key used to identify point.

- `nearby(key)`
 Returns a set of keys which are neighbours of the point identified by `key`.

 Two points are nearby if difference of each element of their hashes is smaller than 2. In euclidean space, this corresponds to all points \(p \) where \(|p_k - (p_{\text{key}})_k| < r \), and some points (all points not guaranteed) where \(|p_k - (p_{\text{key}})_k| < 2r \).
Parameters key – key used to identify input point.

Returns a set of keys identifying neighbours of the input point.

Return type set

class ApproxSet(radius)
Queries low-dimensional euclidean space for approximate occupancy.

Parameters radius (float) – scaling parameter used in hash function. Determines the size of the bin. See LSH for details.

try_add(point)
Attempts to add point to set. Only adds there are no points in the point’s bin.

Parameters point (torch.Tensor) – Point to be queried, should be detached and on cpu.

Returns True if point is successfully added, False if there is already a point in point’s bin.

Return type bool

merge_points(points, radius)
Greedyly merge points that are closer than given radius.

This uses LSH to achieve complexity that is linear in the number of merged clusters and quadratic in the size of the largest merged cluster.

Parameters

• points (torch.Tensor) – A tensor of shape (K,D) where K is the number of points and D is the number of dimensions.

• radius (float) – The minimum distance nearer than which points will be merged.

Returns A tuple (merged_points, groups) where merged_points is a tensor of shape (J,D) where J <= K, and groups is a list of tuples of indices mapping merged points to original points. Note that len(groups) == J and sum(len(group) for group in groups) == K.

Return type tuple

25.6 Measurements

class Measurement(mean, cov, time=None, frame_num=None)
Gaussian measurement interface.

Parameters

• mean – mean of measurement distribution.

• cov – covariance of measurement distribution.

• time – continuous time of measurement. If this is not provided, frame_num must be.

• frame_num – discrete time of measurement. If this is not provided, time must be.

property dimension
Measurement space dimension access.

property mean
Measurement mean (z in most Kalman Filtering literature).

property cov
Noise covariance (R in most Kalman Filtering literature).
property time
Continuous time of measurement.

property frame_num
Discrete time of measurement.

def geodesic_difference(z1, z0):
 Compute and return the geodesic difference between 2 measurements. This is a generalization of the Euclidean operation \(z_1 - z_0 \).

 Parameters
 • z1 – measurement.
 • z0 – measurement.

 Returns Geodesic difference between \(z_1 \) and \(z_2 \).

class DifferentiableMeasurement(mean, cov, time=None, frame_num=None)
Interface for Gaussian measurement for which Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

 abstract jacobian(x=None)
 Compute and return Jacobian (H) of measurement map (h) at target PV state \(x \).

 Parameters x – PV state. Use default argument None when the Jacobian is not state-dependent.

 Returns Read-only Jacobian (H) of measurement map (h).

class PositionMeasurement(mean, cov, time=None, frame_num=None)
Full-rank Gaussian position measurement in Euclidean space.

 Parameters
 • mean – mean of measurement distribution.
 • cov – covariance of measurement distribution.
 • time – time of measurement.

 jacobian(x=None)
 Compute and return Jacobian (H) of measurement map (h) at target PV state \(x \).

 Parameters x – PV state. The default argument None may be used in this subclass since the Jacobian is not state-dependent.

 Returns Read-only Jacobian (H) of measurement map (h).
• genindex
• search
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyro.contrib.autoname</td>
<td>237</td>
</tr>
<tr>
<td>pyro.contrib.autoname.named</td>
<td>240</td>
</tr>
<tr>
<td>pyro.contrib.autoname.scoping</td>
<td>242</td>
</tr>
<tr>
<td>pyro.contrib.bnn</td>
<td>245</td>
</tr>
<tr>
<td>pyro.contrib.bnn.hidden_layer</td>
<td>245</td>
</tr>
<tr>
<td>pyro.contrib.cevae</td>
<td>247</td>
</tr>
<tr>
<td>pyro.contrib.easyguide</td>
<td>255</td>
</tr>
<tr>
<td>pyro.contrib.epidemiology</td>
<td>259</td>
</tr>
<tr>
<td>pyro.contrib.epidemiology.compartmental</td>
<td>259</td>
</tr>
<tr>
<td>pyro.contrib.epidemiology.distributions</td>
<td>271</td>
</tr>
<tr>
<td>pyro.contrib.epidemiology.models</td>
<td>264</td>
</tr>
<tr>
<td>pyro.contrib.examples.bart</td>
<td>275</td>
</tr>
<tr>
<td>pyro.contrib.examples.multi_mnist</td>
<td>275</td>
</tr>
<tr>
<td>pyro.contrib.examples.nextstrain</td>
<td>276</td>
</tr>
<tr>
<td>pyro.contrib.examples.util</td>
<td>276</td>
</tr>
<tr>
<td>pyro.contrib.forecast</td>
<td>277</td>
</tr>
<tr>
<td>pyro.contrib.forecast.evaluate</td>
<td>281</td>
</tr>
<tr>
<td>pyro.contrib.forecast.forecaster</td>
<td>277</td>
</tr>
<tr>
<td>pyro.contrib.funsor</td>
<td>283</td>
</tr>
<tr>
<td>pyro.contrib.funsor.handlers</td>
<td>289</td>
</tr>
<tr>
<td>pyro.contrib.funsor.handlers.named_messenger</td>
<td>292</td>
</tr>
<tr>
<td>pyro.contrib.funsor.handlers.primitives</td>
<td>292</td>
</tr>
<tr>
<td>pyro.contrib.funsor.handlers.runtime</td>
<td>293</td>
</tr>
<tr>
<td>pyro.contrib.funsor.infer.elbo</td>
<td>294</td>
</tr>
<tr>
<td>pyro.contrib.funsor.infer.trace_elbo</td>
<td>294</td>
</tr>
<tr>
<td>pyro.contrib.funsor.infer.traceenum_elbo</td>
<td>294</td>
</tr>
<tr>
<td>pyro.contrib.funsor.infer.tracetmc_elbo</td>
<td>295</td>
</tr>
<tr>
<td>pyro.contrib.gp</td>
<td>297</td>
</tr>
<tr>
<td>pyro.contrib.gp.kernels</td>
<td>309</td>
</tr>
<tr>
<td>pyro.contrib.gp.likelihoods</td>
<td>317</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpvm</td>
<td>308</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpr</td>
<td>301</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.model</td>
<td>298</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.sgpr</td>
<td>303</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vgp</td>
<td>305</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vsgp</td>
<td>306</td>
</tr>
<tr>
<td>pyro.contrib.gp.parameterized</td>
<td>320</td>
</tr>
<tr>
<td>pyro.contrib.gp.util</td>
<td>321</td>
</tr>
<tr>
<td>pyro.contrib.minipyro</td>
<td>323</td>
</tr>
<tr>
<td>pyro.contrib.mue</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.dataloaders</td>
<td>330</td>
</tr>
<tr>
<td>pyro.contrib.mue.missingdata_hmm</td>
<td>329</td>
</tr>
<tr>
<td>pyro.contrib.mue.models</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.statearrangers</td>
<td>328</td>
</tr>
<tr>
<td>pyro.contrib.oed</td>
<td>333</td>
</tr>
<tr>
<td>pyro.contrib.oed.eig</td>
<td>334</td>
</tr>
<tr>
<td>pyro.contrib.oed.glmm</td>
<td>340</td>
</tr>
<tr>
<td>pyro.contrib.randomvariable</td>
<td>341</td>
</tr>
<tr>
<td>pyro.contrib.timeseries</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.base</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.gp</td>
<td>344</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssm</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssmgp</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.tracking</td>
<td>351</td>
</tr>
<tr>
<td>pyro.contrib.tracking.assignment</td>
<td>351</td>
</tr>
<tr>
<td>pyro.contrib.tracking.distributions</td>
<td>353</td>
</tr>
<tr>
<td>pyro.contrib.tracking.dynamic_models</td>
<td>354</td>
</tr>
<tr>
<td>pyro.contrib.tracking.extended_kalman_filter</td>
<td>358</td>
</tr>
<tr>
<td>pyro.contrib.tracking.hashing</td>
<td>360</td>
</tr>
<tr>
<td>pyro.contrib.tracking.measurements</td>
<td>361</td>
</tr>
<tr>
<td>pyro.distributions.constraints</td>
<td>159</td>
</tr>
<tr>
<td>pyro.distributions.testing.gof</td>
<td>233</td>
</tr>
<tr>
<td>pyro.distributions.torch</td>
<td>67</td>
</tr>
<tr>
<td>pyro.infer.abstract_infer</td>
<td>26</td>
</tr>
<tr>
<td>pyro.infer.autoguide</td>
<td>37</td>
</tr>
<tr>
<td>pyro.infer.autoguide.initialization</td>
<td>54</td>
</tr>
<tr>
<td>pyro.infer.discrete</td>
<td>24</td>
</tr>
<tr>
<td>pyro.infer.elbo</td>
<td>10</td>
</tr>
<tr>
<td>pyro.infer.energy_distance</td>
<td>23</td>
</tr>
<tr>
<td>pyro.infer.importance</td>
<td>17</td>
</tr>
<tr>
<td>pyro.infer.inspect</td>
<td>64</td>
</tr>
<tr>
<td>pyro.infer.predictive</td>
<td>25</td>
</tr>
<tr>
<td>pyro.infer.renyi_elbo</td>
<td>15</td>
</tr>
<tr>
<td>pyro.infer.reparam</td>
<td>55</td>
</tr>
<tr>
<td>pyro.infer.reparam.conjugate</td>
<td>57</td>
</tr>
<tr>
<td>pyro.infer.reparam.discrete_cosine</td>
<td>58</td>
</tr>
<tr>
<td>pyro.infer.reparam.haar</td>
<td>59</td>
</tr>
<tr>
<td>pyro.infer.reparam.hmm</td>
<td>61</td>
</tr>
<tr>
<td>pyro.infer.reparam.loc_scale</td>
<td>57</td>
</tr>
<tr>
<td>pyro.infer.reparam.neutra</td>
<td>62</td>
</tr>
<tr>
<td>pyro.infer.reparam.projected_normal</td>
<td>61</td>
</tr>
</tbody>
</table>
Symbols

