Source code for pyro.ops.tensor_utils

# Copyright (c) 2017-2019 Uber Technologies, Inc.
# SPDX-License-Identifier: Apache-2.0

import math

import torch


[docs]def block_diag_embed(mat): """ Takes a tensor of shape (..., B, M, N) and returns a block diagonal tensor of shape (..., B x M, B x N). :param torch.Tensor mat: an input tensor with 3 or more dimensions :returns torch.Tensor: a block diagonal tensor with dimension `m.dim() - 1` """ assert mat.dim() > 2, "Input to block_diag() must be of dimension 3 or higher" B, M, N = mat.shape[-3:] eye = torch.eye(B, dtype=mat.dtype, device=mat.device).reshape(B, 1, B, 1) return (mat.unsqueeze(-2) * eye).reshape(mat.shape[:-3] + (B * M, B * N))
[docs]def block_diagonal(mat, block_size): """ Takes a block diagonal tensor of shape (..., B x M, B x N) and returns a tensor of shape (..., B, M, N). :param torch.Tensor mat: an input tensor with 2 or more dimensions :param int block_size: the number of blocks B. :returns torch.Tensor: a tensor with dimension `mat.dim() + 1` """ B = block_size M = mat.size(-2) // B N = mat.size(-1) // B assert mat.shape[-2:] == (B * M, B * N) mat = mat.reshape(mat.shape[:-2] + (B, M, B, N)) mat = mat.transpose(-2, -3) mat = mat.reshape(mat.shape[:-4] + (B * B, M, N)) return mat[..., ::B + 1, :, :]
def _complex_mul(a, b): ar, ai = a.unbind(-1) br, bi = b.unbind(-1) return torch.stack([ar * br - ai * bi, ar * bi + ai * br], dim=-1)
[docs]def convolve(signal, kernel, mode='full'): """ Computes the 1-d convolution of signal by kernel using FFTs. The two arguments should have the same rightmost dim, but may otherwise be arbitrarily broadcastable. :param torch.Tensor signal: A signal to convolve. :param torch.Tensor kernel: A convolution kernel. :param str mode: One of: 'full', 'valid', 'same'. :return: A tensor with broadcasted shape. Letting ``m = signal.size(-1)`` and ``n = kernel.size(-1)``, the rightmost size of the result will be: ``m + n - 1`` if mode is 'full'; ``max(m, n) - min(m, n) + 1`` if mode is 'valid'; or ``max(m, n)`` if mode is 'same'. :rtype torch.Tensor: """ m = signal.size(-1) n = kernel.size(-1) if mode == 'full': truncate = m + n - 1 elif mode == 'valid': truncate = max(m, n) - min(m, n) + 1 elif mode == 'same': truncate = max(m, n) else: raise ValueError('Unknown mode: {}'.format(mode)) # Compute convolution using fft. padded_size = m + n - 1 # Round up to next power of 2 for cheaper fft. fast_ftt_size = 2 ** math.ceil(math.log2(padded_size)) f_signal = torch.rfft(torch.nn.functional.pad(signal, (0, fast_ftt_size - m)), 1, onesided=False) f_kernel = torch.rfft(torch.nn.functional.pad(kernel, (0, fast_ftt_size - n)), 1, onesided=False) f_result = _complex_mul(f_signal, f_kernel) result = torch.irfft(f_result, 1, onesided=False) start_idx = (padded_size - truncate) // 2 return result[..., start_idx: start_idx + truncate]
[docs]def repeated_matmul(M, n): """ Takes a batch of matrices `M` as input and returns the stacked result of doing the `n`-many matrix multiplications :math:`M`, :math:`M^2`, ..., :math:`M^n`. Parallel cost is logarithmic in `n`. :param torch.Tensor M: A batch of square tensors of shape (..., N, N). :param int n: The order of the largest product :math:`M^n` :returns torch.Tensor: A batch of square tensors of shape (n, ..., N, N) """ assert M.size(-1) == M.size(-2), "Input tensors must satisfy M.size(-1) == M.size(-2)." assert n > 0, "argument n to parallel_scan_repeated_matmul must be 1 or larger" doubling_rounds = 0 if n <= 2 else math.ceil(math.log(n, 2)) - 1 if n == 1: return M.unsqueeze(0) result = torch.stack([M, torch.matmul(M, M)]) for i in range(doubling_rounds): doubled = torch.matmul(result[-1].unsqueeze(0), result) result = torch.stack([result, doubled]).reshape(-1, *result.shape[1:]) return result[0:n]
def _real_of_complex_mul(a, b): ar, ai = a.unbind(-1) br, bi = b.unbind(-1) return ar * br - ai * bi
[docs]def dct(x): """ Discrete cosine transform of type II, scaled to be orthonormal. This is the inverse of :func:`idct_ii` , and is equivalent to :func:`scipy.fftpack.dct` with ``norm="ortho"``. :param Tensor x: :rtype: Tensor """ # Ref: http://fourier.eng.hmc.edu/e161/lectures/dct/node2.html N = x.size(-1) # Step 1 y = torch.cat([x[..., ::2], x[..., 1::2].flip(-1)], dim=-1) # Step 2 Y = torch.rfft(y, 1, onesided=False) # Step 3 coef_real = torch.cos(torch.linspace(0, 0.5 * math.pi, N + 1, dtype=x.dtype, device=x.device)) coef = torch.stack([coef_real[:-1], -coef_real[1:].flip(-1)], dim=-1) X = _real_of_complex_mul(coef, Y) # orthogonalize scale = torch.cat([x.new_tensor([math.sqrt(N)]), x.new_full((N - 1,), math.sqrt(0.5 * N))]) return X / scale
[docs]def idct(x): """ Inverse discrete cosine transform of type II, scaled to be orthonormal. This is the inverse of :func:`dct_ii` , and is equivalent to :func:`scipy.fftpack.idct` with ``norm="ortho"``. :param Tensor x: The input signal :rtype: Tensor """ N = x.size(-1) scale = torch.cat([x.new_tensor([math.sqrt(N)]), x.new_full((N - 1,), math.sqrt(0.5 * N))]) x = x * scale # Step 1, solve X = cos(k) * Yr + sin(k) * Yi # We know that Y[1:] is conjugate to Y[:0:-1], hence # X[:0:-1] = sin(k) * Yr[1:] + cos(k) * Yi[1:] # So Yr[1:] = cos(k) * X[1:] + sin(k) * X[:0:-1] # and Yi[1:] = sin(k) * X[1:] - cos(k) * X[:0:-1] # In addition, Yi[0] = 0, Yr[0] = X[0] # In other words, Y = complex_mul(e^ik, X - i[0, X[:0:-1]]) xi = torch.nn.functional.pad(-x[..., 1:], (0, 1)).flip(-1) X = torch.stack([x, xi], dim=-1) coef_real = torch.cos(torch.linspace(0, 0.5 * math.pi, N + 1)) coef = torch.stack([coef_real[:-1], coef_real[1:].flip(-1)], dim=-1) half_size = N // 2 + 1 Y = _complex_mul(coef[..., :half_size, :], X[..., :half_size, :]) # Step 2 y = torch.irfft(Y, 1, onesided=True, signal_sizes=(N,)) # Step 3 return torch.stack([y, y.flip(-1)], axis=-1).reshape(x.shape[:-1] + (-1,))[..., :N]