# Copyright (c) 2017-2019 Uber Technologies, Inc.
# SPDX-License-Identifier: Apache-2.0
from typing import TYPE_CHECKING, Union
import torch
from pyro.poutine.messenger import Messenger
from pyro.poutine.util import is_validation_enabled
if TYPE_CHECKING:
from pyro.poutine.runtime import Message
[docs]class ScaleMessenger(Messenger):
"""
Given a stochastic function with some sample statements and a positive
scale factor, scale the score of all sample and observe sites in the
function.
Consider the following Pyro program:
>>> def model(x):
... s = pyro.param("s", torch.tensor(0.5))
... pyro.sample("z", dist.Normal(x, s), obs=torch.tensor(1.0))
``scale`` multiplicatively scales the log-probabilities of sample sites:
>>> scaled_model = pyro.poutine.scale(model, scale=0.5)
>>> scaled_tr = pyro.poutine.trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = pyro.poutine.trace(model).get_trace(0.0)
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True
:param fn: a stochastic function (callable containing Pyro primitive calls)
:param scale: a positive scaling factor
:returns: stochastic function decorated with a :class:`~pyro.poutine.scale_messenger.ScaleMessenger`
"""
def __init__(self, scale: Union[float, torch.Tensor]) -> None:
if isinstance(scale, torch.Tensor):
if is_validation_enabled() and not (scale > 0).all():
raise ValueError(
"Expected scale > 0 but got {}. ".format(scale)
+ "Consider using poutine.mask() instead of poutine.scale()."
)
elif not (scale > 0):
raise ValueError("Expected scale > 0 but got {}".format(scale))
super().__init__()
self.scale = scale
def _process_message(self, msg: "Message") -> None:
msg["scale"] = self.scale * msg["scale"]