_CorrMatrix (class in pyro.distributions.constraints), 160
_Integer (class in pyro.distributions.constraints), 160
_OrderedVector (class in pyro.distributions.constraints), 161
_PositiveOrderedVector (class in pyro.distributions.constraints), 162
_SoftplusLowerCholesky (class in pyro.distributions.constraints), 162
_SoftplusPositive (class in pyro.distributions.constraints), 162
_Sphere (class in pyro.distributions.constraints), 163
_UnitLowerCholesky (class in pyro.distributions.constraints), 163
__add__ () (AffineNormal method), 225
__add__ () (Gaussian method), 223
__call__ () (Adam method), 323
__call__ () (CoalescentRateLikelihood method), 273
__call__ () (EnergyDistance method), 23
__call__ () (Forecaster method), 279
__call__ () (GuideMessenger method), 209
__call__ () (HMCForecaster method), 280
__call__ () (HorovodOptimizer method), 182
__call__ () (JitTrace_ELBO method), 323
__call__ () (Messenger method), 323
__call__ () (PyroLScheduler method), 180
__call__ () (PyroOptim method), 179
__call__ () (Reparam method), 55
__call__ () (Strategy method), 55
__call__ () (TorchDistributionMixin method), 75
__getitem__ () (AffineNormal method), 225
__getitem__ () (Gaussian method), 223

A

Adadelta() (in module pyro.optim.pytorch_optimizers), 182
Adagrad() (in module pyro.optim.pytorch_optimizers), 182
AdagradRMSProp (class in pyro.optim.adagrad_rmsprop), 180
Adam (class in pyro.contrib.minipyro), 323
Adam() (in module pyro.optim.pytorch_optimizers), 182
Adamax() (in module pyro.optim.pytorch_optimizers), 182
AdamW() (in module pyro.optim.pytorch_optimizers), 182
add() (AutoGuideList method), 38
add() (List method), 242
add() (LSH method), 360
add_edge() (Trace method), 194
add_module() (PyroModule method), 172
add_node() (Trace method), 194
affine_autoregressive() (in module pyro.distributions.transforms), 151
affine_coupling() (in module pyro.distributions.transforms), 151
AffineAutoregressive (class in pyro.distributions.transforms), 123
AffineBeta (class in pyro.distributions), 78
AffineCoupling (class in pyro.distributions.transforms), 124
AffineNormal (class in pyro.ops.gaussian), 224
all_escape() (in module pyro.poutine.util), 197
allocate() (DimStack method), 293
am_i_wrapped() (in module pyro.poutine.runtime), 196
append() (AutoGuideList method), 38
append() (FullyConnected method), 251
apply() (ConjugateReparam method), 57
apply() (GumbelSoftmaxReparam method), 58
apply() (LatentStableReparam method), 60
apply() (LinearHMMReparam method), 61
apply() (LocScaleReparam method), 58
apply() (NeuTraReparam method), 62
apply() (ProjectedNormalReparam method), 61
apply() (Reparam method), 55
apply() (SplitReparam method), 62
apply() (StableReparam method), 61
apply() (StructuredReparam method), 63
apply() (StudentTReparam method), 60
apply() (SymmetricStableReparam method), 60
apply() (TransformReparam method), 58
apply() (UnitJacobianReparam method), 59
apply_optimizer() (in module pyro.contrib.funsor.infer.traceenum_elbo), 294
apply_stack() (in module pyro.contrib.minipyro), 323
apply_stack() (in module pyro.poutine.runtime), 196
approx_log_prob_tol (BetaBinomial attribute), 80
ApproxSet (class in pyro.contrib.tracking.hashing), 361
arg_constraints (AffineBeta attribute), 78
arg_constraints (AsymmetricLaplace attribute), 79
arg_constraints (AVFMultivariateNormal attribute), 80
arg_constraints (BetaBinomial attribute), 80
arg_constraints (CoalescentTimes attribute), 81
arg_constraints (CoalescentTimesWithRate attribute), 82
arg_constraints (Delta attribute), 83
arg_constraints (DirichletMultinomial attribute), 83
arg_constraints (DiscreteHMM attribute), 84
arg_constraints (Empirical attribute), 85
arg_constraints (ExtendedBetaBinomial attribute), 86
arg_constraints (ExtendedBinomial attribute), 86
arg_constraints (GammaGaussianHMM attribute), 88
arg_constraints (GammaPoisson attribute), 89
arg_constraints (GaussianHMM attribute), 90
arg_constraints (GaussianMRF attribute), 91
arg_constraints (GaussianScaleMixture attribute), 92
arg_constraints (ImproperUniform attribute), 93
arg_constraints (IndependentHMM attribute), 94
arg_constraints (InverseGamma attribute), 94
arg_constraints (LinearHMM attribute), 95
arg_constraints (LKJ attribute), 96
arg_constraints (Logistic attribute), 97
arg_constraints (MaskedDistribution attribute), 97
arg_constraints (MaskedMixture attribute), 98
arg_constraints (MixtureOfDiagNormals attribute), 99
arg_constraints (MixtureOfDiagNormalsSharedCovariance attribute), 99
arg_constraints (MultivariateStudentT attribute), 100
arg_constraints (OMTMultivariateNormal attribute), 100
arg_constraints (OneOneMatching attribute), 101
arg_constraints (OneTwoMatching attribute), 102
arg_constraints (OrderedLogistic attribute), 103
arg_constraints (ProjectedNormal attribute), 104
arg_constraints (Rejector attribute), 105
arg_constraints (SineBivariateVonMises attribute), 107
arg_constraints (SineSkewed attribute), 108
arg_constraints (SkewLogistic attribute), 109
arg_constraints (SoftAsymmetricLaplace attribute), 110
arg_constraints (SoftLaplace attribute), 111
arg_constraints (SpanningTree attribute), 112
arg_constraints (Stable attribute), 113
arg_constraints (TruncatedPolyaGamma attribute), 114
arg_constraints (Unit attribute), 114
arg_constraints (VonMises3D attribute), 115
arg_constraints (ZeroInflatedDistribution attribute), 115
arg_constraints (ZeroInflatedNegativeBinomial attribute), 116
as_complex() (in module pyro.ops.tensor_utils), 216
ASGD() (in module pyro.optim.pytorch_optimizers), 182
AsymmetricLaplace (class in pyro.distributions), 79
auto_goodness_of_fit() (in module pyro.distributions.testing.goj), 234
AutoCallable (class in pyro.infer.autoguide), 39
AutoContinuous (class in pyro.infer.autoguide), 41
autocorrelation() (in module pyro.ops.stats), 226
autocovariance() (in module pyro.ops.stats), 226
AutoDelta (class in pyro.infer.autoguide), 40
AutoDiagonalNormal (class in pyro.infer.autoguide), 44
AutoDiscreteParallel (class in pyro.infer.autoguide), 47
AutoGaussian (class in pyro.infer.autoguide), 49
AutoGuide (class in pyro.infer.autoguide), 37
autoguide() (Parameterized method), 297, 320
AutoGuideList (class in pyro.infer.autoguide), 38
AutoHierarchicalNormalMessenger (class in pyro.infer.autoguide), 52
AutoIAFNormal (class in pyro.infer.autoguide), 45
AutoLaplaceApproximation (class in pyro.infer.autoguide), 46
AutoLowRankMultivariateNormal (class in pyro.infer.autoguide), 44
AutoMessenger (class in pyro.infer.autoguide), 50
AutoMultivariateNormal (class in pyro.infer.autoguide), 43
autoname() (in module pyro.contrib.autoname), 238
AutoNormal (class in pyro.infer.autoguide), 39
AutoNormalizingFlow (class in pyro.infer.autoguide), 45
AutoNormalMessenger (class in pyro.infer.autoguide), 50
autoregressive (AffineAutoregressive attribute), 124
autoregressive (BlockAutoregressive attribute), 127
autoregressive (NeuralAutoregressive attribute), 143
autoregressive (Polynomial attribute), 144
autoregressive (SplineAutoregressive attribute), 147
AutoRegressiveMessenger (class in pyro.infer.autoguide), 53
AutoRegressiveNN (class in pyro.nn.auto_reg_nn), 174
AutoReparam (class in pyro.infer.reparam.strategies), 56
AutoStructured (class in pyro.infer.reparam), 47
AVFMultivariateNormal (class in pyro.distributions), 79

bijective (NeuralAutoregressive attribute), 143
bijective (Normalize attribute), 120
bijective (OrderedTransform attribute), 120
bijective (Permute attribute), 121
bijective (Planar attribute), 143
bijective (Polynomial attribute), 144
bijective (PositivePowerTransform attribute), 122
bijective (Radial attribute), 145
bijective (SoftplusTransform attribute), 122
bijective (Spline attribute), 146
bijective (SplineAutoregressive attribute), 147
bijective (SplineCoupling attribute), 149
bijective (Sylvester attribute), 149
Binary (class in pyro.contrib.gp.likelihoods), 317
Binomial (class in pyro.distributions), 67
binomial_dist() (in module pyro.contrib.epidemiology.distributions), 272
BiosequenceDataset (class in pyro.contrib.mue.dataloaders), 330
block (class in pyro.contrib.minipyro), 323
block() (in module pyro.poutine.handlers), 186
block_autoregressive() (in module pyro.distributions.transforms), 152
block_diag_embed() (in module pyro.ops.tensor_utils), 216
block_diagonal() (in module pyro.ops.tensor_utils), 216
block_messengers() (in module pyro.poutine.messenger), 199
block_plate() (in module pyro.poutine.plate_messenger), 205
BlockAutoregressive (class in pyro.distributions.transforms), 127
BlockMassMatrix (class in pyro.infer.mcmc), 34
BlockMessenger (class in pyro.poutine.broadcast_messenger), 199
broadcast() (in module pyro.poutine.handlers), 187
BroadcastMessenger (class in pyro.poutine.broadcast_messenger), 200
Brownian (class in pyro.contrib.gp.kernels), 310

