Source code for pyro.contrib.gp.likelihoods.binary

# Copyright (c) 2017-2019 Uber Technologies, Inc.
# SPDX-License-Identifier: Apache-2.0

import torch

import pyro
import pyro.distributions as dist
from pyro.contrib.gp.likelihoods.likelihood import Likelihood


[docs]class Binary(Likelihood): """ Implementation of Binary likelihood, which is used for binary classification problems. Binary likelihood uses :class:`~pyro.distributions.Bernoulli` distribution, so the output of ``response_function`` should be in range :math:`(0,1)`. By default, we use `sigmoid` function. :param callable response_function: A mapping to correct domain for Binary likelihood. """ def __init__(self, response_function=None): super().__init__() self.response_function = ( torch.sigmoid if response_function is None else response_function )
[docs] def forward(self, f_loc, f_var, y=None): r""" Samples :math:`y` given :math:`f_{loc}`, :math:`f_{var}` according to .. math:: f & \sim \mathbb{Normal}(f_{loc}, f_{var}),\\ y & \sim \mathbb{Bernoulli}(f). .. note:: The log likelihood is estimated using Monte Carlo with 1 sample of :math:`f`. :param torch.Tensor f_loc: Mean of latent function output. :param torch.Tensor f_var: Variance of latent function output. :param torch.Tensor y: Training output tensor. :returns: a tensor sampled from likelihood :rtype: torch.Tensor """ # calculates Monte Carlo estimate for E_q(f) [logp(y | f)] f = dist.Normal(f_loc, f_var.sqrt())() if self.response_function is torch.sigmoid: y_dist = dist.Bernoulli(logits=f) else: f_res = self.response_function(f) y_dist = dist.Bernoulli(f_res) if y is not None: y_dist = y_dist.expand_by(y.shape[: -f.dim()]).to_event(y.dim()) return pyro.sample(self._pyro_get_fullname("y"), y_dist, obs=y)