C
call() (AutoGuide method), 37
call() (AutoMessenger method), 50
call() (Predictive method), 25
cat() (Gaussian static method), 223
Categorical (class in pyro.distributions), 67
Cauchy (class in pyro.distributions), 68
cdf() (Logistic method), 97
cdf() (SkewLogistic method), 109
cdf() (SoftLaplace method), 111
CEVAE (class in pyro.contrib.cevae), 247
Chi2 (class in pyro.distributions), 68
cholesky() (in module pyro.ops.tensor_utils), 218
cholesky_solve() (in module pyro.ops.tensor_utils), 218
CholeskyTransform (class in pyro.distributions.transforms), 117
cleanup() (HMC method), 32
cleanup() (MCMCKernel method), 30
clear() (in module pyro.nn.module), 173
clear() (ParamStoreDict method), 165
clear_cache() (ConditionalTransformedDistribution method), 82
clear_cache() (HMC method), 32
clear_param_store() (in module pyro.contrib.funsor), 283
clear_param_store() (in module pyro.primitives), 3
ClippedAdam (class in pyro.optim.clipped_adam), 181
ClippedAdam() (in module pyro.optim.optim), 180
CoalescentRateLikelihood (class in pyro.distributions), 273
CoalescentTimes (class in pyro.distributions), 81
CoalescentTimesWithRate (class in pyro.distributions), 81
codomain (AffineAutoregressive attribute), 124
codomain (AffineCoupling property), 125
codomain (BatchNorm attribute), 126
codomain (BlockAutoregressive attribute), 127
codomain (CholeskyTransform attribute), 117
codomain (ConditionalAffineAutoregressive attribute), 129
codomain (ConditionalAffineCoupling attribute), 130
codomain (ConditionalGeneralizedChannelPermute attribute), 131
codomain (ConditionalHouseholder attribute), 132
codomain (ConditionalMatrixExponential attribute), 134
codomain (ConditionalNeuralAutoregressive attribute), 135
codomain (ConditionalPlanar attribute), 135
codomain (ConditionalRadial attribute), 136
codomain (ConditionalSpline attribute), 138
codomain (ConditionalSplineAutoregressive attribute), 139
codomain (CorrLCholeskyTransform attribute), 117
codomain (CorrMatrixCholeskyTransform attribute), 118
codomain (DiscreteCosineTransform property), 118
codomain (ELUTransform attribute), 118
codomain (GeneralizedChannelPermute attribute), 140
codomain (HaarTransform property), 119
codomain (Householder attribute), 141
codomain (LeakyReLUTransform attribute), 119
codomain (LowerCholeskyAffine attribute), 120
codomain (MatrixExponential attribute), 142
codomain (NeuralAutoregressive attribute), 143
codomain (Normalize attribute), 120
codomain (OrderedTransform attribute), 120
codomain (Permute property), 121
codomain (Planar attribute), 143
codomain (Polynomial attribute), 145
codomain (PositivePowerTransform attribute), 122
codomain (Radial attribute), 145
codomain (SoftplusLowerCholeskyTransform attribute), 122
codomain (SoftplusTransform attribute), 122
codomain (Spline attribute), 146
codomain (SplineAutoregressive attribute), 147
codomain (SplineCoupling attribute), 149
codomain (Sylvester attribute), 149
codomain (TransformModule attribute), 150
codomain (UnitLowerCholeskyTransform attribute), 123
collapse() (in module pyro.poutine.handlers), 187
CollapseMessenger (class in pyro.poutine-collapse_messenger), 201
Combination (class in pyro.contrib.gp.kernels), 310
CompartmentalModel (class in pyro.contrib.epidemiology.compartmental), 259
ComposeTransformModule (class in pyro.distributions), 150
compute_flows() (CompartmentalModel method), 261
compute_log_prob() (Trace method), 194
compute marginals() (in module pyro.contrib.tracking.assignment), 353
compute marginals() (TraceEnum_ELBO method), 13
compute marginals_bp() (in module pyro.contrib.tracking.assignment), 353
compute marginals Persistent() (in module pyro.contrib.tracking.assignment), 353
compute marginals Persistent_bp() (in module pyro.contrib.tracking.assignment), 353
compute_score_parts() (Trace method), 194
concentration (DirichletMultinomial property), 83
concentration (GammaPoisson property), 89
concentration (InverseGamma property), 94
concentration@ (AffineBeta property), 78
concentration@ (BetaBinomial property), 80
concentration1 (AffineBeta property), 78
concentration1 (BetaBinomial property), 80
CondIndepStackFrame (class in pyro.poutine.indep_messenger), 203
condition() (AffineNormal method), 224
condition() (ConditionalAffineAutoregressive method), 129
condition() (ConditionalAffineCoupling method), 130
condition() (ConditionalDistribution method), 82
<table>
<thead>
<tr>
<th>Class</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition() (ConditionalGeneralizedChannelPermute method)</td>
<td>pyro.distributions.transforms</td>
<td>131</td>
</tr>
<tr>
<td>condition() (ConditionalHouseholder method)</td>
<td>pyro.distributions.transforms</td>
<td>132</td>
</tr>
<tr>
<td>condition() (ConditionalMatrixExponential method)</td>
<td>pyro.distributions.transforms</td>
<td>134</td>
</tr>
<tr>
<td>condition() (ConditionalNeuralAutoregressive method)</td>
<td>pyro.distributions.transforms</td>
<td>135</td>
</tr>
<tr>
<td>condition() (ConditionalPlanar method)</td>
<td>pyro.distributions.transforms</td>
<td>135</td>
</tr>
<tr>
<td>condition() (ConditionalRadial method)</td>
<td>pyro.distributions.transforms</td>
<td>136</td>
</tr>
<tr>
<td>condition() (ConditionalSpline method)</td>
<td>pyro.distributions.transforms</td>
<td>138</td>
</tr>
<tr>
<td>condition() (ConditionalSplineAutoregressive method)</td>
<td>pyro.distributions.transforms</td>
<td>139</td>
</tr>
<tr>
<td>condition() (ConditionalTransform method)</td>
<td>pyro.distributions.transforms</td>
<td>117</td>
</tr>
<tr>
<td>condition() (ConditionalTransformedDistribution method)</td>
<td>pyro.distributions.transforms</td>
<td>82</td>
</tr>
<tr>
<td>condition() (Gaussian method)</td>
<td>pyro.distributions.transforms</td>
<td>223</td>
</tr>
<tr>
<td>condition() (in module pyro.contrib.funsor)</td>
<td>pyro.contrib.funsor</td>
<td>283</td>
</tr>
<tr>
<td>condition() (in module pyro.poutine.handlers)</td>
<td>pyro.poutine.handlers</td>
<td>187</td>
</tr>
<tr>
<td>conditional() (in module pyro.contrib.gp.util)</td>
<td>pyro.contrib.gp.util</td>
<td>321</td>
</tr>
<tr>
<td>conditional_affine_autoregressive() (in module</td>
<td>pyro.distributions.transforms</td>
<td>152</td>
</tr>
<tr>
<td>conditional_affine_coupling() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>153</td>
</tr>
<tr>
<td>conditional_generalized_channel_permute() (in module</td>
<td>pyro.distributions.transforms</td>
<td>153</td>
</tr>
<tr>
<td>conditional_householder() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>153</td>
</tr>
<tr>
<td>conditional_matrix_exponential() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>154</td>
</tr>
<tr>
<td>conditional_neural_autoregressive() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>154</td>
</tr>
<tr>
<td>conditional_planar() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>155</td>
</tr>
<tr>
<td>conditional_radial() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>155</td>
</tr>
<tr>
<td>conditional_spline() (in module pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>155</td>
</tr>
<tr>
<td>conditional_spline_autoregressive() (in module</td>
<td>pyro.distributions.transforms</td>
<td>156</td>
</tr>
<tr>
<td>ConditionalAffineAutoregressive (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>128</td>
</tr>
<tr>
<td>ConditionalAffineCoupling (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>128</td>
</tr>
<tr>
<td>ConditionalAutoRegressiveNN (class in pyro.nn.auto_reg_nn)</td>
<td>pyro.nn.auto_reg_nn</td>
<td>175</td>
</tr>
<tr>
<td>ConditionalDenseNN (class in pyro.nn.dense_nn)</td>
<td>pyro.nn.dense_nn</td>
<td>176</td>
</tr>
<tr>
<td>ConditionalDistribution (class in pyro.distributions)</td>
<td>pyro.distributions</td>
<td>82</td>
</tr>
<tr>
<td>ConditionalGeneralizedChannelPermute (class in</td>
<td>pyro.distributions.transforms</td>
<td>130</td>
</tr>
<tr>
<td>ConditionalHouseholder (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>132</td>
</tr>
<tr>
<td>ConditionalMatrixExponential (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>133</td>
</tr>
<tr>
<td>ConditionalNeuralAutoregressive (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>135</td>
</tr>
<tr>
<td>ConditionalPlanar (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>136</td>
</tr>
<tr>
<td>ConditionalRadial (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>136</td>
</tr>
<tr>
<td>ConditionalSpline (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>137</td>
</tr>
<tr>
<td>ConditionalSplineAutoregressive (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>138</td>
</tr>
<tr>
<td>ConditionalTransform (class in pyro.distributions)</td>
<td>pyro.distributions</td>
<td>117</td>
</tr>
<tr>
<td>ConditionalTransformedDistribution (class in pyro.distributions)</td>
<td>pyro.distributions</td>
<td>82</td>
</tr>
<tr>
<td>ConditionMessenger (class in pyro.poutine.condition_messenger)</td>
<td>pyro.poutine.condition_messenger</td>
<td>191</td>
</tr>
<tr>
<td>configure() (AutoReparam method)</td>
<td>pyro.infer.enum</td>
<td>56</td>
</tr>
<tr>
<td>configure() (BlockMassMatrix method)</td>
<td>pyro.infer.enum</td>
<td>34</td>
</tr>
<tr>
<td>configure() (MinimalReparam method)</td>
<td>pyro.infer.enum</td>
<td>56</td>
</tr>
<tr>
<td>configure() (Strategy method)</td>
<td>pyro.infer.enum</td>
<td>55</td>
</tr>
<tr>
<td>conjugate_update() (Distribution method)</td>
<td>pyro.poutine.handlers</td>
<td>73</td>
</tr>
<tr>
<td>conjugate_update() (GaussianHMM method)</td>
<td>pyro.poutine.handlers</td>
<td>90</td>
</tr>
<tr>
<td>conjugate_update() (MaskedDistribution method)</td>
<td>pyro.poutine.handlers</td>
<td>97</td>
</tr>
<tr>
<td>ConjugateReparam (class in pyro.infer.reparam.conjugate)</td>
<td>pyro.poutine.handlers</td>
<td>57</td>
</tr>
<tr>
<td>Constant (class in pyro.contrib.gp.kernels)</td>
<td>pyro.contrib.gp.kernels</td>
<td>310</td>
</tr>
<tr>
<td>constrained_gamma (BatchNorm property)</td>
<td>pyro.optim.pytorch_optimizers</td>
<td>126</td>
</tr>
<tr>
<td>ContinuousBernoulli (class in pyro.distributions)</td>
<td>pyro.optim.pytorch_optimizers</td>
<td>68</td>
</tr>
<tr>
<td>contract() (in module pyro.ops.einsum)</td>
<td>pyro.ops.einsum</td>
<td>221</td>
</tr>
<tr>
<td>contract_expression() (in module pyro.ops.einsum)</td>
<td>pyro.ops.einsum</td>
<td>221</td>
</tr>
<tr>
<td>convolve() (in module pyro.ops.tensor_utils)</td>
<td>pyro.ops.tensor_utils</td>
<td>217</td>
</tr>
<tr>
<td>copy() (Trace method)</td>
<td>pyro.ops.trace_header</td>
<td>194</td>
</tr>
<tr>
<td>Coregionalize (class in pyro.contrib.gp.kernels)</td>
<td>pyro.contrib.gp.kernels</td>
<td>310</td>
</tr>
<tr>
<td>CorrCholeskyTransform (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>117</td>
</tr>
<tr>
<td>CorrMatrixCholeskyTransform (class in pyro.distributions.transforms)</td>
<td>pyro.distributions.transforms</td>
<td>118</td>
</tr>
<tr>
<td>Cosine (class in pyro.contrib.gp.kernels)</td>
<td>pyro.contrib.gp.kernels</td>
<td>311</td>
</tr>
<tr>
<td>CosineAnnealingLR() (in module pyro.optim.pytorch_optimizers)</td>
<td>pyro.optim.pytorch_optimizers</td>
<td>182</td>
</tr>
<tr>
<td>CosineAnnealingWarmRestarts() (in module pyro.optim.pytorch_optimizers)</td>
<td>pyro.optim.pytorch_optimizers</td>
<td>183</td>
</tr>
<tr>
<td>CountMeanStats (class in pyro.ops.streaming)</td>
<td>pyro.ops.streaming</td>
<td>230</td>
</tr>
<tr>
<td>CountMeanVarianceStats (class in pyro.ops.streaming)</td>
<td>pyro.ops.streaming</td>
<td>230</td>
</tr>
<tr>
<td>cov (EKFState property)</td>
<td>pyro.ops.streaming</td>
<td>359</td>
</tr>
<tr>
<td>cov (Measurement property)</td>
<td>pyro.ops.streaming</td>
<td>361</td>
</tr>
<tr>
<td>cov2pv() (DynamicModel method)</td>
<td>pyro.ops.streaming</td>
<td>355</td>
</tr>
<tr>
<td>cov2pv() (Ncp method)</td>
<td>pyro.ops.streaming</td>
<td>356</td>
</tr>
</tbody>
</table>
cov2pv() (Ncv method), 356
cov_pv() (EKFSate method), 359
covariance_matrix() (MultivariateStudentT method), 100
crps_empirical() (in module pyro.ops.stats), 228
current_read_env (DimStack property), 293
current_write_env (DimStack property), 293
CyclicLR() (in module pyro.optim.torch_optimizers), 183

D
dct() (in module pyro.ops.tensor_utils), 218
DCTAdam() (in module pyro.optim.torch_optimizers), 180
DEFAULT_FIRST_DIM (DimStack attribute), 293
default_process_message() (in module pyro.poutine.runtime), 196
Delta (class in pyro.distributions), 83
DenseNN (class in pyro.nn.dense_nn), 175
density_goodness_of_fit() (in module pyro.distributions.testing.gof), 234
DependentMaternGP (class in pyro.contrib.timeseries.gp), 346
detach_() (Trace method), 195
deterministic() (in module pyro.contrib.funsor), 283
deterministic() (in module pyro.primitives), 4
DiagNormalNet (class in pyro.contrib.cevae), 252
diagnostics() (HMC method), 32
diagnostics() (in module pyro.poutine.cevae), 36
diagnostics() (MCMC method), 29
diagnostics() (MCMCKernel method), 30
diagnostics() (StreamingMCMC method), 29
Dict (class in pyro.contrib.autoname.named), 242
differentiable_loss() (ELBO method), 294
differentiable_loss() (Elbo method), 294
differentiable_loss() (Jit_ELBO method), 294
differentiable_loss() (JitTrace_ELBO method), 11
differentiable_loss() (JitTraceEnum_ELBO method), 14
differentiable_loss() (JitTraceMeanField_ELBO method), 15
differentiable_loss() (Trace_ELBO method), 11, 294
differentiable_loss() (TraceEnum_ELBO method), 13, 294
differentiable_loss() (TraceMarkovEnum_ELBO method), 294
differentiable_loss() (TraceTMC ELBO method), 16, 295
DifferentiableDynamicModel (class in pyro.contrib.tracking.dynamic_models), 355
DifferentiableMeasurement (class in pyro.contrib.tracking.measurements), 362
dim() (Gaussian method), 223
dim_type (DimRequest property), 293
dimension (DynamicModel property), 354
dimension (EKFSate property), 358
dimension (Measurement property), 361
dimension_pv (DynamicModel property), 354
dimension_pv (EKFSate property), 359
DimRequest (class in pyro.contrib.funsor.handlers.runtime), 293
DimStack (class in pyro.contrib.funsor.handlers.runtime), 293
DimType (class in pyro.contrib.funsor.handlers.runtime), 293
Dirichlet (class in pyro.distributions), 68
DirichletMultinomial (class in pyro.distributions), 83
discrete_escape() (in module pyro.poutine.util), 197
DiscreteCosineReparam (class in pyro.infer.reparam.discrete_cosine), 58
DiscreteCosineTransform (class in pyro.distributions.transforms), 118
DiscreteHMM (class in pyro.distributions), 84
dist (RandomVariable property), 341
Distribution (class in pyro.distributions), 72
DistributionNet (class in pyro.contrib.cevae), 251
do() (in module pyro.contrib.funsor), 284
do() (in module pyro.poutine.handlers), 188
domain (AffineAutoregressive attribute), 124
domain (AffineCoupling property), 125
domain (BatchNorm attribute), 126
domain (BlockAutoregressive attribute), 127
domain (CholeskyTransform attribute), 117
domain (ConditionalAffineAutoregressive attribute), 129
domain (ConditionalAffineCoupling attribute), 130
domain (ConditionalGeneralizedChannelPermute attribute), 131
domain (ConditionalHouseholder attribute), 132
domain (ConditionalMatrixExponential attribute), 134
domain (ConditionalNeuralAutoregressive attribute), 135
domain (ConditionalPlanar attribute), 136
domain (ConditionalRadial attribute), 136
domain (ConditionalSpline attribute), 138
domain (ConditionalSplineAutoregressive attribute), 139
domain (CorrLCholeskyTransform attribute), 117
domain (CorrMatrixCholeskyTransform attribute), 118
domain (DiscreteCosineTransform property), 118
domain (ELUTransform attribute), 118
domain (GeneralizedChannelPermute attribute), 140
domain (HaarTransform property), 119
domain (Householder attribute), 141
domain (LeakyReLUTransform attribute), 119
domain (LowerCholeskyAffine attribute), 120
domain (MatrixExponential attribute), 142
domain (NeuralAutoregressive attribute), 143
domain (Normalize attribute), 120
domain (OrderedTransform attribute), 121
domain (Permute property), 121
fit_generalized_pareto() (in module pyro.ops.stats), 228
fit_mcmc() (CompartmentalModel method), 263
fit_svi() (CompartmentalModel method), 262
fit_svi() (FactorMuE method), 327
fit_svi() (ProfileHMM method), 325
folded_distribution() (class in pyro.distributions), 87
forecast() (DependentMaternGP method), 346
forecast() (GenericLGSSM method), 347
forecast() (GenericLGSSMWithGPNoiseModel method), 348
forecast() (IndependentMaternGP method), 344
forecast() (LinearlyCoupledMaternGP method), 345
forecast() (TimeSeriesModel method), 343
Forecaster (class in pyro.contrib.forecast.forecaster), 278
ForecastingModel (class in pyro.contrib.forecast.forecaster), 277
format_shapes() (Trace method), 195
forward() (AutoCallable method), 39
forward() (AutoContinuous method), 42
forward() (AutoDelta method), 41
forward() (AutoDiscreteParallel method), 47
forward() (AutoGaussian method), 49
forward() (AutoGuideList method), 38
forward() (AutoNormal method), 40
forward() (AutoRegressiveNN method), 174
forward() (AutoStructured method), 48
forward() (BernoulliNet method), 251
forward() (Binary method), 317
forward() (Brownian method), 310
forward() (ConditionalAutoRegressiveNN method), 176
forward() (ConditionalDenseNN method), 177
forward() (Constant method), 310
forward() (Coregionalize method), 311
forward() (Cosine method), 311
forward() (DenseNN method), 175
forward() (DiagNormalNet method), 253
forward() (DynamicModel method), 354
forward() (EasyGuide method), 255
forward() (Exponent method), 312
forward() (Exponential method), 312
forward() (ExponentialNet method), 251
forward() (Gaussian method), 318
forward() (GPLVM method), 309
forward() (GPModel method), 300
forward() (GPRegression method), 302
forward() (Guide method), 250
forward() (Kernel method), 309
forward() (LaplaceNet method), 252
forward() (Likelihood method), 317
forward() (Linear method), 312
forward() (Matern32 method), 313
forward() (Matern52 method), 313

f
factor() (in module pyro.contrib.funsor), 285
factor() (in module pyro.primitives), 4
FactorMuE (class in pyro.contrib.mue.models), 326
filter() (DiagonalHMM method), 84
filter() (GammaGaussianHMM method), 88
filter() (GaussianHMM method), 90
filter() (MissingDataDiscreteHMM method), 329
filter_states() (EKFDistribution method), 354
finalize() (CompartmentalModel method), 261
FisherSnedecor (class in pyro.distributions), 68
fit() (CEVAE method), 248
get_posterior() (AutoHierarchicalNormalMessenger method), 52
get_posterior() (AutoLaplaceApproximation method), 46
get_posterior() (AutoLowRankMultivariateNormal method), 45
get_posterior() (AutoMultivariateNormal method), 43
get_posterior() (AutoNormalizingFlow method), 45
get_posterior() (AutoNormalMessenger method), 51
get_posterior() (AutoRegressiveMessenger method), 53
get_posterior() (GuideMessenger method), 209
get_samples() (MCMC method), 29
get_samples() (Predictive method), 26
get_state() (DualAveraging method), 212
get_state() (ParamStoreDict method), 167
get_state() (PyroOptim method), 179
get_statistics() (StreamingMCmethod), 30
get_step() (MixedMultiOptimizer method), 184
get_step() (MultiOptimizer method), 183
guide() (VariationalSparseGP method), 307
GuideMessenger (class in pyro.poutine.guide), 209
Gumbel (class in pyro.distributions), 69
GumbelSoftmaxReparam (class in pyro.infer.reparam.softmax), 58

H
haar_transform() (in module pyro.ops.tensor_utils), 218
HaarReparam (class in pyro.infer.reparam.haar), 59
HaarTransform (class in pyro.distributions.transforms), 119
HalfCauchy (class in pyro.distributions), 69
HalfNormal (class in pyro.distributions), 69
has_enumerate_support (BetaBinomial attribute), 80
has_enumerate_support (Distribution attribute), 72
has_enumerate_support (Empirical attribute), 85
has_enumerate_support (MaskedDistribution property), 97
has_enumerate_support (OneOneMatching attribute), 101
has_enumerate_support (OneTwoMatching attribute), 102
has_enumerate_support (SpanningTree attribute), 112
has_rsample (AsymmetricLaplace attribute), 79
has_rsample (Delta attribute), 83
has_rsample (Distribution attribute), 72
has_rsample (GaussianHMM attribute), 90
has_rsample (GaussianScaleMixture attribute), 92
has_rsample (IndependentHMM property), 94
has_rsample (InverseGamma attribute), 94
has_rsample (LinearHMM attribute), 95
has_rsample (Logistic attribute), 97
has_rsample (MaskedDistribution property), 97
has_rsample (MaskedMixture property), 98
has_rsample (MixtureOfDistributions attribute), 99
has_rsample (MixtureOfDiagsSharedCovariance attribute), 99
has_rsample (MultivariateStudentT attribute), 100
has_rsample (ProjectedNormal attribute), 104
has_rsample (Rejctor attribute), 105
has_rsample (SkewLogistic attribute), 109
has_rsample (SoftAsymmetricLaplace attribute), 110
has_rsample (SoftLaplace attribute), 111
has_rsample (Stable attribute), 113
has_rsample (TruncatedPolyaGamma attribute), 114
has_rsample() (Distribution method), 74
HeterogeneousRegionalSIRModel (class in pyro.contrib.epidemiology.models), 270
HeterogeneousSIRModel (class in pyro.contrib.epidemiology.models), 268
heuristic() (CompartmentalModel method), 264
HiddenLayer (class in pyro.contrib.bnn.hidden_layer), 245
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JitTrace_ELBO</td>
<td>(class in pyro.contrib.funsor.infer.trace_elbo), 294</td>
</tr>
<tr>
<td>JitTrace_ELBO</td>
<td>(class in pyro.contrib.minipyro), 323</td>
</tr>
<tr>
<td>JitTrace_ELBO</td>
<td>(class in pyro.infer.trace_elbo), 11</td>
</tr>
<tr>
<td>JitTraceEnum_ELBO</td>
<td>(class in pyro.contrib.funsor.infer.traceenum_elbo), 294</td>
</tr>
<tr>
<td>JitTraceEnum_ELBO</td>
<td>(class in pyro.infer.traceenum_elbo), 13</td>
</tr>
<tr>
<td>JitTraceGraph_ELBO</td>
<td>(class in pyro.infer.tracegraph_elbo), 12</td>
</tr>
<tr>
<td>JitTraceMarkovEnum_ELBO</td>
<td>(class in pyro.contrib.funsor.infer.traceenum_elbo), 295</td>
</tr>
<tr>
<td>JitTraceMeanField_ELBO</td>
<td>(class in pyro.infer.mean_field_elbo), 14</td>
</tr>
<tr>
<td>JitTraceTMC_ELBO</td>
<td>(class in pyro.contrib.funsor.infer.trace_tmc_elbo), 295</td>
</tr>
<tr>
<td>K</td>
<td>(class in pyro.contrib.gp.kernels), 309</td>
</tr>
<tr>
<td>keys()</td>
<td>(ParamStoreDict method), 165</td>
</tr>
<tr>
<td>kinetic_grad()</td>
<td>(BlockMassMatrix method), 35</td>
</tr>
<tr>
<td>Kumaraswamy</td>
<td>(class in pyro.distributions), 69</td>
</tr>
<tr>
<td>L</td>
<td>(module in pyro.optim.pytorch_optimizers), 182</td>
</tr>
<tr>
<td>Laplace</td>
<td>(class in pyro.distributions), 69</td>
</tr>
<tr>
<td>laplace_approximation()</td>
<td>(AutoLaplaceApproximation method), 46</td>
</tr>
<tr>
<td>laplace_eig()</td>
<td>(module in pyro.contrib.oed.eig), 334</td>
</tr>
<tr>
<td>LatentStableReparam</td>
<td>(class in pyro.infer.reparam.stable), 60</td>
</tr>
<tr>
<td>leaky_relu()</td>
<td>(module in pyro.distributions.transforms), 157</td>
</tr>
<tr>
<td>LeakyReLUTransform</td>
<td>(class in pyro.distributions.transforms), 119</td>
</tr>
<tr>
<td>left_condition()</td>
<td>(AffineNormal method), 224</td>
</tr>
<tr>
<td>left_condition()</td>
<td>(Gaussian method), 224</td>
</tr>
<tr>
<td>left_scale()</td>
<td>(AsymmetricLaplace method), 79</td>
</tr>
<tr>
<td>left_scale()</td>
<td>(SoftAsymmetricLaplace method), 110</td>
</tr>
<tr>
<td>lfire_eig()</td>
<td>(module in pyro.contrib.oed.eig), 338</td>
</tr>
<tr>
<td>lift()</td>
<td>(module in pyro.poutine.handlers), 189</td>
</tr>
<tr>
<td>LiftMessenger</td>
<td>(class in pyro.poutine.lift_messenger), 204</td>
</tr>
<tr>
<td>Likelihood</td>
<td>(class in pyro.contrib.gp.likelihoods), 317</td>
</tr>
<tr>
<td>Linear</td>
<td>(class in pyro.contrib.gp.kernels), 312</td>
</tr>
<tr>
<td>LinearHMM</td>
<td>(class in pyro.distributions), 94</td>
</tr>
<tr>
<td>LinearHMMReparam</td>
<td>(class in pyro.infer.reparam.hmm), 61</td>
</tr>
<tr>
<td>LinearHMMReparam</td>
<td>(class in pyro.contrib.timeseries.gp), 344</td>
</tr>
<tr>
<td>List</td>
<td>(class in pyro.contrib.autoname.named), 241</td>
</tr>
<tr>
<td>LKJ</td>
<td>(class in pyro.distributions), 96</td>
</tr>
<tr>
<td>LKJCholesky</td>
<td>(class in pyro.distributions), 69</td>
</tr>
<tr>
<td>LKJCorrCholesky</td>
<td>(class in pyro.distributions), 96</td>
</tr>
<tr>
<td>load()</td>
<td>(module in pyro.contrib.examples.multi_mnist), 275</td>
</tr>
<tr>
<td>load()</td>
<td>(ParamStoreDict method), 167</td>
</tr>
<tr>
<td>load()</td>
<td>(PyroOptim method), 180</td>
</tr>
<tr>
<td>load_bart_od()</td>
<td>(module in pyro.contrib.examples.bart), 275</td>
</tr>
<tr>
<td>load_fake_od()</td>
<td>(module in pyro.contrib.examples.bart), 275</td>
</tr>
<tr>
<td>load_mnist()</td>
<td>(module in pyro.contrib.examples.multi_mnist), 275</td>
</tr>
<tr>
<td>load_nextstrain_counts()</td>
<td>(module in pyro.contrib.examples.nextstrain), 276</td>
</tr>
<tr>
<td>loc()</td>
<td>(AffineBeta property), 78</td>
</tr>
<tr>
<td>LOCAL</td>
<td>(DimType attribute), 293</td>
</tr>
<tr>
<td>local_frame</td>
<td>(DimStack property), 293</td>
</tr>
<tr>
<td>LocScaleReparam</td>
<td>(class in pyro.infer.reparam.loc_scale), 57</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(AffineAutoregressive method), 124</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(AffineCoupling method), 125</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(BatchNorm method), 126</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(BlockAutoregressive method), 127</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(CholeskyTransform method), 117</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(CorrLCholeskyTransform method), 117</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(CorrMatrixCholeskyTransform method), 118</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(DiscreteCosineTransform method), 118</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(ELUTransform method), 118</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(HaarTransform method), 119</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(LeakyReLUTransform method), 119</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(LowerCholeskyAffine method), 120</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(NeuralAutoregressive method), 143</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(OrderedTransform method), 121</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(Permute method), 121</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(Polynomial method), 145</td>
</tr>
<tr>
<td>log_abs_det_jacobian()</td>
<td>(PositivePowerTransform method), 122</td>
</tr>
</tbody>
</table>
Pyro Documentation

loss_and_grads() (TraceTMC_ELBO method), 17
loss_and_surrogate_loss() (JitTrace_ELBO method), 11
low (AffineBeta property), 78
LowerCholeskyAffine (class in pyro.distributions.transforms), 120
LowRankMultivariateNormal (class in pyro.distributions), 70
LSH (class in pyro.contrib.tracking.hashing), 360

M
make_dist() (BernoulliNet static method), 251
make_dist() (ExponentialNet static method), 251
make_dist() (LaplaceNet static method), 252
make_dist() (NormalNet static method), 252
make_dist() (StudentTNet static method), 252
map_estimate() (EasyGuide method), 256
map_estimate() (Group method), 257
map_states() (MissingDataDiscreteHMM method), 330
marginal() (TracePosterior method), 27
marginal() (TracePredictive method), 28
marginal_eig() (in module pyro.contrib.oed.eig), 338
MarginalAssignment (class in pyro.contrib.tracking.assignment), 351
MarginalAssignmentPersistent (class in pyro.contrib.tracking.assignment), 352
MarginalAssignmentSparse (class in pyro.contrib.tracking.assignment), 351
marginalize() (AffineNormal method), 225
marginalize() (Gaussian method), 224
Marginals (class in pyro.infer.abstract_infer), 26
markov() (in module pyro.infer.funsor.handlers), 289
markov() (in module pyro.poutine.handlers), 189
MarkovMessenger (class in pyro.contrib.funsor.handlers.named_messenger), 292
MarkovMessenger (class in pyro.poutine.markov_messenger), 204
mask() (in module pyro.poutine.handlers), 190
mask() (TorchDistributionMixin method), 76
MaskedDistribution (class in pyro.distributions), 97
MaskedMixture (class in pyro.distributions), 98
MaskMessenger (class in pyro.poutine.mask_messenger), 205
mass_matrix_adapter (HMC property), 32
mass_matrix_size (BlockMassMatrix property), 35
match() (ParamStoreDict method), 166
Matern32 (class in pyro.contrib.gp.kernels), 313
Matern52 (class in pyro.contrib.gp.kernels), 313
MaternKernel (class in pyro.ops.ssm_gp), 231
matmul() (in module pyro.ops.tensor Utils), 218
matrix_and_mvn_to_gaussian() (in module pyro.ops.gaussian), 225
matrix_exponential() (in module pyro.distributions.transforms), 157
matvecmul() (in module pyro.ops.tensor_Utils), 218
MAX_DIM (DimStack attribute), 293
max_sample_iter (SineBivariateVonMises attribute), 107
mc_extend() (in module pyro.poutine.util), 198
MCMC (class in pyro.infer.mcmc.api), 28
MCMCKernel (class in pyro.infer.mcmc.mcmc_kernel), 30
mean (AffineBeta property), 78
mean (AsymmetricLaplace property), 79
mean (BetaBinomial property), 80
mean (Delta property), 83
mean (DirichletMultinomial property), 84
mean (EKFState property), 359
mean (Empirical property), 86
mean (GammaPoisson property), 89
mean (LKI property), 96
mean (Logistic property), 97
mean (MaskedDistribution property), 97
mean (Measurement property), 361
mean (MultivariateStudentT property), 100
mean (ProjectedNormal property), 104
mean (SineBivariateVonMises property), 107
mean (SoftAsymmetricLaplace property), 110
mean (SoftLaplace property), 111
mean (Stable property), 113
mean() (MaskedMixture method), 98
mean() (ZeroInflatedDistribution method), 115
mean2pv() (DynamicModel method), 354
mean2pv() (Ncp method), 355
mean2pv() (Ncv method), 356
mean_pv() (EKFState method), 359
Measurement (class in pyro.contrib.tracking.measurements), 361
median() (AutoContinuous method), 42
median() (AutoDelta method), 41
median() (AutoGaussian method), 49
median() (AutoGuide method), 37
median() (AutoGuideList method), 38
median() (AutoHierarchicalNormalMessenger method), 52
median() (AutoNormal method), 40
median() (AutoNormalMessenger method), 51
median() (AutoStructured method), 48
merge() (CountMeanStats method), 230
merge() (CountMeanVarianceStats method), 230
merge() (CountStats method), 230
merge() (StackStats method), 229
merge() (StatsOfDict method), 229

380
Index
merge() (StreamingStats method), 228
merge_points() (in module pyro.contrib.tracking.hashing), 361
Messenger (class in pyro.contrib.minipyro), 323
Messenger (class in pyro.poutine.messenger), 198
mg2k() (in module pyro.contrib.mue.statearrangers), 328
MinimalReparam (class in pyro.infer.reparam.strategies), 56
mirrors (MNIST attribute), 276
MissingDataDiscreteHMM (class in pyro.contrib.mue.missingdatahmm), 329
MixedMultiOptimizer (class in pyro.optim.multi), 184
MixtureOfDiagNormals (class in pyro.distributions), 98
MixtureOfDiagNormalsSharedCovariance (class in pyro.distributions), 99
MixtureSameFamily (class in pyro.distributions), 70
mk_dataset() (in module pyro.contrib.examples.multi_mnist), 275
MNIST (class in pyro.contrib.examples.util), 276
mode (ProjectedNormal property), 298, 321
mode (SpanningTree property), 112
mode() (OneOneMatching method), 101
mode() (OneTwoMatching method), 102
model (AutoGuide property), 37
Model (class in pyro.contrib.cevae), 249
model (EasyGuide property), 255
model (GuideMessenger property), 209
model() (ForecastingModel method), 277
model() (GPLVM method), 309
model() (GPModel method), 299
model() (GPRegression method), 302
model() (SparseGPRegression method), 304
model() (VariationalGP method), 306
model() (VariationalSparseGP method), 307
module
pyro.contrib.autoname, 237
pyro.contrib.autoname.named, 240
pyro.contrib.autoname.scoping, 242
pyro.contrib.bnn, 245
pyro.contrib.bnn.hidden_layer, 245
pyro.contrib.cevae, 247
pyro.contrib.easyguide, 255
pyro.contrib.epidemiology, 259
pyro.contrib.epidemiology.compartmental, 259
pyro.contrib.epidemiology.distributions, 271
pyro.contrib.epidemiology.models, 264
pyro.contrib.examples.bart, 275
pyro.contrib.examples.multi_mnist, 275
pyro.contrib.examples.nextstrain, 276
pyro.contrib.examples.util, 276
pyro.contrib.forecast, 277
pyro.contrib.forecast.evaluate, 281
pyro.contrib.forecast.forecaster, 277
pyro.contrib.funsor, 283
pyro.contrib.funsor.handlers, 289
pyro.contrib.funsor.handlers.named_messenger, 292
pyro.contrib.funsor.handlers.primitives, 292
pyro.contrib.funsor.handlers.runtime, 293
pyro.contrib.funsor.infer.trace_elbo, 294
pyro.contrib.funsor.infer.traceenum_elbo, 294
pyro.contrib.funsor.infer.tracetmc_elbo, 295
pyro.contrib.gp, 297
pyro.contrib.gp.kernels, 309
pyro.contrib.gp.likelihoods, 317
pyro.contrib.gp.models.gplvm, 308
pyro.contrib.gp.models.gpr, 301
pyro.contrib.gp.models.model, 298
pyro.contrib.gp.models.sgpr, 303
pyro.contrib.gp.models.vgp, 305
pyro.contrib.gp.models.vspp, 306
pyro.contrib.gp.parameterized, 320
pyro.contrib.gp.util, 321
pyro.contrib.minipyro, 323
pyro.contrib.mue, 325
pyro.contrib.mue.dataloaders, 330
pyro.contrib.mue.missingdatahmm, 329
pyro.contrib.mue.models, 325
pyro.contrib.mue.statearrangers, 328
pyro.contrib.oed, 333
pyro.contrib.oed.eig, 334
pyro.contrib.oed.glm, 340
pyro.contrib.randomvariable, 341
pyro.contrib.timeseries, 343
pyro.contrib.timeseries.base, 343
pyro.contrib.timeseries.gp, 344
pyro.contrib.timeseries.lgssm, 347
pyro.contrib.timeseries.lgssmipp, 347
pyro.contrib.tracking, 351
pyro.contrib.tracking.assignment, 351
pyro.contrib.tracking.distributions, 353
pyro.contrib.tracking.dynamic_models, 354
pyro.contrib.tracking.extended_kalman_filter, 358
pyro.contrib.tracking.hashing, 360
pyro.contrib.tracking.measurements, 361
pyro.distributions.constraints, 159
pyro.distributions.testing.gof, 233
pyro.distributions.torch, 67
pyro.infer.abstract_infer, 26
pyro.infer.reparam.strategy, 26
pyro.infer.trace_infer, 27
pyro.infer.traceenum_infer, 28
pyro.infer.traceenum_reparam, 29
pyro.infer.traceenum_reparam_strategy, 30
pyro.infer.traceenum_strategy, 31
pyro.infer.traceelbo, 32
pyro.infer.traceelbo_strategy, 33
pyro.infer.traceenumelbo, 34
pyro.infer.traceenumelbo_strategy, 35
pyro.infer.traceelfb, 36
pyro.infer.traceelfb_strategy, 37
<table>
<thead>
<tr>
<th>Module Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyro.contrib.funsor.infer.tracetmc_elbo</td>
<td>295</td>
</tr>
<tr>
<td>pyro.contrib.gp</td>
<td>297</td>
</tr>
<tr>
<td>pyro.contrib.gp.kernels</td>
<td>309</td>
</tr>
<tr>
<td>pyro.contrib.gp.likelihoods</td>
<td>317</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gplvm</td>
<td>308</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpr</td>
<td>301</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.model</td>
<td>298</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.sgpr</td>
<td>303</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vgp</td>
<td>305</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vsgp</td>
<td>306</td>
</tr>
<tr>
<td>pyro.contrib.gp.parameterized</td>
<td>320</td>
</tr>
<tr>
<td>pyro.contrib.gp.util</td>
<td>321</td>
</tr>
<tr>
<td>pyro.contrib.minipyro</td>
<td>323</td>
</tr>
<tr>
<td>pyro.contrib.mue</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.dataloaders</td>
<td>330</td>
</tr>
<tr>
<td>pyro.contrib.mue.missingdatahmm</td>
<td>329</td>
</tr>
<tr>
<td>pyro.contrib.mue.models</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.statearrangers</td>
<td>328</td>
</tr>
<tr>
<td>pyro.contrib.oed</td>
<td>333</td>
</tr>
<tr>
<td>pyro.contrib.oed.eig</td>
<td>334</td>
</tr>
<tr>
<td>pyro.contrib.oed.glmm</td>
<td>340</td>
</tr>
<tr>
<td>pyro.contrib.randomvariable</td>
<td>341</td>
</tr>
<tr>
<td>pyro.contrib.timeseries</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.base</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.gp</td>
<td>344</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssm</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssmgp</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.gp.likelhoods</td>
<td>317</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gplvm</td>
<td>308</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpr</td>
<td>301</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.model</td>
<td>298</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.sgpr</td>
<td>303</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vgp</td>
<td>305</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vsgp</td>
<td>306</td>
</tr>
<tr>
<td>pyro.contrib.gp.parameterized</td>
<td>320</td>
</tr>
<tr>
<td>pyro.contrib.gp.util</td>
<td>321</td>
</tr>
<tr>
<td>pyro.contrib.minipyro</td>
<td>323</td>
</tr>
<tr>
<td>pyro.contrib.mue</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.dataloaders</td>
<td>330</td>
</tr>
<tr>
<td>pyro.contrib.mue.missingdatahmm</td>
<td>329</td>
</tr>
<tr>
<td>pyro.contrib.mue.models</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.statearrangers</td>
<td>328</td>
</tr>
<tr>
<td>pyro.contrib.oed</td>
<td>333</td>
</tr>
<tr>
<td>pyro.contrib.oed.eig</td>
<td>334</td>
</tr>
<tr>
<td>pyro.contrib.oed.glmm</td>
<td>340</td>
</tr>
<tr>
<td>pyro.contrib.randomvariable</td>
<td>341</td>
</tr>
<tr>
<td>pyro.contrib.timeseries</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.base</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.gp</td>
<td>344</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssm</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssmgp</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.gp.likelhoods</td>
<td>317</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gplvm</td>
<td>308</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpr</td>
<td>301</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.model</td>
<td>298</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.sgpr</td>
<td>303</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vgp</td>
<td>305</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vsgp</td>
<td>306</td>
</tr>
<tr>
<td>pyro.contrib.gp.parameterized</td>
<td>320</td>
</tr>
<tr>
<td>pyro.contrib.gp.util</td>
<td>321</td>
</tr>
<tr>
<td>pyro.contrib.minipyro</td>
<td>323</td>
</tr>
<tr>
<td>pyro.contrib.mue</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.dataloaders</td>
<td>330</td>
</tr>
<tr>
<td>pyro.contrib.mue.missingdatahmm</td>
<td>329</td>
</tr>
<tr>
<td>pyro.contrib.mue.models</td>
<td>325</td>
</tr>
<tr>
<td>pyro.contrib.mue.statearrangers</td>
<td>328</td>
</tr>
<tr>
<td>pyro.contrib.oed</td>
<td>333</td>
</tr>
<tr>
<td>pyro.contrib.oed.eig</td>
<td>334</td>
</tr>
<tr>
<td>pyro.contrib.oed.glmm</td>
<td>340</td>
</tr>
<tr>
<td>pyro.contrib.randomvariable</td>
<td>341</td>
</tr>
<tr>
<td>pyro.contrib.timeseries</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.base</td>
<td>343</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.gp</td>
<td>344</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssm</td>
<td>347</td>
</tr>
<tr>
<td>pyro.contrib.timeseries.lgssmgp</td>
<td>347</td>
</tr>
</tbody>
</table>
StepLR() (in module pyro.optim.pytorch_optimizers), 182
stochastic_nodes (Trace property), 195
Strategy (class in pyro.infer.reparam.strategies), 55
StreamingMCMC (class in pyro.infer.mcmc.api), 29
StreamingStats (class in pyro.ops.streaming), 228
StructuredReparam (class pyro.infer.reparam.structured), 63
StudentT (class in pyro.distributions), 72
StudentTNet (class in pyro.contrib.cevae), 252
StudentTReparam (class pyro.infer.reparam.studentt), 60
subsample() (in module pyro.contrib.funsor), 287
subsample() (in module pyro.primitives), 4
SubsampleMessage (class pyro.poutine.subsample_messenger), 208
successors() (Trace method), 195
Sum (class in pyro.contrib.gp.kernels), 315
summary() (MCMC method), 29
SuperspreadingSEIRModel (class pyro.contrib.epidemiology.models), 267
SuperspreadingSIRModel (class pyro.contrib.epidemiology.models), 267
support (AffineBeta property), 78
support (AsymmetricLaplace attribute), 79
support (BetaBinomial property), 80
support (CoalescentTimes property), 81
support (CoalescentTimesWithRate property), 82
support (Delta property), 83
support (DirichletMultinomial property), 84
support (DiscreteHMM property), 85
support (Empirical attribute), 86
support (ExtendedBetaBinomial attribute), 86
support (ExtendedBinomial attribute), 86
support (FoldedDistribution attribute), 87
support (GammaGaussianHMM attribute), 88
support (GammaPoisson attribute), 89
support (GaussianHMM attribute), 91
support (GaussianMRF property), 92
support (ImproperUniform property), 93
support (IndependentHMM property), 94
support (InverseGamma attribute), 94
support (LinearHMM property), 95
support (LJ attribute), 96
support (Logistic attribute), 97
support (MaskedDistribution property), 97
support (MaskedMixture property), 98
support (MultivariateStudentT attribute), 100
support (OneOneMatching property), 101
support (OneTwoMatching property), 102
support (ProjectedNormal attribute), 104
support (SineBivariateVonMises attribute), 107
support (SineSkewed attribute), 108
support (SkewLogistic attribute), 109
support (SoftAsymmetricLaplace attribute), 110
support (SoftLaplace attribute), 111
support (SpanningTree attribute), 112
support (Stable attribute), 114
support (TruncatedPolyaGamma attribute), 114
support (Unit attribute), 115
successors() (Marginals method), 27
SVG (class in pyro.infer.svgd), 22
SVI (class in pyro.contrib.minipyro), 323
SVI (class in pyro.infer.svi), 9
successors() (module pyro.distributions.transforms), 149
Sylvester (class in pyro.distributions.transforms), 119
Sylvester (module pyro.distributions.transforms), 159
symbolize_dims() (Trace method), 195
SymmetricStableReparam (class pyro.infer.reparam.stable), 60
in T
t_dist() (Guide method), 250
t_dist() (Model method), 250
terms_from_trace() (in module pyro.contrib.funsor.infer.traceenum_elbo), 294
time (EKFState property), 359
time (Measurement property), 361
time_plate (CompartmentalModel property), 260
time_plate (ForecastingModel property), 278
TimeSeriesModel (class pyro.contrib.timeseries.base), 343
to_data() (in module pyro.contrib.funsor), 287
to_data() (in module pyro.contrib.funsor.handlers.primitives), 292
to_event() (TorchDistributionMixin method), 76
to_funsor() (in module pyro.contrib.funsor), 287
to_funsor() (in module pyro.contrib.funsor.handlers.primitives), 292
to_gaussian() (AffineNormal method), 225
to_pyro_module() (in module pyro.nn.module), 173
to_script_module() (CEVAE method), 249
topological_sort() (Trace method), 195
TorchDistribution (class in pyro.distributions), 77
TorchDistributionMixin (class in pyro.distributions.torch_distribution), 75
TorchMultiOptimizer (class in pyro.optim.multi), 184
total_count (ZeroInflatedNegativeBinomial property), 116
trace (class in pyro.contrib.minipyro), 324
Trace (class in pyro.poutine), 193
trace (TraceHandler property), 208
trace() (in module pyro.contrib.funsor.handlers), 290
trace() (in module pyro.ops.jit), 8
trace() (in module pyro.poutine.handlers), 192
Trace_ELBO (class in pyro.infer.trace_inference.trace_elbo), 294
Trace_ELBO (class in pyro.infer.trace_inference.trace_elbo), 11
Trace_ELBO() (in module pyro.contrib.minipyro), 323
TraceCausalEffect_ELBO (class in pyro.contrib.cevae), 250
TraceEnum_ELBO (class in
pyro.contrib.funsor.infer.traceenum_elbo), 294
TraceEnum_ELBO (class in pyro.infer.traceenum_elbo), 13
TraceEnumSample_ELBO (class in pyro.infer.discrete), 24
TraceGraph_ELBO (class in pyro.infer.tracegraph_elbo), 11
TraceHandler (class in pyro.poutine.trace_messenger), 208
TraceMarkovEnum_ELBO (class in
pyro.contrib.funsor.infer.traceenum_elbo), 294
TraceMeanField_ELBO (class in
pyro.infer.trace_mean_field_elbo), 14
TraceMessenger (class in
pyro.poutine.trace_messenger), 208
TracePosterior (class in pyro.infer.abstract_infer), 27
TracePredictive (class in pyro.infer.abstract_infer), 27
TraceTailAdaptive_ELBO (class in
pyro.infer.trace_tail_adaptive_elbo), 15
TraceTMC_ELBO (class in
pyro.contrib.funsor.infer.tracetmc_elbo), 295
TraceTMC_ELBO (class in pyro.infer.tracetmc_elbo), 16
train() (in module pyro.contrib.gp.util), 322
training (AutoCallable attribute), 39
training (AutoContinuous attribute), 43
training (AutoDelta attribute), 41
training (AutoDiagonalNormal attribute), 44
training (AutoDiscreteParallel attribute), 47
training (AutoGaussian attribute), 50
training (AutoGuide attribute), 37
training (AutoGuideList attribute), 38
training (AutoHierarchicalNormalMessenger attribute), 52
training (AutoIAFMessenger attribute), 46
training (AutoLaplaceApproximation attribute), 46
training (AutoLowRankMultivariateNormal attribute), 45
training (AutoMessenger attribute), 50
training (AutoMultivariateNormal attribute), 43
training (AutoNormal attribute), 40
training (AutoNormalizingFlow attribute), 45
training (AutoNormalMessenger attribute), 51
training (AutoRegressiveMessenger attribute), 53
training (AutoRegressiveNN attribute), 174
training (AutoStructured attribute), 48
training (BernoulliNet attribute), 251
training (Binary attribute), 318
training (Brownian attribute), 310
training (CEVAE attribute), 249
training (Combination attribute), 310
training (ConditionalAffineAutoregressive attribute), 129
training (ConditionalAffineCoupling attribute), 130
training (ConditionalAutoRegressiveNN attribute), 176
training (ConditionalDenseNN attribute), 177
training (ConditionalGeneralizedChannelPermute attribute), 131
training (ConditionalHouseholder attribute), 132
training (ConditionalMatrixExponential attribute), 134
training (ConditionalNeuralAutoregressive attribute), 135
training (ConditionalPlanar attribute), 136
training (ConditionalRadial attribute), 136
training (ConditionalSpline attribute), 138
training (ConditionalSplineAutoregressive attribute), 139
training (ConditionalTransformModule attribute), 139
training (Constant attribute), 310
training (Coregionalize attribute), 311
training (Cosine attribute), 311
training (DenseNN attribute), 175
training (DependentMaternGP attribute), 346
training (DiagNormalNet attribute), 253
training (DistributionNet attribute), 251
training (DotProduct attribute), 311
training (EasyGuide attribute), 256
training (Exponent attribute), 312
training (Exponential attribute), 312
training (ExponentialNet attribute), 251
training (FullyConnected attribute), 251
training (Gaussian attribute), 318
training (GenericLGSSM attribute), 347
training (GenericLGSSMWithGPNoiseModel attribute), 348
training (GPLVM attribute), 309
training (GPMmodel attribute), 301
training (GPRegression attribute), 303
training (Guide attribute), 250
training (IndependentMaternGP attribute), 344
training (Isorropy attribute), 312
training (Kernel attribute), 309
training (LaplaceNet attribute), 252
training (Likelihood attribute), 317

Index 391
training (Linear attribute), 312
training (LinearlyCoupledMaternGP attribute), 345
training (Matern32 attribute), 313
training (Matern52 attribute), 313
training (MaternKernel attribute), 231
training (Model attribute), 250
training (MultiClass attribute), 319
training (NormalNet attribute), 252
training (Parameterized attribute), 298, 321
training (Periodic attribute), 313
training (Poisson attribute), 319
training (Polynomial attribute), 314
training (Predictive attribute), 26
training (Product attribute), 314
training (PyroModule attribute), 173
training (RationalQuadratic attribute), 315
training (RBF attribute), 314
training (SparseGPRegression attribute), 305
training (StudentTNet attribute), 252
training (Sum attribute), 315
training (Sylvester attribute), 150
training (TimeSeriesModel attribute), 343
training (Transforming attribute), 315
training (VariationalGP attribute), 306
training (VariationalSparseGP attribute), 308
training (VerticalScaling attribute), 315
training (Warping attribute), 316
training (WhiteNoise attribute), 316
transform() (RandomVariable method), 341
transform_sample() (NeuTraReparam method), 62
transform_samples() (StructuredReparam method), 63
TransformedDistribution (class in pyro.distributions), 72
Transforming (class in pyro.contrib.gp.kernels), 315
TransformModule (class in pyro.distributions), 150
TransformReparam (class in pyro.infer.reparam.transform), 58
transition() (CompartmentalModel method), 261
transition_matrix() (MaternKernel method), 231
transition_matrix_and_covariance() (MaternKernel method), 231
triangular_solve() (in module pyro.ops.tensor_utils), 218
TruncatedPolyaGamma (class in pyro.distributions), 114
truncation_point (TruncatedPolyaGamma attribute), 114
try_add() (ApproxSet method), 361
TypedDict() (in module pyro.infer.reparam.reparam), 55
uncondition() (in module pyro.poutine.handlers), 192
UnconditionMessenger (class in pyro.poutine.uncondition_messenger), 209
unif01_goodness_of_fit() (in module pyro.distributions.testing.gof), 233
Uniform (class in pyro.distributions), 72
Unit (class in pyro.distributions), 114
UnitJacobianReparam (class in pyro.infer.reparam.unit_jacobian), 59
UnitLowerCholeskyTransform (class in pyro.distributions.transforms), 123
UnknownStartSIRModel (class in pyro.contrib.epidemiology.models), 269
unregister() (Messenger class method), 199
unscale() (BlockMassMatrix method), 35
unwrap() (in module pyro.poutine.messenger), 199
update() (BlockMassMatrix method), 35
update() (CountMeanStats method), 230
update() (CountMeanVarianceStats method), 230
update() (CountStats method), 230
update() (EKFSState method), 359
update() (StackStats method), 229
update() (StatsOfDict method), 229
update() (StreamingStats method), 228
update() (WelfordArrowheadCovariance method), 212
update() (WelfordCovariance method), 212
upstream_value() (GuideMessenger method), 210
user_param_name() (in module pyro.params.param_store), 167

V
validate_edges() (SpanningTree method), 112
validation_enabled() (in module pyro.infer.util), 64
validation_enabled() (in module pyro.primitives), 8
value (DimRequest property), 293
values() (ParamStoreDict method), 165
variance (AffineBeta property), 79
variance (AsymmetricLaplace property), 79
variance (BetaBinomial property), 80
variance (Delta property), 83
variance (DirichletMultinomial property), 84
variance (Empirical property), 86
variance (GammaPoisson property), 89
variance (Logistic property), 97
variance (MaskedDistribution property), 97
variance (MultivariateStudentT property), 100
variance (SoftAsymmetricLaplace property), 110
variance (SoftLaplace property), 111
variance (Stable property), 114
variance() (MaskedMixture method), 98
variance() (ZeroInflatedDistribution method), 116
VariationalGP (class in pyro.contrib.gp.models.vgp), 305
VariationalSparseGP (class in pyro.contrib.gp.models.vgp), 306
vector_density_goodness_of_fit() (in module pyro.distributions.testing.gof), 234
vectorize() (in module pyro.infer.svgd), 23
vectorized (CondIndepStackFrame property), 203
vectorized_importance_weights() (in module pyro.infer.importance), 18
vectorized_markov() (in module pyro.contrib.funsor), 287
vectorized_markov() (in module pyro.contrib.funsor.handlers), 290
velocity_verlet() (in module pyro.ops.integrator), 212
VerticalScaling (class in pyro.contrib.gp.kernels), 315
vi_eig() (in module pyro.contrib.oed.eig), 334
Vindex (class in pyro.ops.indexing), 220
vindex() (in module pyro.ops.indexing), 219
VISIBLE (DimType attribute), 293
vmmc_eig() (in module pyro.contrib.oed.eig), 339
volume_preserving (Householder attribute), 141
volume_preserving (LowerCholeskyAffine attribute), 120
volume_preserving (Permuted attribute), 121
VonMises (class in pyro.distributions), 72
VonMises3D (class in pyro.distributions), 115

W
waic() (in module pyro.ops.stats), 227
Warping (class in pyro.contrib.gp.kernels), 316
Weibull (class in pyro.distributions), 72
weight_type (AutoHierarchicalNormalMessenger attribute), 52
WelfordArrowheadCovariance (class in pyro.ops.welford), 212
WelfordCovariance (class in pyro.ops.welford), 212
WhiteNoise (class in pyro.contrib.gp.kernels), 316
with_cache() (DiscreteCosineTransform method), 118
with_cache() (HaarTransform method), 119
with_cache() (LowerCholeskyAffine method), 120
with_cache() (Normalize method), 120
with_cache() (Permute method), 121
with_cache() (PositivePowerTransform method), 122
write() (in module pyro.contrib.mue.dataloaders), 330

X
x_dist() (Model method), 250

Y
y_dist() (Guide method), 250
y_dist() (Model method), 250
y_mean() (Model method), 250

Z
z_dist() (Guide method), 250
ZeroInflatedDistribution (class in pyro.distributions), 115
ZeroInflatedNegativeBinomial (class in pyro.distributions), 116
ZeroInflatedPoisson (class in pyro.distributions), 116

Index 393